Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

γδ-T cells: an unpolished sword in human anti-infection immunity

Abstract

γδ-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of γδ-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. γδ-T cells have both ‘innate’ and ‘adaptive’ characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in γδ-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different γδ-T cell subpopulations under specific conditions, γδ-T cell-based therapy has great potential for the treatment of infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaufmann SH . Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N Engl J Med 2005; 353: 2423–2426.

    Article  CAS  PubMed  Google Scholar 

  2. Born WK, Reardon CL, O'Brien RL . The function of gammadelta T cells in innate immunity. Curr Opin Immunol 2006; 18: 31–38.

    Article  CAS  PubMed  Google Scholar 

  3. Xi X Guo Y, Chen H, Xu CP, Zhang HY, Hu HB et al. Antigen specificity of gamma delta T cells primarily depends on the flanking sequences of CDR3 delta. J Biol Chem 2009; 284: 27449–27455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayday AC . γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 975–1026.

    Article  CAS  PubMed  Google Scholar 

  5. Kabelitz D, Glatzel A, Wesch D . Antigen recognition by human gammadelta T lymphocytes. Int Arch Allergy Immunol 2000; 122: 1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 2010; 120: 1762–1773.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Molne L, Corthay A, Holmdahl R, Tarkowski A . Role of gamma/delta T cell receptor-expressing lymphocytes in cutaneous infection caused by Staphylococcus aureus. Clin Exp Immunol 2003; 132: 209–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R et al. A role for skin gammadelta T cells in wound repair. Science 2002; 296: 747–749.

    Article  CAS  PubMed  Google Scholar 

  9. Shiohara T, Moriya N, Hayakawa J, Itohara S, Ishikawa H . Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor delta gene-mutant mice. J Exp Med 1996; 183: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  10. Ferri S, Longhi MS, de Molo C, Lalanne C, Muratori P, Granito A et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52: 999–1007.

    Article  CAS  PubMed  Google Scholar 

  11. Ito Y, Usui T, Kobayashi S, Iguchi-Hashimoto M, Ito H, Yoshitomi H et al. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum 2009; 60: 2294–2303.

    Article  CAS  PubMed  Google Scholar 

  12. Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mill KH . Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J Immunol 2011; 186: 5738–5748.

    Article  CAS  PubMed  Google Scholar 

  13. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31: 331–341.

    Article  CAS  PubMed  Google Scholar 

  14. Fink DR, Holm D, Schlosser A, Nielsen O, Latta M, Lozano F et al. Elevated numbers of SCART1+ gammadelta T cells in skin inflammation and inflammatory bowel disease. Mol Immunol 2010; 47: 1710–1718.

    Article  CAS  PubMed  Google Scholar 

  15. Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 2010; 121: 1746–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murdoch JR, Lloyd CM . Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17 producing γδT cells. Am J Respir Crit Care Med 2010; 182: 464–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin Y, Xia MC, Saylor CM, Narayan K, Kang J, Wiest DL et al. Cutting edge: intrinsic programming of thymic γδT cells for specific peripheral tissue localization. J Immunol 2010; 185: 7156–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chennupati V, Worbs T, Liu X, Malinarich FH, Schmitz S, Haas JD et al. Intra- and intercompartmental movement of γδ T cells: intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J Immunol 2010; 185: 5160–5168.

    Article  CAS  PubMed  Google Scholar 

  19. Eberl M, Engel R, Beck E, Jomaa H . Differentiation of human gamma-delta T cells towards distinct memory phenotypes. Cell Immunol 2002; 218: 1–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 2009; 10: 427–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gioia C, Agrati C, Casetti R, Cairo C, Borsellino G, Battistini L et al. Lack of CD27-CD45RA-V gamma 9V delta 2+ T cell effectors in immunocompromised hosts and during active pulmonary tuberculosis. J Immunol 2002; 168: 1484–1489.

