Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antitumor effects on human melanoma xenografts of an amplicon vector transducing the herpes thymidine kinase gene followed by ganciclovir

Abstract

Herpes simplex virus type-1 (HSV-1) has been demonstrated as a potentially useful gene delivery vector for gene therapy due to its high efficiency of in vivo transduction. The helper virus–dependent, HSV-1 amplicon vectors were developed for easier operation and their larger capacity. In this study, the herpes simplex virus type-1 thymidine kinase (HSVtk) gene was cloned into the pHE700 amplicon vector to make an HE7tk vector and used for in vivo gene delivery. Human melanoma xenografts were established in athymic nude mice. Tumors were injected directly with HE7tk vector alone, HE7tk vector followed by ganciclovir (GCV), or a pHE700 amplicon vector carrying a green fluorescent protein (HE7GFP) gene followed by GCV. Efficient HSVtk transgene expression was found in the tumor 3 days after injection. Animals transduced with HE7tk followed by GCV had minimal tumor growth (P<.01). Animals that received either HE7tk vector without GCV or HE7GFP vector with GCV had some reduction in tumor growth compared to animals that were injected with buffer only. These data indicate that replication-defective HSV-1 amplicon vectors can be used effectively to deliver transgenes into solid tumors in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Palella TD, Hidaka Y, Silverman LJ et al. Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex type 1 vector Gene 1989 80: 137–144

    Article  CAS  PubMed  Google Scholar 

  2. Chiocca EA, Choi BB, Cai WZ et al. Transfer and expression of the lacZ gene in rat brain neurons by herpes simplex virus mutants New Biol 1990 2: 739–746

    CAS  PubMed  Google Scholar 

  3. Andersen JK, Garber DA, Meaney CA et al. Gene transfer into mammalian central nervous system using herpesvirus vectors: extended expression of bacterial lacZ gene in neurons using the neuron-specific enolase promoter Hum Gene Ther 1992 3: 487–499

    Article  CAS  PubMed  Google Scholar 

  4. Ho D, Mocarski E, Sapoloski R . Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene Proc Natl Acad Sci USA 1993 90: 3655–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. During MJ, Naegele JR, O'Malley KL et al. Long-term behavioral recovery in Parkinsonian rats by an HSV vector expressing tyrosine hydroxylase Science 1994 266: 1399–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glorioso JC, DeLuca NA, Fink DJ . Development and application of herpes simplex virus vectors for human gene therapy Annu Rev Microbiol 1995 49: 675–710

    Article  CAS  PubMed  Google Scholar 

  7. Glorioso J . HSV as a gene transfer vector for the nervous system Mol Biotechnol 1995 4: 87–99

    Article  CAS  PubMed  Google Scholar 

  8. Spaete RR, Frenkel N . The herpes simplex virus amplicon: A new eukaryotic defective-virus cloning-amplifying vector Cell 1982 30: 295–304

    Article  CAS  PubMed  Google Scholar 

  9. Geller AI, Breakefield XO . A defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons Science 1988 241: 1667–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geller AI, Freese A . Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase Proc Natl Acad Sci USA 1990 87: 1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwong AD, Frenkel N . The herpes simplex virus amplicon. Efficient expression of a chimeric chicken ovalbumin gene amplified within defective virus genomes Virology 1985 142: 421–425

    Article  CAS  PubMed  Google Scholar 

  12. Pakzaban P, Geller AI, Isacson O . Effect of exogenous nerve growth factor on neurotoxicity of and neuronal gene delivery by a herpes simplex amplicon vector in the rat brain Hum Gene Ther 1994 5: 987–995

    Article  CAS  PubMed  Google Scholar 

  13. Smith RL, Geller AI, Escudero KW et al. Long-term expression in sensory neurons in tissue culture from herpes simplex virus type 1 (HSV-1) promoters in an HSV-1–derived vector J Virol 1995 69: 4593–4599

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mesri EA, Federoff HJ, Brownlee M . Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice Circ Res 1995 76: 161–167

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Di S, Young WB et al. A novel herpesvirus amplicon system for in vivo gene delivery Gene Ther 1997 4: 1132–1141

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Vos J . A hybrid herpesvirus infectious vector based on Epstein-Barr virus and herpes simplex virus type I for gene transfer into human cells in vitro and in vivo J Virol 1996 70: 8422–8430

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reisman D, Yates J, Sugden B . A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components Mol Cell Biol 1985 5: 1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yates JL, Warren N, Sugden B . Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells Nature 1985 313: 812–815

    Article  CAS  PubMed  Google Scholar 

  19. Judde JG, Spangler G, Magrath I et al. Use of Epstein-Barr virus nuclear antigen-1 in targeted therapy of EBV-associated neoplasia Hum Gene Ther 1996 7: 647–653

