Abstract
Many factors (physiological, pathological, environmental or genetic) are associated with variability in drug effect. Most patients respond to a standard treatment but the drug may be ineffective or toxic. In this review, we focused on genetic markers of posttransplant diabetes mellitus (PTDM) after renal transplantation, a frequent complication of immunosuppressive therapy and important risk factor of graft loss and mortality. An initial literature search identified 100 publications and among them 32 association studies were retrieved under ‘Pharmacogenetics and PTDM’. Thirty-five variants in 25 genes with an impact on insulin secretion, disposition or effect were significantly associated with PTDM. The population studied, immunosuppressive regimen, follow-up, PTDM diagnostic and genetic variations tested were highly variable between studies. Although pharmacogenetic biomarkers are key tools of great promise for preventing toxicities and improving event-free survival rates, replication studies are required to select validated biomarkers linked to the occurrence of PTDM and select appropriate immusuppressive treatment to improve renal graft and patient outcome.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 6 print issues and online access
$259.00 per year
only $43.17 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011; 11: 2093–2109.
Cattaneo D, Perico N, Remuzzi G . From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am J Transplant 2004; 4: 299–310.
Ma Q, Lu AY . Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 2011; 63: 437–459.
Pham PT, Pham PM, Pham SV, Pham PA, Pham PC . New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes 2011; 4: 175–186.
Cosio FG, Pesavento TE, Osei K, Henry ML, Ferguson RM . Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int 2001; 59: 732–737.
Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ . Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2003; 3: 178–185.
Burroughs TE, Swindle JP, Salvalaggio PR, Lentine KL, Takemoto SK, Bunnapradist S et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. Transplantation 2009; 88: 367–373.
Pham PT, Pham PC, Lipshutz GS, Wilkinson AH . New onset diabetes mellitus after solid organ transplantation. Endocrinol Metab Clin North Am 2007; 36: 873–890.
Davidson JA, Wilkinson A,, International Expert Panel on New-Onset Diabetes after Transplantation. New-Onset Diabetes After Transplantation 2003 International Consensus Guidelines: an endocrinologist’s view. Diabetes Care 2004; 27: 805–812.
Dong M, Parsaik AK, Eberhardt NL, Basu A, Cosio FG, Kudva YC . Cellular and physiological mechanisms of new-onset diabetes mellitus after solid organ transplantation. Diabet Med 2012; 29: e1–12.
Duijnhoven EM, Boots JM, Christiaans MH, Wolffenbuttel BH, Van Hooff JP . Influence of tacrolimus on glucose metabolism before and after renal transplantation: a prospective study. J Am Soc Nephrol 2001; 12: 583–588.
Wallia A, Parikh ND, Molitch ME, Mahler E, Tian L, Huang JJ et al. Post-transplant hyperglycemia is associated with increased risk of liver allograft rejection. Transplantation 2010; 89: 222–226.
Sharif A, Baboolal K . Risk factors for new-onset diabetes after kidney transplantation. Nat Rev Nephrol 2010; 6: 415–423.
Prokai A, Fekete A, Pasti K, Rusai K, Banki NF, Reusz G et al. The importance of different immunosuppressive regimens in the development of posttransplant diabetes mellitus. Pediatr Diabetes 2012; 13: 81–91.
Hjelmesaeth J, Hartmann A, Kofstad J, Egeland T, Stenstrom J, Fauchald P . Tapering off prednisolone and cyclosporin the first year after renal transplantation: the effect on glucose tolerance. Nephrol Dial Transplant 2001; 16: 829–835.
Midtvedt K, Hjelmesaeth J, Hartmann A, Lund K, Paulsen D, Egeland T et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. J Am Soc Nephrol 2004; 15: 3233–3239.
Luan FL, Steffick DE, Ojo AO . New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 2011; 91: 334–341.
Bismuth E, Chevenne D, Czernichow P, Simon D . Moderate deterioration in glucose tolerance during high-dose growth hormone therapy in glucocorticoid-treated patients with juvenile idiopathic arthritis. Horm Res Paediatr 2010; 73: 465–472.