    Article  CAS  PubMed  Google Scholar 

  22. Qin G, Liu Y, Zheng J, Xiang Z, Ng IH, Malik Peiris JS et al. Phenotypic and functional characterization of human gammadelta T-cell subsets in response to influenza A viruses. J Infect Dis 2012; 205: 1646–1653.

    Article  CAS  PubMed  Google Scholar 

  23. Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M . Antiviral reactivities of gammadelta T cells. Microbes Infect 2005; 7: 518–528.

    Article  CAS  PubMed  Google Scholar 

  24. Sciammas R, Bluestone JA . TCRgammadelta cells and viruses. Microbes Infect 1999; 1: 203–212.

    Article  CAS  PubMed  Google Scholar 

  25. Hoq MM, Suzutani T, Toyoda T, Horiike G, Yoshida I, Azuma M . Role of gamma delta TCR+ lymphocytes in the augmented resistance of trehalose 6,6′-dimycolate-treated mice to influenza virus infection. J Gen Virol 1997; 78( Pt 7): 1597–1603.

    Article  CAS  PubMed  Google Scholar 

  26. Qin G, Liu Y, Zheng J, Ng IH, Xiang Z, Lam KT et al. Type 1 responses of human Vgamma9Vdelta2 T cells to influenza A viruses. J Virol 2011; 85: 10109–10116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin G, Herold MJ, Kimmel B, Müller I, Rincon-Orozco B, Kunzmann V et al. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 2009; 200: 858–865.

    Article  CAS  PubMed  Google Scholar 

  28. Tu W, Zheng J, Liu Y, Sia SF, Liu M, Qin G et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med 2011; 208: 1511–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meuter S, Eberl M, Moser B . Prolonged antigen survival and cytosolic export in cross-presenting human γδ T cells. Proc Natl Acad Sci USA 2010; 107: 8730–8735.

    Article  CAS  PubMed  Google Scholar 

  30. Fang H, Welte T, Zheng X, Chang GJ, Holbrook MR, Soong L et al. gammadelta T cells promote the maturation of dendritic cells during West Nile virus infection. FEMS Immunol Med Microbiol 2010; 59: 71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Puttur FK, Fernandez MA, White R, Roediger B, Cunningham AL, Weninger W et al. Herpes simplex virus infects skin γδ T cells before Langerhans cells and impedes migration of infected langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J Immunol 2010; 185: 477–487.

    Article  CAS  PubMed  Google Scholar 

  32. Aoyagi M, Shimojo N, Sekine K, Nishimuta T, Kohno Y . Respiratory syncytial virus infection suppresses IFN-gamma production of gammadelta T cells. Clin Exp Immunol 2003; 131: 312–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maccario R, Revello MG, Comoli P, Montagna D, Locatelli F, Gerna G . HLA-unrestricted killing of HSV-1-infected mononuclear cells. Involvement of either gamma/delta+ or alpha/beta+ human cytotoxic T lymphocytes. J Immunol 1993; 150: 1437–1445.

    CAS  PubMed  Google Scholar 

  34. Knight A, Madriga AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S et al. The role of Vdelta2-negative gamma-delta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplants. Blood 2010; 116: 2164–2172.

    Article  CAS  PubMed  Google Scholar 

  35. Devaud C, Bilhere E, Loizon S, Pitard V, Behr C, Moreau JF et al. Antitumor activity of γδ T cells reactive against cytomegalovirus-infected cells in a mouse xenograft tumor model. Cancer Res 2009; 69: 3971–3978.

    Article  CAS  PubMed  Google Scholar 

  36. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, van Rysselberge M et al. Human cytomegalovirus elicits fetal γδ T cell responses in utero. J Exp Med 2010; 207: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wallace M, Bartz SR, Chang WL, Mackenzie DA, Pauza CD, Malkovsky M . Gamma delta T lymphocyte responses to HIV. Clin Exp Immunol 1996; 103: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000; 96: 3086–3093.

    CAS  PubMed  Google Scholar 

  39. Poccia F, Gioia C, Martini F, Sacchi A, Piacentini P, Tempestilli M et al. Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 2009; 23: 555–565.

