Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PNPLA3 I148M variant is associated with transaminase elevations in type 2 diabetes patients treated with basal insulin peglispro

Abstract

Basal insulin peglispro (BIL) is a novel insulin with hepato-preferential action. In phase 3 trials, BIL showed significantly improved glycemic control but higher levels of transaminases (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), triglycerides (TGs) and liver fat content (LFC) compared with insulin glargine (GL). As variants in PNPLA3 (I148M) and TM6SF2 (E167K) are associated with nonalcoholic fatty liver disease, we assessed these variants in type 2 diabetes (T2D) patients randomized to receive BIL (n=1822) or GL (n=1270) in three phase 3 trials. Magnetic resonance imaging assessments of LFC were conducted in a subset of patients (n=296). Analyses showed α-corrected significant increases in change from baseline in AST (P=0.0004) and nominal increases in ALT (P=0.019), and LFC (P=0.035) for PNPLA3 (148M/M) genotypes in the BIL arm at 26 weeks but no significant associations in GL. PNPLA3 (148M/M) was also associated with increases in total cholesterol (P=0.014) and low-density lipoprotein cholesterol (P=0.005) but not with hemoglobin A1c or TG. T2D patients with the PNPLA3 (148M/M) genotype treated with BIL may be more susceptible to increased liver fat deposition. The current data provide further insights into the biological role of PNPLA3 in lipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592–1609.

    Article  PubMed  Google Scholar 

  2. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140: 124–131.

    Article  PubMed  Google Scholar 

  3. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN . The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51: 1972–1978.

    Article  PubMed  Google Scholar 

  4. Bhala N, Angulo P, van der Poorten D, Lee E, Hui JM, Saracco G et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011; 54: 1208–1216.

    Article  PubMed  Google Scholar 

  5. Guerrero R, Vega GL, Grundy SM, Browning JD . Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 2009; 49: 791–801.

    Article  PubMed  Google Scholar 

  6. Schwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N, Schork NJ et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology 2009; 136: 1585–1592.

    Article  PubMed  Google Scholar 

  7. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg-Hansen A et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46: 352–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 2016; 150: 1219–1230 e1216.

    Article  CAS  PubMed  Google Scholar 

  10. Dongiovanni P, Donati B, Fares R, Lombardi R, Mancina RM, Romeo S et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol 2013; 19: 6969–6978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dongiovanni P, Romeo S, Valenti L . Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis. Biomed Res Int 2015; 2015: 460190.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valenti L, Dongiovanni P, Ginanni Corradini S, Burza MA, Romeo S . PNPLA3 I148M variant and hepatocellular carcinoma: a common genetic variant for a rare disease. Dig Liver Dis 2013; 45: 619–624.

    Article  CAS  PubMed  Google Scholar 

  13. Krawczyk M, Jimenez-Aguero R, Alustiza JM, Emparanza JI, Perugorria MJ, Bujanda L et al. PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg Obes Relat Dis 2016; 12: 1838–1846.

    Article  PubMed  Google Scholar 

  14. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: results from the WELCOME trial. J Hepatol 2015; 63: 1476–1483.

    Article  CAS  PubMed  Google Scholar 

  15. Shen J, Wong GL, Chan HL, Chan RS, Chan HY, Chu WC et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2015; 30: 139–146.

    Article  CAS  PubMed  Google Scholar 

  16. Sinha VP, Howey DC, Choi SL, Mace KF, Heise T . Steady-state pharmacokinetics and glucodynamics of the novel, long-acting basal insulin LY2605541 dosed once-daily in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2014; 16: 344–350.

    Article  CAS  PubMed  Google Scholar 

  17. Moore MC, Smith MS, Sinha VP, Beals JM, Michael MD, Jacober SJ et al. Novel PEGylated basal insulin LY2605541 has a preferential hepatic effect on glucose metabolism. Diabetes 2014; 63: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab 2016; 18 (Suppl 2): 17–24.

    Article  CAS  PubMed  Google Scholar 

  19. Russell-Jones DL . Hepato-preferential insulins: is this the end, or the end of the beginning? Diabetes Obes Metab 2016; 18: 1053–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bergenstal RM, Lunt H, Franek E, Travert F, Mou J, Qu Y et al. Randomized, double-blind clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 3. Diabetes Obes Metab 2016; 18: 1081–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blevins T, Pieber TR, Colon Vega G, Zhang S, Bastyr EJ 3rd, Chang AM et al. Randomized double-blind clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 2 diabetes: IMAGINE 4. Diabetes Obes Metab 2016; 18: 1072–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garg S, Dreyer M, Jinnouchi H, Mou J, Qu Y, Hartman ML et al. A randomized clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 1. Diabetes Obes Metab 2016; 18 (Suppl 2): 25–33.

    Article  CAS  PubMed  Google Scholar 

  23. Garg S, Selam JL, Bhargava A, Schloot N, Luo J, Zhang Q et al. Similar HbA1c reduction and hypoglycaemia with variable- vs fixed-time dosing of basal insulin peglispro in type 1 diabetes: IMAGINE 7 study. Diabetes Obes Metab 2016; 18 (Suppl 2): 43–49.

    Article  CAS  PubMed  Google Scholar 

  24. Ginsberg H, Cariou B, Orchard T, Chen L, Luo J, Bastyr EJ 3rd et al. Lipid changes during basal insulin peglispro, insulin glargine, or NPH treatment in six IMAGINE trials. Diabetes Obes Metab 2016; 18: 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  25. Grunberger G, Chen L, Rodriguez A, Tinahones FJ, Jacober SJ, Bue-Valleskey J et al. A randomized clinical trial of basal insulin peglispro vs NPH in insulin-naive patients with type 2 diabetes: the IMAGINE 6 trial. Diabetes Obes Metab 2016; 18 (Suppl 2): 34–42.