    Article  CAS  PubMed  Google Scholar 

  20. Boviatsis EJ, Scharf JM, Chase M et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase Gene Ther 1994 1: 323–331

    CAS  PubMed  Google Scholar 

  21. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: Paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  22. Moolten FL, Wells JM, Heyman RA et al. Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene Hum Gene Ther 1990 1: 125–134

    Article  CAS  PubMed  Google Scholar 

  23. Plautz G, Nabel EG, Nabel GJ . Selective elimination of recombinant genes in vivo with a suicide retroviral vector New Biol 1991 7: 709

    Google Scholar 

  24. Culver KW, Ram Z, Walbridge S et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  25. Bi WL, Parysek LM, Warnick R et al. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  26. Freeman SM, Abboud CN, Whartenby KA et al. The bystander effect: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  27. Link CJ, Kolb E, Muldoon R . Preliminary in vitro efficacy and toxicities studies of the herpes simplex thymidine kinase gene system for the treatment of breast cancer Hybridoma 1995 14: 143–147

    Article  PubMed  Google Scholar 

  28. Samejima Y, Meruelo D . “Bystander killing” induces apoptosis and is inhibited by forskolin Gene Ther 1995 2: 50–58

    CAS  PubMed  Google Scholar 

  29. Ishii-Morita H, Agbaria R, Mullen CA et al. Mechanism of “bystander effect” killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment Gene Ther 1997 4: 244–251

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen CS, Moorman DW, Levy JP et al. Herpes simplex thymidine kinase gene transfer is required for complete regression of murine colon adenocarcinoma Am Surg 1997 63: 617–620

    CAS  PubMed  Google Scholar 

  31. Vrionis FD, Wu JK, Qi P et al. The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions Gene Ther 1997 4: 577–585

    Article  CAS  PubMed  Google Scholar 

  32. Marconi P, Tamura M, Moriuchi S et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors Mol Ther 2000 1: 71–81

    Article  CAS  PubMed  Google Scholar 

  33. Link CJ, Moorman D, Seregina T et al. A phase I trial of in vivo gene therapy with the herpes simplex thymidine kinase/ganciclovir system for the treatment of refractory or recurrent ovarian cancer In: Recombinant DNA Advisory Committee Meeting. Federal Register, Bethesda, MD 1995

  34. Felzmann T, Ramsey WJ, Blaese RM . Characterization of the antitumor immune response generated by treatment of murine tumors with recombinant adenoviruses expressing HSVtk, IL-2, IL-6 or B7-1 Gene Ther 1997 4: 1322–1329

    Article  CAS  PubMed  Google Scholar 

  35. Anderson LM, Swaminathan S, Zackon I et al. Adenovirus-mediated tissue-targeted expression of the HSVtk gene for the treatment of breast cancer Gene Ther 1999 6: 854–864

    Article  CAS  PubMed  Google Scholar 

  36. Kuriyama S, Masui K, Kikukawa M et al. Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene Gene Ther 1999 6: 525–533

    Article  CAS  PubMed  Google Scholar 

  37. Windeatt S, Southgate TD, Dewey RA et al. Adenovirus-mediated herpes simplex virus type-1 thymidine kinase gene therapy suppresses oestrogen-induced pituitary prolactinomas J Clin Endocrinol Metab 2000 85: 1296––1305

    CAS  PubMed  Google Scholar 

  38. Johnson PA, Miyanohara A, Levine F et al. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1 J Virol 1992 66: 2952–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi J, Link CJ Jr, Wang S . Direct observation of GFP gene expression transduced with HSV-1/EBV amplicon vector in unfixed tumor tissue Biotechniques 2000 28: 206–208

    Article  CAS  PubMed  Google Scholar 

  40. Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nat Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  41. Sandmair AM, Turunen M, Tyynela K et al. Herpes simplex virus thymidine kinase gene therapy in experimental rat BT4C glioma model: effect of the percentage of thymidine kinase–positive glioma cells on treatment effect, survival time, and tissue reactions Cancer Gene Ther 2000 7: 413–421

    Article  CAS  PubMed  Google Scholar 

  42. Glorioso JC, Goins WF, Schmidt MC et al. Engineering herpes simplex virus vectors for human gene therapy Adv Pharmacol 1997 40: 103–136

    Article  CAS  PubMed  Google Scholar 

  43. Pechan PA, Herrlinger U, Aghi M et al. Combined HSV-1 recombinant and amplicon piggyback vectors: replication- competent and defective forms, and therapeutic efficacy for experimental gliomas J Gene Med 1999 1: 176–185

    Article  CAS  PubMed  Google Scholar 

  44. Herrlinger U, Pechan PA, Jacobs AH et al. HSV-1 infected cell proteins influence tetracycline-regulated transgene expression J Gene Med 2000 2: 379–389