    Article  CAS  PubMed  Google Scholar 

  40. de Paoli P, Gennari D, Martelli P, Cavarzerani V, Comoretto R, Santini G . Gamma delta T cell receptor-bearing lymphocytes during Epstein–Barr virus infection. J Infect Dis 1990; 161: 1013–1016.

    Article  CAS  PubMed  Google Scholar 

  41. Tseng CT, Miskovsky E, Houghton M, Klimpel GR . Characterization of liver T-cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001; 33: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  42. Landmeier S, Altvater B, Pscherer S, Juergens H, Varnholt L, Hansmeier A et al. Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer. J Immunother 2009; 32: 310–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mishra R, Chen AT, Welsh RM, Szomolanyi-Tsuda E . NK cells and gammadelta T cells mediate resistance to polyomavirus-induced tumors. PLoS Pathog 2010; 6: e1000924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen ZW, Letvin NL . Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect 2003; 5: 491–498.

    Article  PubMed  PubMed Central  Google Scholar 

  45. O'Brien RL, Roark CL, Born WK . IL-17-producing gammadelta T cells. Eur J Immunol 2009; 39: 662–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Kamath A, Das H, Li L, Bukowski JF . Antibacterial effect of human V gamma 2V delta 2 T cells in vivo. J Clin Invest 2001; 108: 1349–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SH . A large fraction of human peripheral blood gamma/delta+ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 1990; 171: 667–679.

    Article  CAS  PubMed  Google Scholar 

  48. Chen ZW . Immunology of AIDS virus and mycobacterial co-infection. Curr HIV Res 2004; 2: 351–355.

    Article  CAS  PubMed  Google Scholar 

  49. Xu S, Han Y, Xu X, Bao Y, Zhang M, Cao X et al. IL-17A-producing γδT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. J Immunol 2010; 185: 5879–5887.

    Article  CAS  PubMed  Google Scholar 

  50. Egan CE, Dalton JE, Andrew EM, Smith JE, Gubbels MJ, Striepen B et al. A requirement for the Vgamma1+ subset of peripheral gammadelta T cells in the control of the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol 2005; 175: 8191–8199.

    Article  CAS  PubMed  Google Scholar 

  51. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM et al. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. J Immunol 2010; 184: 6043–6052.

    Article  CAS  PubMed  Google Scholar 

  52. Weidanz WP, LaFleur G, Brown A, Burns JM Jr, Gramaglia I, van der Heyde HC . γδT cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infect Immun 2010; 78: 4331–4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen ZW . Immune biology of Ag-specific gammadelta T cells in infections. Cell Mol Life Sci 2011; 68: 2409–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morita CT, Mariuzza RA, Brenner MB . Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol 2000; 22: 191–217.

    Article  CAS  PubMed  Google Scholar 

  55. Chargui J, Combaret V, Scaglione V, Iacono I, Péri V, Valteau-Couanet D et al. Bromohydrin pyrophosphate-stimulated Vgamma9delta2 T cells expanded ex vivo from patients with poor-prognosis neuroblastoma lyse autologous primary tumor cells. J Immunother 2010; 33: 591–598.

    Article  CAS  PubMed  Google Scholar 

  56. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 1995; 3: 495–507.

    Article  CAS  Google Scholar 

  57. Wei H, Huang D, Lai X, Chen M, Zhong W, Wang R et al. Definition of APC presentation of phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate to Vgamma2Vdelta 2 TCR. J Immunol 2008; 181: 4798–4806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L et al. Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 2005; 202: 295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dieude M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J Immunol 2011; 186: 4771–4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarikonda G, Wang H, Puan KJ, Liu XH, Lee HK, Song Y et al. Photoaffinity antigens for human γδ T Cells. J Immunol 2008; 181: 7738–7750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ribot JC, Debarros A, Silva-Santos B . Searching for “signal 2”: costimulation requirements of gammadelta T cells. Cell Mol Life Sci 2011; 68: 2345–2355.