    Article  CAS  PubMed  Google Scholar 

  26. Buse JB, Rodbard HW, Trescoli Serrano C, Luo J, Ivanyi T, Bue-Valleskey J et al. Randomized clinical trial comparing basal insulin peglispro and insulin glargine in patients with type 2 diabetes previously treated with basal insulin: IMAGINE 5. Diabetes Care 2016; 39: 92–100.

    Article  CAS  PubMed  Google Scholar 

  27. Cusi K, Sanyal AJ, Zhang S, Hoogwerf BJ, Chang AM, Jacober SJ et al. Different effects of basal insulin peglispro and insulin glargine on liver enzymes and liver fat content in patients with type 1 and type 2 diabetes. Diabetes Obes Metab 2016; 18 (Suppl 2): 50–58.

    Article  CAS  PubMed  Google Scholar 

  28. Davies MJ, Russell-Jones D, Selam JL, Bailey TS, Kerenyi Z, Luo J et al. Basal insulin peglispro versus insulin glargine in insulin-naive type 2 diabetes: IMAGINE 2 randomized trial. Diabetes Obes Metab 2016; 18: 1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duseja A, Chalasani N . Epidemiology and risk factors of nonalcoholic fatty liver disease (NAFLD). Hepatol Int 2013; 7 (Suppl 2): 755–764.

    Article  PubMed  Google Scholar 

  30. Portillo-Sanchez P, Bril F, Maximos M, Lomonaco R, Biernacki D, Orsak B et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 2015; 100: 2231–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mashhood A, Railkar R, Yokoo T, Levin Y, Clark L, Fox-Bosetti S et al. Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging 2013; 37: 1359–1370.

    Article  PubMed  Google Scholar 

  32. Guo SW, Thompson EA . Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361–372.

    Article  CAS  PubMed  Google Scholar 

  33. Johansen RF, Søndergaard E, Linnebjerg H, Garhyan P, Lam EC et al. Attenuated suppression of lipolysis explains the increases in triglyceride secretion and concentration associated with basal insulin peglispro relative to insulin glargine treatment in patients with type 1 diabetes. Diabetes Obes Metab; advance online publication, 17 August 2017; doi: 10.1111/dom.13087 [e-pub ahead of print].

  34. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010; 285: 6706–6715.

    Article  CAS  PubMed  Google Scholar 

  35. Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta 2014; 1841: 574–580.

    Article  CAS  PubMed  Google Scholar 

  36. Mondul A, Mancina RM, Merlo A, Dongiovanni P, Rametta R, Montalcini T et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr 2015; 145: 1687–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23: 4077–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kovarova M, Konigsrainer I, Konigsrainer A, Machicao F, Haring HU, Schleicher E et al. The genetic variant I148M in PNPLA3 is associated with increased hepatic retinyl-palmitate storage in humans. J Clin Endocrinol Metab 2015; 100: E1568–E1574.

    Article  PubMed  Google Scholar 

  39. Kershaw EE, Hamm JK, Verhagen LA, Peroni O, Katic M, Flier JS . Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006; 55: 148–157.

    Article  CAS  PubMed  Google Scholar 

  40. Moldes M, Beauregard G, Faraj M, Peretti N, Ducluzeau PH, Laville M et al. Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol 2006; 155: 461–468.

    Article  CAS  PubMed  Google Scholar 

  41. Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 2014; 46: 345–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kempinska-Podhorodecka A, Krawczyk M, Klak M, Blatkiewicz M, Lammert F, Milkiewicz P et al. Healthy PNPLA3 risk allele carriers present with unexpected body fat composition. A study of one thousand subjects. J Gastrointestin Liver Dis 2014; 23: 33–37.

    PubMed  Google Scholar 

  43. Pirola CJ, Sookoian S . The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. Hepatology 2015; 62: 1742–1756.

    Article  CAS  PubMed  Google Scholar 

  44. Anstee QM, Jaques B, Hudson M, Reeves HL . Reply to "Hepatocellular carcinoma and the Newcastle-upon-Tyne area". J Hepatol 2014; 60: 1330–1331.

    Article  PubMed  Google Scholar 

  45. Krawczyk M, Rau M, Schattenberg JM, Bantel H, Pathil A, Demir M et al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res 2017; 58: 247–255.

    Article  CAS  PubMed  Google Scholar 

  46. Luukkonen PK, Zhou Y, Hyotylainen T, Leivonen M, Arola J, Orho-Melander M et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 2016; 65: 1263–1265.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients who consented to participate in the IMAGINE 2, 4 and 5 trials. Eli Lilly and Company was the sponsor of this study. We also thank Robert Panek of INC Research LLC, Raleigh, NC, for providing medical writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Pillai.

Ethics declarations

Competing interests

The authors declare no conflict of interest. SP, SD, PB, WF, MF, SS, CH, BH and AH are employees and shareholders of Eli Lilly and Company. EB was an employee of Eli Lilly and Company during the trial and is currently a consultant to Viacyte, San Diego, CA, USA.

Additional information

Supplementary Information accompanies the paper on The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, S., Duvvuru, S., Bhatnagar, P. et al. The PNPLA3 I148M variant is associated with transaminase elevations in type 2 diabetes patients treated with basal insulin peglispro. Pharmacogenomics J 18, 487–493 (2018). https://doi.org/10.1038/tpj.2017.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.45

This article is cited by

Search

Quick links