    Article  CAS  PubMed  Google Scholar 

  45. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant Cancer Res 1994 54: 3963–3966

    CAS  PubMed  Google Scholar 

  46. Carroll NM, Chiocca EA, Takahashi K et al. Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus Ann Surg 1996 224: 323–329 discussion 329–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gambhir SS, Bauer E, Black ME et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography Proc Natl Acad Sci USA 2000 97: 2785–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwong AD, Frenkel N . Herpes simplex virus amplicon: Effect of size on replication of constructed defective genomes containing eukaryotic DNA sequences J Virol 1984 51: 595–603

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Geller A, Keyomarsi K, Bryan J et al. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology Proc Natl Acad Sci USA 1990 87: 8950–8954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rawlins DR, Rosenfeld PJ, Kelly TJ et al. Sequence-specific interactions of cellular nuclear factor I and Epstein-Barr virus nuclear antigen with herpes virus DNAs Cancer Cells 1986 4: 525–542

    CAS  Google Scholar 

  51. Goldsmith K, Bendell L, Frappier L . Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein-Barr virus latent origin of DNA replication J Virol 1993 67: 3418–3426

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen S, Li Chen XH, Wang Y et al. Combination gene therapy for liver metastasis of colon carcinoma in vivo Proc Natl Acad Sci 1995 92: 2577–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vrionis FD, Wu JK, Qi P et al. A more potent bystander cytocidal effect elicited by tumor cells expressing the herpes simplex virus-thymidine kinase gene than by fibroblast virus-producer cells in vitro J Neurosurg 1995 83: 698–704

    Article  CAS  PubMed  Google Scholar 

  54. Makinen K, Loimas S, Wahlfors J et al. Evaluation of herpes simplex thymidine kinase mediated gene therapy in experimental pancreatic cancer J Gene Med 2000 2: 361–367

    Article  CAS  PubMed  Google Scholar 

  55. Mesnil M, Piccoli C, Tiraby G et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins Proc Natl Acad Sci USA 1996 93: 1831–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sabel BA, Vick A, Holt V . Neurotoxic reactions of CNS following gene transfer with defective herpes simplex virus (HSV-1) vector NeuroReport 1995 6: 2447–2449

    Article  CAS  PubMed  Google Scholar 

  57. Fraefel C, Song S, Lim F et al. Helper virus–free transfer of herpes simplex virus type 1 plasmid vectors into neural cells J Virol 1996 70: 7190–7197

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stavropoulos TA, Strathdee CA . An enhanced packaging system for helper-dependent herpes simplex virus vectors J Virol 1998 72: 7137–7143

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Geller AI, Yu L, Wang Y et al. Helper virus–free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson's disease and other neurological disorders Exp Neurol 1997 144: 98–102

    Article  CAS  PubMed  Google Scholar 

  60. Fraefel C, Jacoby DR, Lage C et al. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors Mol Med 1997 3: 813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnston KM, Jacoby D, Pechan PA et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells Hum Gene Ther 1997 8: 359–370

    Article  CAS  PubMed  Google Scholar 

  62. Mineta T, Markert JM, Takamiya Y et al. CNS tumor therapy by attenuated herpes simplex viruses Gene Ther 1994 1: S78

    PubMed  Google Scholar 

  63. Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant Science 1991 252: 854–856

    Article  CAS  PubMed  Google Scholar 

  64. Takamiya Y, Short MP, Ezzeddine ZD et al. Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells J Neurosci Res 1992 33: 493–503

    Article  CAS  PubMed  Google Scholar 

  65. Chambers R, Gillespie GY, Soroceanu L et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma Proc Natl Acad Sci USA 1995 92: 1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mineta T, Rabkin SD, Yazaki T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas Nat Med 1995 1: 938–943

    Article  CAS  PubMed  Google Scholar 

  67. Krisky DM, Marconi PC, Oligino T et al. Rapid method for construction of recombinant HSV gene transfer vectors Gene Ther 1997 4: 1120–1125

    Article  CAS  PubMed  Google Scholar 

  68. Krisky DM, Marconi PC, Oligino TJ et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications Gene Ther 1998 5: 1517–1530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D Hellrung for help in statistical analysis and NVahanian for manuscript review. We thank J Wang for technical assistance, N DeLucca for the E5 cell line, and PJohnson for the CgalΔ3 virus. This work was supported by the American Cancer Society Grant RPG-98-091-01-MBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Qi, J., Smith, M. et al. Antitumor effects on human melanoma xenografts of an amplicon vector transducing the herpes thymidine kinase gene followed by ganciclovir. Cancer Gene Ther 9, 1–8 (2002). https://doi.org/10.1038/sj.cgt.7700402

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700402

Keywords

Search

Quick links