    Article  CAS  PubMed  Google Scholar 

  62. Witherden DA, Havran WL . Molecular aspects of epithelial gammadelta T cell regulation. Trends Immunol 2011; 32: 265–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Budd RC, Russell JQ, van Houten N, Cooper SM, Yagita H, Wolfe J . CD2 expression correlates with proliferative capacity of alpha beta+ or gamma delta+ CD4CD8 T cells in lpr mice. J Immunol 1992; 148: 1055–1064.

    CAS  PubMed  Google Scholar 

  64. Lafont V, Liautard J, Gross A, Liautard JP, Favero J . Tumor necrosis factor-alpha production is differently regulated in gamma delta and alpha beta human T lymphocytes. J Biol Chem 2000; 275: 19282–19287.

    Article  CAS  PubMed  Google Scholar 

  65. Penninger JM, Timms E, Shahinian A, Jezo-Bremond A, Nishina H, Ionescu J et al. Alloreactive gamma delta thymocytes utilize distinct costimulatory signals from peripheral T cells. J Immunol 1995; 155: 3847–3855.

    CAS  PubMed  Google Scholar 

  66. Shao Z, Schwarz H . CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J Leuk Biol 2011; 89: 21–29.

    Article  CAS  Google Scholar 

  67. Caccamo N, Battistini L, Bonneville M, Poccia F, Fournié JJ, Meraviglia S et al. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 2006; 177: 5290–5295.

    Article  CAS  PubMed  Google Scholar 

  68. Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, Teyton L et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 2010; 329: 1205–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ciucci A, Gabriele I, Percario ZA, Affabris E, Colizzi V, Mancino G . HMGB1 and cord blood: its role as immuno-adjuvant factor in innate immunity. PloS ONE 2011; 6: e23766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Uchida Y, Kawai K, Ibusuki A, Kanekura T . Role for E-cadherin as an inhibitory receptor on epidermal γδ T cells. J Immunol 2011; 186: 6945–6954.

    Article  CAS  PubMed  Google Scholar 

  71. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15: 83–93.

    Article  CAS  PubMed  Google Scholar 

  72. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T . Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol 2005; 175: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  73. Angelini DF, Micucci F, Poccia F, Semenzato G, Borsellino G, Santoni A et al. NKG2A inhibits NKG2C effector functions of γδ T cells: implications in health and disease. J Leukoc Biol 2010; 89: 75–84.

    Article  CAS  PubMed  Google Scholar 

  74. Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D . Modulation of gammadelta T cell responses by TLR ligands. Cell Mol Life Sci 2011; 68: 2357–2370.

    Article  CAS  PubMed  Google Scholar 

  75. Devilder MC, Allain S, Dousset C, Bonneville M, Scotet E . Early triggering of exclusive IFN-gamma responses of human Vgamma9Vdelta2 T cells by TLR-activated myeloid and plasmacytoid dendritic cells. J Immunol 2009; 183: 3625–3633.

    Article  CAS  PubMed  Google Scholar 

  76. Pietschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH et al. Toll-like receptor expression and function in subsets of human gammadelta T lymphocytes. Scand J Immunol 2009; 70: 245–255.

    Article  CAS  PubMed  Google Scholar 

  77. Oberg HH, Ly TT, Ussat S, Meyer T, Kabelitz D, Wesch D . Differential but direct abolishment of human regulatory T cell suppressive capacity by various TLR2 ligands. J Immunol 2010; 184: 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  78. Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D . Direct costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta T lymphocytes. J Immunol 2006; 176: 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  79. Rothenfusser S, Hornung V, Krug A, Towarowski A, Krieg AM, Endres S et al. Distinct CpG oligonucleotide sequences activate human gamma delta T cells via interferon-alpha/-beta. Eur J Immunol 2001; 31: 3525–3534.

    Article  CAS  PubMed  Google Scholar 

  80. Born WK, Zhang L, Nakayama M, Jin N, Chain JL, Huang Y et al. Peptide antigens for gamma/delta T cells. Cell Mol Life Sci 2011; 68: 2335–2343.