Polastri L, Galbiati F, Bertuzzi F, Fiorina P, Nano R, Gregori S et al. Secretory defects induced by immunosuppressive agents on human pancreatic beta-cells. Acta Diabetol 2002; 39: 229–233.
Heisel O, Heisel R, Balshaw R, Keown P . New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant 2004; 4: 583–595.
Dharnidharka VR, Schnitzler MA, Chen J, Brennan DC, Axelrod D, Segev DL et al. Differential risks for adverse outcomes 3 years after kidney transplantation based on initial immunosuppression regimen: a national study. Transpl Int 2016; 29: 1226–1236.
Yang J, Hutchinson II, Shah T, Min DI . Genetic and clinical risk factors of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2011; 91: 1114–1119.
Garro R, Warshaw B, Felner E . New-onset diabetes after kidney transplant in children. Pediatr Nephrol 2015; 30: 405–416.
Greenspan LC, Gitelman SE, Leung MA, Glidden DV, Mathias RS . Increased incidence in post-transplant diabetes mellitus in children: a case-control analysis. Pediatr Nephrol 2002; 17: 1–5.
Prokai A, Fekete A, Kis E, Reusz GS, Sallay P, Korner A et al. Post-transplant diabetes mellitus in children following renal transplantation. Pediatr Transplant 2008; 12: 643–649.
Zhao W, Elie V, Roussay G, Brochard K, Niaudet P, Leroy V et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 2009; 86: 609–618.
Ling Q, Xie H, Lu D, Wei X, Gao F, Zhou L et al. Association between donor and recipient TCF7L2 gene polymorphisms and the risk of new-onset diabetes mellitus after liver transplantation in a Han Chinese population. J Hepatol 2013; 58: 271–277.
Eshraghian A . New onset diabetes after transplantation: a type 1.5 diabetes or latent autoimmune diabetes of adults? J Hepatol 2013; 58: 1059–1060.
Watt KD, Dierkhising R, Fan C, Heimbach JK, Tillman H, Goldstein D et al. Investigation of PNPLA3 and IL28B genotypes on diabetes and obesity after liver transplantation: insight into mechanisms of disease. Am J Transplant 2013; 13: 2450–2457.
Duca AM, de la Fuente S, Citores MJ, Cuenca AB, Cisneros E, Escamilla N et al. CC genotype at rs12979860 of IL28B is associated with lower risk of new-onset diabetes after transplantation in adult patients with liver transplantation for hepatitis C cirrhosis. Transplant Proc 2014; 46: 3114–3116.
Karlas T, Kollmeier J, Bohm S, Müller J, Kovacs P, Tröltzsch M et al. Noninvasive characterization of graft steatosis after liver transplantation. Scand J Gastroenterol 2015; 50: 224–232.
Parvizi Z, Azarpira N, Kohan L, Darai M, Kazemi K, Parvizi MM . Association between E23K variant in KCNJ11 gene and new-onset diabetes after liver transplantation. Mol Biol Rep 2014; 41: 6063–6069.
Sharif A, Hecking M, de Vries AP, Porrini E, Hornum M, Rasoul-Rockenschaub S et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant 2014; 14: 1992–2000.
Elens L, Sombogaard F, Hesselink DA, van Schaik RHN, van Gelder T . Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-α are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus. Pharmacogenet Genomics 2013; 23: 649–657.
Kurzawski M, Malinowski D, Dziewanowski K, Droździk M . Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinetics and new-onset diabetes in kidney transplant recipients. Pharmacogenet Genomics 2014; 24: 397–400.
Ergün I, Keven K, Sengül S, Karabulut HG, Kurultak I, Soypacaci Z et al. Endothelial nitric oxide synthase gene intron 4 polymorphism predicts new onset diabetes mellitus after transplantation in kidney allograft recipients treated with cyclosporin A. Int Urol Nephrol 2011; 43: 543–548.
Dutkiewicz G, Domanski L, Pawlik A, Binczak-Kuleta A, Sofranow K, Ciechanowicz A et al. Polymorphisms of superoxide dismutase, glutathione peroxidase and catalase genes in patients with post-transplant diabetes mellitus. Arch Med Res 2010; 41: 350–355.
