Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement

Abstract

B-cell receptor signaling in response to membrane-bound antigen increases with antigen affinity, a process known as affinity discrimination. We use computational modeling to show that B-cell affinity discrimination requires that kinetic proofreading predominate over serial engagement. We find that if B-cell receptors become signaling-capable immediately upon antigen binding, which results in decreasing serial engagement as affinity increases, then increasing affinity can lead to weaker signaling. Rather, antigen must stay bound to B-cell receptors for a threshold time of several seconds before becoming signaling-capable, a process similar to kinetic proofreading. This process overcomes the loss in serial engagement due to increasing antigen affinity, and replicates the monotonic increase in B-cell signaling with increasing affinity that has been observed in B-cell activation experiments. This finding matches well with the experimentally observed time (20 s) required for the B-cell receptor signaling domains to undergo antigen and lipid raft-mediated conformational changes that lead to Src-family kinase recruitment. We hypothesize that the physical basis for a threshold time of antigen binding might lie in the formation timescale of B-cell receptor dimers. The time required for dimer formation decreases with increasing antigen affinity, thereby resulting in shorter threshold antigen binding times as affinity increases. Such an affinity-dependent kinetic proofreading requirement results in affinity discrimination very similar to that observed in biological experiments. B-cell affinity discrimination is critical to the process of affinity maturation and the production of high-affinity antibodies, and thus our results have important implications in applications such as vaccine design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Lanzavecchia A . Antigen-specific interaction between T and B cells. Nature 1985; 314: 537–539.

    Article  CAS  Google Scholar 

  2. Batista FD, Neuberger M . Affinity dependence of the B-cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 1998; 8: 751–759.

    Article  CAS  Google Scholar 

  3. Kouskoff V, Famiglietti S, Lacaud G, Lang P, Rider JE, Kay BK et al. Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J Exp Med 1998; 188: 1453–1464.

    Article  CAS  Google Scholar 

  4. Batista FD, Neuberger M . B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J 2000; 19: 513–520.

    Article  CAS  Google Scholar 

  5. Shih TA, Meffre E, Roederer M, Nussenzweig MC . Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat Immunol 2002; 3: 399–406.

    Article  CAS  Google Scholar 

  6. Shih TA, Meffre E, Roederer M, Nussenzweig MC . Role of BCR affinity in T cell dependent responses in vivo. Nat Immunol 2002; 3: 570–575.

    Article  Google Scholar 

  7. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD . LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 2004; 20: 589–599.

    Article  CAS  Google Scholar 

  8. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD . B cell ligand discrimination through a spreading and contracting response. Science 2006; 312: 738–741.

    Article  CAS  Google Scholar 

  9. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK . Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med 2010; 207: 1095–1111.

    Article  CAS  Google Scholar 

  10. Carrasco YR, Batista FD . B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr Opin Immunol 2006; 18: 286–291.

    Article  CAS  Google Scholar 

  11. Batista FD, Iber D, Neuberger MS . B cells acquire antigen from target cells after synapse formation. Nature 2001; 411: 489–494.

    Article  CAS  Google Scholar 

  12. Carrasco YR, Batista FD . B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 2007; 27: 160–171.

    Article  CAS  Google Scholar 

  13. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE . CD19 is essential to B cell activation by promoting B cell receptor–antigen micro-cluster formation in response to membrane-bound ligand. Nat Immunol 2008; 9: 63–72.

    Article  CAS  Google Scholar 

  14. Batista FD, Harwood NE . The who, how, and where of antigen presentation to B cells. Nat Rev Immunol 2009; 9: 15–27.

    Article  CAS  Google Scholar 

  15. Carrasco YR, Batista FD . B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J 2006; 25: 889–899.

    Article  CAS  Google Scholar 

  16. Bergtold A, Desai DD, Gavhane A, Clynes R . Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 2005; 23: 503–514.

    Article  CAS  Google Scholar 

  17. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M . Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 2007; 450: 110–114.

    Article  CAS  Google Scholar 

  18. Phan TG, Grigorova I, Okada T, Cyster JG . Subcapsular encounter and complement dependent transport of immune complexes by lymph node B cells. Nat Immunol 2007; 8: 992–1000.

    Article  CAS  Google Scholar 

  19. Qi H, Egen JG, Huang AY, Germain RN . Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 2006; 312: 1672–1676.

    Article  CAS  Google Scholar 

  20. Schwickert TA, Lindquist RL, Shakhar G, Livshits G . Skokos D. In vivo imaging of germinal centers reveals a dynamic open structure. Nature 2007; 446: 83–87.

    Article  CAS  Google Scholar 

  21. Balázs M, Martin F, Zhou T, Kearney J . Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 2002; 17: 341–352.

    Article  Google Scholar 

  22. Tolar P, Sohn HW, Pierce SK . Viewing the antigen induced initiation of B cell activation in living cells. Immunol Rev 2008; 221: 64–76.