    Article  CAS  PubMed  Google Scholar 

  81. Fu YX, Cranfill R, Vollmer M, van der Zee R, O'Brien RL, Born W . In vivo response of murine gamma delta T cells to a heat shock protein-derived peptide. Proc Natl Acad Sci USA 1993; 90: 322–326.

    Article  CAS  PubMed  Google Scholar 

  82. Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER et al. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 2010; 11: 350–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kozbor D, Trinchieri G, Monos DS, Isobe M, Russo G, Haney JA et al. Human TCR-gamma+/delta+, CD8+ T lymphocytes recognize tetanus toxoid in an MHC-restricted fashion. J Exp Med 1989; 169: 1847–1851.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson RM, Lancki DW, Sperling AI, Dick RF, Spear PG, Fitch FW et al. A murine CD4, CD8 T cell receptor-gamma delta T lymphocyte clone specific for herpes simplex virus glycoprotein I. J Immunol 1992; 148: 983–988.

    CAS  PubMed  Google Scholar 

  85. O'Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK . Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell 1989; 57: 667–674.

    Article  CAS  PubMed  Google Scholar 

  86. Happ MP, Kubo RT, Palmer E, Born WK, O'Brien RL . Limited receptor repertoire in a mycobacteria-reactive subset of gamma delta T lymphocytes. Nature 1989; 342: 696–698.

    Article  CAS  PubMed  Google Scholar 

  87. Rust CJ, Verreck F, Vietor H, Koning F . Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the V gamma 9 region. Nature 1990; 346: 572–574.

    Article  CAS  PubMed  Google Scholar 

  88. Guo Y, Ziegler HK, Safley SA, Niesel DW, Vaidya S, Klimpel GR . Human T-cell recognition of Listeria monocytogenes: recognition of listeriolysin O by TcR alpha beta+ and TcR gamma delta+ T cells. Infect Immun 1995; 63: 2288–2294.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Holoshitz J, Koning F, Coligan JE, de Bruyn J, Strober S . Isolation of CD4 CD8 mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 1989; 339: 226–229.

    Article  CAS  PubMed  Google Scholar 

  90. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 2002; 295: 2255–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bonneville M, O'Brien RL, Born WK . Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10: 467–478.

    Article  CAS  PubMed  Google Scholar 

  92. Born WK, O'Brien RL . Antigen-restricted gammadelta T-cell receptors? Arch Immunol Ther Exp (Warsz) 2009; 57: 129–135.

    Article  CAS  Google Scholar 

  93. Paget C, Chow MT, Duret H, Mattarollo SR, Smyth MJ . Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J Immunology 2012; 188: 3928–3939.

    Article  CAS  Google Scholar 

  94. de Koning PJ, Kummer JA, de Poot SA, Quadir R, Broekhuizen R, McGettrick AF et al. The cytotoxic protease granzyme M is expressed by lymphocytes of both the innate and adaptive immune system. Mol Immunol 2009; 47: 903–911.

    Article  CAS  PubMed  Google Scholar 

  95. Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O, Merville P et al. Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 2012; 119: 1418–1427.

    Article  CAS  PubMed  Google Scholar 

  96. McAleer JP, Kolls JK . Mechanisms controlling Th17 cytokine expression and host defense. J Leuk Biol 2011; 90: 263–270.

    Article  CAS  Google Scholar 

  97. Li Z, Burns AR, Byeseda Miller S, Smith CW . CCL20, γδ T cells, and IL-22 in corneal epithelial healing. FASEB J 2011; 25: 2659–2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zenewicz LA, Flavell RA . Recent advances in IL-22 biology. Int Immunol 2011; 23: 159–163.

    Article  CAS  PubMed  Google Scholar 

  99. Prinz I . Dynamics of the interaction of gammadelta T cells with their neighbors in vivo. Cell Mol Life Sci 2011; 68: 2391–2398.

    Article  CAS  PubMed  Google Scholar 

  100. Wands JM, Roark CL, Aydintug MK, Jin N, Hahn YS, Cook L et al. Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leuk Biol 2005; 78: 1086–1096.