Yu AR, Xin HW, Wu XC, Fan X, Liu HM, Li G et al. Adiponectin gene polymorphisms are associated with posttransplantation diabetes mellitus in Chinese renal allograft recipients. Transplant Proc 2011; 43: 1607–1611.
Numakura K, Satoh S, Tsuchiya N, Horikawa Y, Inoue T, Kakinuma H et al. Clinical and genetic risk factors for posttransplant diabetes mellitus in adult renal transplant recipients treated with tacrolimus. Transplantation 2005; 80: 1419–1424.
Kang ES, Magkos F, Kim BS, Zhai R, Su L, Kim YS et al. Variants of the adiponectin and adiponectin receptor-1 genes and posttransplantation diabetes mellitus in renal allograft recipients. J Clin Endocrinol Metab 2012; 97: E129–E135.
Nicoletto BB, Souza GC, Fonseca NK, Centenaro A, Manfro RC, Canani LH et al. Association between 276G/T adiponectin gene polymorphism and new-onset diabetes after kidney transplantation. Transplantation 2013; 96: 1059–1064.
Kurzawski M, Dziewanowski K, Kedzierska K, Gornik W, Banas A, Drozdsik M . Association of calpain-10 gene polymorphism and posttransplant diabetes mellitus in kidney transplant patients medicated with tacrolimus. Pharmacogenomics J 2010; 10: 120–125.
Lee Sr, Moon JY, Lee SH, Ihm CG, Lee TW, Kim SK et al. Angiotensinogen polymorphisms and post-transplantation diabetes mellitus in Korean renal transplant subjects. Kidney Blood Press Res 2013; 37: 95–102.
Rodríguez-Moreno A, Sánchez-Fructuoso AI, Ridao-Cano N, Calvo N, Conesa J, Gómez-Gallego F et al. Association of the genetic polymorphisms of the renin-angiotensin system with kidney graft long-term outcome: preliminary results. Transplant Proc 2005; 37: 3716–3717.
Bamoulid J, Courivaud C, Deschamps M, Mercier P, Ferrand C, Penfornis A et al. IL-6 promoter polymorphism -174 is associated with new-onset diabetes after transplantation. J Am Soc Nephrol 2006; 17: 2333–2340.
Sánchez-Velasco P, Rodrigo E, Fernández-Fresnedo G, Ocejo-Vinyals JG, Ruiz JC, Arnau A et al. Influence of interleukin-6 promoter polymorphism -174g/c on kidney graft outcome. Transplant Proc 2010; 42: 2854–2855.
Weng SC, Shu KH, Tarng DC, Wu MJ, Chen CH, Yu TM et al. Gene polymorphisms are associated with posttransplantation diabetes mellitus among Taiwanese renal transplant recipients. Transplant Proc 2012; 44: 667–671.
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 2004; 101: 8852–8857.
Chand S, Shabir S, Chan W, McCaughan JA, McKnight AJ, Maxwell AP et al. β cell glucotoxic-associated single nucleotide polymorphisms in impaired glucose tolerance and new-onset diabetes after transplantation. Transplantation 2014; 98: e19–e20.
Yao B, Chen X, Shen FX, Xu W, Dong TT, Chen LZ et al. The incidence of posttransplantation diabetes mellitus during follow-up in kidney transplant recipients and relationship to Fok1 vitamin D receptor polymorphism. Transplant Proc 2013; 45: 194–196.
Numakura K, Satoh S, Tsuchiya N, Horikawa Y, Inoue T, Kakinuma H et al. Incidence and risk factors of clinical characteristics, tacrolimus pharmacokinetics, and related genomic polymorphisms for posttransplant diabetes mellitus in the early stage of renal transplant recipients. Transplant Proc 2005; 37: 1865–1867.
Wang P, Hudspeth E . Increased body mass index but not common vitamin D receptor, peroxisome proliferator-activated receptor γ, or cytokine polymorphisms confers predisposition to posttransplant diabetes. Arch Pathol Lab Med 2011; 135: 1581–1584.
