Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma

Abstract

Canine spontaneous melanoma is a highly aggressive tumor resistant to current therapies. We evaluated the safety, efficacy and antitumor effects of direct intratumor injections of lipoplexes encoding herpes simplex thymidine kinase coadministrated with ganciclovir, and irradiated transgenic xenogeneic cells secreting 20–30 μg day−1 of human granulocyte–macrophage colony-stimulating factor and interleukin-2. Toxicity was minimal or absent in all patients. This combined treatment (CT) induced tumor regression and a pronounced immune cell infiltration. The objective responses (47%: 21/45) averaged 80% of tumor mass loss. Local CT also induced systemic antitumor response evidenced by complete remission of one pulmonary metastasis and by the significantly higher percentage of metastasis-free patients (76: 34/45)) until the study ending compared to untreated (UC: 29%, 5/17), surgery-treated (CX: 48%, 11/23) or suicide gene-treated controls (SG: 56%, 9/16) (Fisher's exact test). CT significantly improved median survival time: 160 (57–509) days compared to UC (69 (10–169)), CX (82 (43–216)) or SG (94 (46–159)). CT also increased (P<0.00001, Kaplan–Meier analysis) metastasis-free survival: >509 (57–509) days with respect to UC: 41 (10–169), CX: 133 (43–216) and SG: >159 (41–159). Therefore, CT controlled tumor growth by delaying or preventing distant metastasis, thereby significantly extending survival and recovering the quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hansen K, Khanna C . Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer 2004; 40: 858–880.

    Article  CAS  Google Scholar 

  2. Ramos-Vara JA, Beissenherz ME, Miller MA, Johnson GC, Pace LW, Fard A et al. Retrospective study of 338 canine oral melanomas with clinical, histologic, and immunohistochemical review of 129 cases. Vet Pathol 2000; 37: 597–608.

    Article  CAS  Google Scholar 

  3. Smith SH, Goldschmidt MH, McManus PM . A comparative review of melanocytic neoplasms. Vet Pathol 2002; 39: 651–678.

    Article  CAS  Google Scholar 

  4. Dow SW, Elmslie RE, Willson AP, Roche L, Gorman C, Potter TA . In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J Clin Invest 1998; 101: 2406–2414.

    Article  CAS  Google Scholar 

  5. Quintin-Colonna F, Devauchelle P, Fradelizi D, Mourot B, Faure T, Kourilsky P et al. Gene therapy of spontaneous canine melanoma and feline fibrosarcoma by intratumoral administration of histoincompatible cells expressing human interleukin-2. Gene Therapy 1996; 3: 1104–1112.

    CAS  PubMed  Google Scholar 

  6. Hogge GS, Burkholder JK, Culp J, Albertini MR, Dubielzig RR, Keller ET et al. Development of human granulocyte-macrophage colony-stimulating factor-transfected tumor cell vaccines for the treatment of spontaneous canine cancer. Hum Gene Ther 1998; 9: 1851–1861.

    Article  CAS  Google Scholar 

  7. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003; 9: 1284–1290.

    CAS  PubMed  Google Scholar 

  8. Bianco SR, Sun J, Fosmire SP, Hance K, Padilla ML, Ritt MG et al. Enhancing antimelanoma immune responses through apoptosis. Cancer Gene Ther 2003; 10: 726–736.

    Article  CAS  Google Scholar 

  9. Clark PR, Stopeck AT, Ferrari M, Parker SE, Hersh EM . Studies of direct intratumoral gene transfer using cationic lipid-complexed plasmid DNA. Cancer Gene Ther 2000; 7: 853–860.

    Article  CAS  Google Scholar 

  10. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000; 2: 148–164.

    Article  CAS  Google Scholar 

  11. Tomicic MT, Thust R, Kaina B . Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 2002; 21: 2141–2153.

    Article  CAS  Google Scholar 

  12. Mesnil M, Yamasaki H . bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000; 60: 3989–3999.

    CAS  PubMed  Google Scholar 

  13. San H, Yang ZY, Pompili VJ, Jaffe ML, Plautz GE, Xu L et al. Safety and short-term toxicity of a novel cationic lipid formulation for human gene therapy. Hum Gene Ther 1993; 4: 781–788.

    Article  CAS  Google Scholar 

  14. Rochlitz C, Dreno B, Jantscheff P, Cavalli F, Squiban P, Acres B et al. Immunotherapy of metastatic melanoma by intratumoral injections of Vero cells producing human IL-2: phase II randomized study comparing two dose levels. Cancer Gene Ther 2002; 9: 289–295.