    Article  CAS  Google Scholar 

  101. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 2006; 7: 517–523.

    Article  CAS  PubMed  Google Scholar 

  102. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M . Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009; 31: 321–330.

    Article  CAS  PubMed  Google Scholar 

  103. Silva-Santos B, Pennington DJ, Hayday AC . Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 2005; 307: 925–928.

    Article  CAS  PubMed  Google Scholar 

  104. Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C, Wise EL et al. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 2003; 4: 991–998.

    Article  CAS  PubMed  Google Scholar 

  105. Rojas RE, Torres M, Fournie JJ, Harding CV, Boom WH . Phosphoantigen presentation by macrophages to Mycobacterium tuberculosis-reactive Vgamma9Vdelta2+ T cells: modulation by chloroquine. Infect Immun 2002; 70: 4019–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moser B, Eberl M . gammadelta T-APCs: a novel tool for immunotherapy? Cell Mol Life Sci 2011; 68: 2443–2452.

    Article  CAS  PubMed  Google Scholar 

  107. Brandes M, Willimann K, Bioley G, Lévy N, Eberl M, Luo M et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 2009; 106: 2307–2312.

    Article  CAS  PubMed  Google Scholar 

  108. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE et al. Human γδ T lymphocytes induce robust NK cell mediated antitumor cytotoxicity through CD137 engagement. Blood 2010; 116: 1726–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nussbaumer O, Gruenbacher G, Gander H, Thurnher M . DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes. Blood 2011; 118: 2743–2751.

    Article  CAS  PubMed  Google Scholar 

  110. Cheng L, Cui Y, Shao H, Han G, Zhu L, Huang Y et al. Mouse gammadelta T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells. J Neuroimmunol 2008; 203: 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kabelitz D . gammadelta T-cells: cross-talk between innate and adaptive immunity. Cell Mol Life Sci 2011; 68: 2331–2333.

    Article  CAS  PubMed  Google Scholar 

  112. Eberl M . Roberts GW, Meuter S, Williams JD, Topley N, Moser B . A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 2009; 5: e1000308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huber SA . gammadelta T lymphocytes kill T regulatory cells through CD1d. Immunology 2010; 131: 202–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu W, Huber SA . Cross-talk between CD1d-restricted NKT cells and gammadelta cells in t regulatory cell response. Virol J 2011; 8: 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000; 192: 1553–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vinuesa CG, Tangye SG, Moser B, Mackay CR . Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 2005; 5: 853–865.

    Article  CAS  PubMed  Google Scholar 

  117. Do JS, Min B . IL-15 produced and trans-presented by DCs underlies homeostatic competition between CD8 and γδ T cells in vivo. Blood 2009; 113: 6361–6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuhl AA, Pawlowski NN, Grollich K, Blessenohl M, Westermann J, Zeitz M et al. Human peripheral gammadelta T cells possess regulatory potential. Immunology 2009; 128: 580–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kang N, Tang L, Li X, Wu D, Li W, Chen X et al. Identification and characterization of Foxp3+ gammadelta T cells in mouse and human. Immunol Lett 2009; 125: 105–113.

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Kang N, Zhang X, Dong X, Wei W, Cui L et al. Generation of human regulatory γδ T cells by TCRγδ stimulation in the presence of TGF-β and their involvement in the pathogenesis of systemic lupus erythematosus. J Immunol 2011; 186: 6693–6700.

    Article  CAS  PubMed  Google Scholar 

  121. Berkun Y . Bendersky A, Gerstein M, Goldstein I, Padeh S, Bank I . γδT cells in juvenile idiopathic arthritis: higher percentages of synovial Vδ1+ and Vγ9+ T cell subsets are associated with milder disease. J Rheumatol 2011; 38: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  122. Yurchenko E, Levings MK, Piccirillo CA . CD4+ Foxp3+ regulatory T cells suppress gammadelta T-cell effector functions in a model of T-cell-induced mucosal inflammation. Eur J Immunol 2011; 41: 3455–3466.

