Pan-Cancer Analysis of Whole Genomes

Cancer is a disease of the genome, caused by a cell's acquisition of somatic mutations in key cancer genes. These mutations alter pathways involved in regulating cellular growth and interactions with the tissue environment. Until recently, research on the cancer genome was focused on protein-coding genes, which together account for only 1% of the genome. To address this issue, the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Project performed whole genome sequencing and integrative analysis on over 2,600 primary cancers and their matching normal tissues across 38 distinct tumor types. This study revealed the extensive role played by large-scale structural mutations in cancer, identified previously-unknown cancer-related mutations in gene regulatory regions, inferred tumor evolution across multiple cancer types, illuminated the interactions between somatic mutations and the transcriptome, and studied the role of germline genetic variants in modulating mutational processes. This collection comprises papers describing the core set of analyses conducted by the PCAWG Consortium, and showcases data, tools, and other resources useful for those who seek to further explore this legacy data set.

Browse the PCAWG publications and associated content, including News and Views, Comment, and Nature editorial. This dedicated collection compiles the PCAWG datasets, other resources and community-generated content.


Related content