    Article  CAS  Google Scholar 

  15. Rosenberg SA . Progress in human tumour immunology and immunotherapy. Nature 2001; 411: 380–384.

    Article  CAS  Google Scholar 

  16. Dranoff G . GM-CSF-based cancer vaccines. Immunol Rev 2002; 188: 147–154.

    Article  CAS  Google Scholar 

  17. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95: 13141–13146.

    Article  CAS  Google Scholar 

  18. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–965.

    Article  CAS  Google Scholar 

  19. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19: 145–156.

    Article  CAS  Google Scholar 

  20. Pan PY, Li Y, Li Q, Gu P, Martinet O, Thung S et al. In situ recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol Immunother 2004; 53: 17–25.

    Article  CAS  Google Scholar 

  21. Chen SH, Kosai K, Xu B, Pham-Nguyen K, Contant C, Finegold MJ et al. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res 1996; 56: 3758–3762.

    CAS  Google Scholar 

  22. Bonnekoh B, Greenhalgh DA, Chen SH, Block A, Rich SS, Krieg T et al. Ex vivo and in vivo adenovirus-mediated gene therapy strategies induce a systemic anti-tumor immune defence in the B16 melanoma model. J Invest Dermatol 1998; 110: 867–871.

    Article  CAS  Google Scholar 

  23. Guo SY, Gu QL, Zhu ZG, Hong HQ, Lin YZ . TK gene combined with mIL-2 and mGM-CSF genes in treatment of gastric cancer. World J Gastroenterol 2003; 9: 233–237.

    Article  CAS  Google Scholar 

  24. Majumdar AS, Zolotorev A, Samuel S, Tran K, Vertin B, Hall-Meier M et al. Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model. Cancer Gene Ther 2000; 7: 1086–1099.

    Article  CAS  Google Scholar 

  25. Brockstedt DG, Diagana M, Zhang Y, Tran K, Belmar N, Meier M et al. Development of anti-tumor immunity against a non-immunogenic mammary carcinoma through in vivo somatic GM-CSF, IL-2, and HSVtk combination gene therapy. Mol Ther 2002; 6: 627–636.

    CAS  PubMed  Google Scholar 

  26. Kaufman RJ, Davies MV, Wasley LC, Michnick D . Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res 1991; 19: 4485–4490.

    Article  CAS  Google Scholar 

  27. Casais CC, Karara AL, Glikin GC, Finocchiaro LME . Effects of Spatial Configuration on Tumor Cells Transgene Expression. Gene Ther Mol Biol 2006; 10: 207–222.

    Google Scholar 

  28. Finocchiaro LME, Bumaschny VF, Karara AL, Fiszman GL, Casais CC, Glikin GC . Herpes simplex virus thymidine kinase/ganciclovir system in multicellular tumor spheroids. Cancer Gene Ther 2004; 11: 333–345.

    Article  CAS  Google Scholar 

  29. Gao X, Huang L . Cationic liposome-mediated gene transfer. Gene Therapy 1995; 2: 710–722.

    CAS  PubMed  Google Scholar 

  30. Ramesh R, Munshi A, Abboud CN, Marrogi AJ, Freeman SM . Expression of costimulatory molecules: B7 and ICAM up-regulation after treatment with a suicide gene. Cancer Gene Ther 1996; 3: 373–384.

    CAS  PubMed  Google Scholar 

  31. Li XL, Boyanapalli M, Weihua X, Kalvakolanu DV, Hassel BA . Induction of interferon synthesis and activation of interferon-stimulated genes by liposomal transfection reagents. J Interferon Cytokine Res 1998; 18: 947–952.

    Article  CAS  Google Scholar 

  32. Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3: 849–854.

    Article  CAS  Google Scholar 

  33. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV . CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997; 186: 1623–1631.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ana Bihary for technical assistance, Fernanda Roca for histological preparations, VMD Pablo JJ Castillo for patients’ treatment and care and the Centro de Especialidades Médicas Veterinarias (CEMV, Buenos Aires) for kindly lending its facilities for patients’ treatment. This work was supported by a grant from FONCYT: BID1201/OC-AR-PID 2000-00161, and a grant from BioSidus SA (Argentina). LMEF, ALK and GCG are members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), and GLF is a research investigator of the Instituto de Oncología ‘A H Roffo’, Universidad de Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M E Finocchiaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finocchiaro, L., Fiszman, G., Karara, A. et al. Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma. Cancer Gene Ther 15, 165–172 (2008). https://doi.org/10.1038/sj.cgt.7701096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701096

Keywords

This article is cited by

Search

Quick links