    Article  CAS  PubMed  Google Scholar 

  123. Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS et al. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 2010; 33: 791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Do JS, Visperas A, O'Brien RL, Min B . CD4 T cells play important roles in maintaining IL-17-producing gammadelta T-cell subsets in naive animals. Immunol Cell Biol 2011; 90: 396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miko E, Szereday L, Barakonyi A, Jarkovich A, Varga P, Szekeres-Bartho J et al. Immunoactivation in preeclampsia: Vdelta2+ and regulatory T cells during the inflammatory stage of disease. J Reprod Immunol 2009; 80: 100–108.

    Article  CAS  PubMed  Google Scholar 

  126. Boyman O, Krieg C, Homann D, Sprent J . Homeostatic maintenance of T cells and natural killer cells. Cell Mol Life Sci 2012; 69: 1597–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Meraviglia S, Caccamo N, Salerno A, Sireci G, Dieli F . Partial and ineffective activation of V gamma 9V delta 2 T cells by Mycobacterium tuberculosis-infected dendritic cells. J Immunol 2010; 185: 1770–1776.

    Article  CAS  PubMed  Google Scholar 

  128. Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE . IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol 2009; 183: 8026–8034.

    Article  CAS  PubMed  Google Scholar 

  129. Laky K, Sieve AN, Kolls JK, Ghilardi N, Berg RE . Enterocyte expression of interleukin 7 induces development of gammadelta T cells and Peyer's patches. J Exp Med 2000; 191: 1569–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Thedrez A, Harly C, Morice A, Salot S, Bonneville M, Scotet E . IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human Vγ9Vδ2 T cells for adoptive immunotherapy. J Immunol 2009; 182: 3423–3431.

    Article  CAS  PubMed  Google Scholar 

  131. Dungan LS, Mills KH . Caspase-1-processed IL-1 family cytokines play a vital role in driving innate IL-17. Cytokine 2011; 15: 126–132.

    Article  CAS  Google Scholar 

  132. Gong G, Shao L, Wang Y, Chen CY, Huang D, Yao S et al. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 2009; 113: 837–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Henry T, Kirimanjeswara GS, Ruby T, Jones JW, Peng K, Perret M et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J Immunol 2010; 184: 3755–3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rojas RE, Balaji KN, Subramanian A, Boom WH . Regulation of human CD4+ alphabeta T-cell-receptor-positive (TCR+) and gammadelta TCR+ T-cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor beta. Infect Immun 1999; 67: 6461–6472.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pechhold K, Wesch D, Schondelmaier S, Kabelitz D . Primary activation of V gamma 9-expressing gamma delta T cells by Mycobacterium tuberculosis. Requirement for Th1-type CD4 T cell help and inhibition by IL-10. J Immunol 1994; 152: 4984–4992.

    CAS  PubMed  Google Scholar 

  136. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C et al. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 2003; 198: 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027.

    Article  CAS  PubMed  Google Scholar 

  138. Sato K, Kondo M, Sakuta K, Hosoi A, Noji S, Sugiura M et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 2009; 11: 936–946.

    Article  CAS  PubMed  Google Scholar 

  139. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galéa C et al. Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2008; 57: 1599–1609.

    Article  CAS  PubMed  Google Scholar 

  140. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56: 469–476.

    Article  CAS  PubMed  Google Scholar 

  141. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 2010; 37: 1191–1197.

    Article  PubMed  Google Scholar 

  142. Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K . Complete remission of lung metastasis following adoptive immunotherapy using activated autologous γδ T-cells in a patient with renal cell carcinoma. Anticancer Res 2010; 30: 575–579.

    CAS  PubMed  Google Scholar 

  143. Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H et al. Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol 2007; 179: 8287–8296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Huang D, Chen CY, Ali Z, Shao L, Shen L, Lockman HA et al. Antigen-specific Vgamma2Vdelta2 T effector cells confer homeostatic protection against pneumonic plaque lesions. Proc Natl Acad Sci USA 2009; 106: 7553–7558.