    Article  CAS  Google Scholar 

  23. Sohn HW, Tolar P, Pierce SK . Membrane heterogeneities in the formation of B cell receptor–Lyn kinase microclusters and the immune synapse. J Cell Biol 2008; 182: 367–379.

    Article  CAS  Google Scholar 

  24. McKeithan TW . Kinetic proofreading in T-cell receptor signal-transduction. Proc Natl Acad Sci USA 1995; 92: 5042–5046.

    Article  CAS  Google Scholar 

  25. Goldstein B, Faeder JR, Hlavacek WS . Mathematical and computational models of immune-receptor signaling. Nat Rev Immunol 2004; 4: 445–456.

    Article  CAS  Google Scholar 

  26. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM . The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–227.

    Article  CAS  Google Scholar 

  27. Coombs D, Kalergis AM, Nathenson SG, Wofsy C, Goldstein B . Activated TCRs remained marked for internalization after dissociation from pMHC. Nat Immunol 2002; 3: 926–931.

    Article  CAS  Google Scholar 

  28. Kalergis AM, Boucheron N, Doucey MA, Palmieri E, Goyarts EC, Vegh Z . Efficient cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2001; 2: 229–234.

    Article  CAS  Google Scholar 

  29. Coombs D, Dembo M, Wofsy C, Goldstein B . Equilibrium thermodynamics of cell–cell adhesion mediated by multiple receptor–ligand pairs. Biophys J 2004; 86: 1408–1423.

    Article  CAS  Google Scholar 

  30. Tsourkas P, Baumgarth N, Simon SI, Raychaudhuri S . Mechanisms of B cell synapse formation predicted by Monte Carlo simulation. Biophys J 2007; 92: 4196–4208.

    Article  CAS  Google Scholar 

  31. Tsourkas P, Longo ML, Raychaudhuri S . Monte Carlo simulation of single molecule diffusion can elucidate the mechanism of B cell synapse formation. Biophys J 2008; 95: 1118–1125.

    Article  CAS  Google Scholar 

  32. Raychaudhuri S, Tsourkas P, Willgohs E . Computational modeling of receptor–ligand binding and cellular signaling processes. In: JueT(ed.) Handbook of Modern Biophysics, Vol. I: Fundamentals New York: Humana Press 2009: 41–61.

    Google Scholar 

  33. Bell GI . Cell–cell adhesion in the immune system. Immunol Today 1983; 4: 237–240.

    Article  CAS  Google Scholar 

  34. Dembo M, Torney TC, Saxman K, Hammer D . The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B 1988; 234: 55–83.

    Article  CAS  Google Scholar 

  35. Hou P, Araujo E, Zhao T, Zhang M, Massenburg D, Veselits M et al. B cell receptor signaling and internalization are mutually exclusive events. PLoS Biol 2006; 4: 1147–1158.

    Article  CAS  Google Scholar 

  36. Favier B, Burroughs NJ, Weddeburn L, Valitutti S . T cell antigen receptor dynamics on the surface of living cells. Int Immunol 2001; 13: 1525–1532.

    Article  CAS  Google Scholar 

  37. Wofsy C, Torigoe C, Kent UM, Metzger H, Goldstein B . Exploiting the difference between intrinsic and extrinsic kinases: implications for regulation of signaling by immunoreceptors. J Immunol 1997; 159: 5984–5992.

    CAS  PubMed  Google Scholar 

  38. Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A et al. Investigation of early events in FcεRI-mediated signaling using a detailed mathematical model. J Immunol 2003; 170: 3769–3781.

    Article  CAS  Google Scholar 

  39. Tsang E, Giannetti AM, Shaw D, Dinh M, Tse JK, Ghandi S et al. Molecular mechanism of the Syk activation switch. J Biol Chem 2008; 283: 32650-32659.

    Article  CAS  Google Scholar 

  40. Tolar P, Sohn HW, Pierce SK . The initiation of antigen induced BCR signaling viewed in living cells by FRET. Nat Immunol 2005; 6: 1168–1176.

    Article  CAS  Google Scholar 

  41. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A . Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 1995; 375: 148–151.

    Article  CAS  Google Scholar 

  42. Valitutti S, Lanzavecchia A . Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol Today 1997; 18: 299–304.

    Article  CAS  Google Scholar 

  43. Tolar P, Hanna J, Krueger PD, Pierce SK . The constant region of the membrane immunoglobulin mediates B cell–receptor clustering and signaling in response to membrane antigens. Immunity 2009; 30: 44–55.

    Article  CAS  Google Scholar 

  44. Tolar P, Sohn HW, Liu W, Pierce SK . The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev 2009; 232: 34–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Emanual Maverakis, Dr Aaron Dinner and Dr Stephen Kaattari for proofreading the manuscript and offering valuable advice. PT and SR are supported by NIH grant AI074022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Raychaudhuri.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsourkas, P., Liu, W., Das, S. et al. Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cell Mol Immunol 9, 62–74 (2012). https://doi.org/10.1038/cmi.2011.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.29

Keywords

This article is cited by

Search

Quick links