    Article  CAS  PubMed  Google Scholar 

  145. Russell RG . Bisphosphonates: the first 40 years. Bone 2011; 49: 2–19.

    Article  CAS  PubMed  Google Scholar 

  146. Castella B, Riganti C, Fiore F, Pantaleoni F, Canepari ME, Peola S et al. Immune modulation by zoledronic acid in human myeloma: an advantageous cross talk between Vγ9Vδ2 T cells, γδ CD8+ T cells, regulatory T cells, and dendritic cells. J Immunol 2011; 187: 1578–1590.

    Article  CAS  PubMed  Google Scholar 

  147. Kabelitz D, Wesch D, He W . Perspectives of gammadelta T cells in tumor immunology. Cancer Res 2007; 67: 5–8.

    Article  CAS  PubMed  Google Scholar 

  148. Laggner U, Lopez JS, Perera G, Warbey VS, Sita-Lumsden A, O'Doherty MJ et al. Regression of melanoma metastases following treatment with the n-bisphosphonate zoledronate and localised radiotherapy. Clin Immunol 2009; 131: 367–373.

    Article  CAS  PubMed  Google Scholar 

  149. Mehrle S, Watzl C, von Lilienfeld-Toal M, Amoroso A, Schmidt J, Märten A . Comparison of phenotype of gammadelta T cells generated using various cultivation methods. Immunol Lett 2009; 125: 53–58.

    Article  CAS  PubMed  Google Scholar 

  150. Salot S, Bercegeay S, Dreno B, Saïagh S, Scaglione V, Bonnafous C et al. Large scale expansion of Vgamma9Vdelta 2 T lymphocytes from human peripheral blood mononuclear cells after a positive selection using MACS “TCR Gamma/Delta+ T Cell Isolation Kit”. J Immunol Methods 2009; 347: 12–18.

    Article  CAS  PubMed  Google Scholar 

  151. Zhou J, Kang N, Cui L, Ba D, He W . Anti-gammadelta TCR antibody-expanded gammadelta T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol 2011; 9: 34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Huang D, Shen Y, Qiu L, Chen C, Shen L, Estep J et al. Immune distribution and localization of phosphoantigen-specific Vgamma2Vdelta2 T cells in lymphoid and nonlymphoid tissues in Mycobacterium tuberculosis infection. Infect Immun 2008; 76: 426–436.

    Article  CAS  PubMed  Google Scholar 

  153. Altvater B, Pscherer S, Landmeier S, Kailayangiri S, Savoldo B, Juergens H et al. Activated human gammadelta T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother 2011; 61: 385–396.

    Article  CAS  PubMed  Google Scholar 

  154. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F et al. Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 2003; 102: 2310–2311.

    Article  CAS  PubMed  Google Scholar 

  155. Kunzmann V, Bauer E, Wilhelm M . Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 1999; 340: 737–738.

    Article  CAS  PubMed  Google Scholar 

  156. Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD . Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4+ T cells and gammadelta T cells. J Immunol 2012; 188: 3107–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bruder J, Siewert K, Obermeier B, Malotka J, Scheinert P, Kellermann J et al. Target specificity of an autoreactive human gammadelta-T cell receptor in myositis. J Biol Chem 2012; 287: 20986–20995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Placido R, Auricchio G, Gabriele I, Galli E, Brunetti E, Colizzi V et al. Characterization of the immune response of human cord-blood derived gamma/delta T cells to stimulation with aminobisphosphonate compounds. Int J Immunopathol Pharmacol 2011; 24: 101–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Area of Excellence program on influenza, which is supported by the University Grants Committee of the Hong Kong SAR, China (Project No. AoE/M-12/06), the General Research Fund and the Research Grants Council of Hong Kong (HKU 777108M, HKU777407, HKU768108, HKU781211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Liu, Y., Lau, YL. et al. γδ-T cells: an unpolished sword in human anti-infection immunity. Cell Mol Immunol 10, 50–57 (2013). https://doi.org/10.1038/cmi.2012.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.43

Keywords

This article is cited by

Search

Quick links