Kang ES, Kim MS, Kim YS, Hur KY, Han SJ, Nam CM et al. A variant of the transcription factor 7-like 2 (TCF7L2) gene and the risk of posttransplantation diabetes mellitus in renal allograft recipients. Diabetes Care 2008; 31: 63–68.
Kang ES, Kim MS, Kim CH, Nam CM, Han SJ, Hur KY et al. Association of common type 2 diabetes risk gene variants and posttransplantation diabetes mellitus in renal allograft recipients in Korea. Transplantation 2009; 88: 693–698.
Ghisdal L, Baron C, Le Meur Y, Lionet A, Halimi JM, Rerolle JP et al. TCF7L2 polymorphism associates with new-onset diabetes after transplantation. J Am Soc Nephrol 2009; 20: 2459–2467.
Kurzawski M, Dziewanowski K, Kedzierska K, Wajda A, Lapczuk J, Drozdzik M . Association of transcription factor 7-like 2 (TCF7L2) gene polymorphism with posttransplant diabetes mellitus in kidney transplant patients medicated with tacrolimus. Pharmacol Rep 2011; 63: 826–833.
Chakkera HA, Hanson RL, Raza SM, DiStefano JK, Millis MP, Heilman RL et al. Pilot study: association of traditional and genetic risk factors and new-onset diabetes mellitus following kidney transplantation. Transplant Proc 2009; 41: 4172–4177.
Kurzawski M, Dziewanowski K, Łapczuk J, Wajda A, Droździk M . Analysis of common type 2 diabetes mellitus genetic risk factors in new-onset diabetes after transplantation in kidney transplant patients medicated with tacrolimus. Eur J Clin Pharmacol 2012; 68: 1587–1594.
Tavira B, Coto E, Torres A, Díaz-Corte C, Díaz-Molina B, Ortega F et al. Association between a common KCNJ11 polymorphism (rs5219) and new-onset posttransplant diabetes in patients treated with Tacrolimus. Mol Genet Metab 2012; 105: 525–527.
Jeong KH, Moon JY, Chung JH, Kim YH, Lee TW . Significant associations between CCL5 gene polymorphisms and post-transplantational diabetes mellitus in Korean renal allograft recipients. Am J Nephrol 2010; 32: 356–361.
Tavira B, Coto E, Díaz-Corte C, Ortega F, Arias M, Torres A et al. KCNQ1 gene variants and risk of new-onset diabetes in tacrolimus-treated renal-transplanted patients. Clin Transplant 2011; 25: E284–E291.
Tavira B, Gómez J, Díaz-Corte C, Llobet L, Ruiz-Pesini E, Ortega F et al. Mitochondrial DNA haplogroups and risk of new-onset diabetes among tacrolimus-treated renal transplanted patients. Gene 2014; 538: 195–198.
Kang ES, Kim MS, Kim YS, Kim CH, Han SJ, Chun SW et al. A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 2008; 57: 1043–1047.
Kim YG, Ihm CG, Lee TW, Lee SH, Jeong KH, Moon JY et al. Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantation 2012; 93: 900–907.
Chen Y, Sampaio MS, Yang JW, Min D, Hutchinson IV . Genetic polymorphisms of the transcription factor NFATc4 and development of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2012; 93: 325–330.
Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D et al. Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005; 76: 729–749.
Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N et al. Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 2005; 90: 414–426.
Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB . The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 2009; 19: 877–883.
Pandey AV, Sproll P . Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014; 5: 103.
Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther 2012; 91: 1044–1052.
Shin MJ, Kanaya AM, Krauss RM . Polymorphisms in the peroxisome proliferator activated receptor alpha gene are associated with levels of apolipoprotein CIII and triglyceride in African-Americans but not Caucasians. Atherosclerosis 2008; 198: 313–319.
Galanakis E, Kofteridis D, Stratigi K, Petraki E, Vazgiourakis V, Fragouli E et al. Intron 4 a/b polymorphism of the endothelial nitric oxide synthase gene is associated with both type 1 and type 2 diabetes in a genetically homogeneous population. Hum Immunol 2008; 69: 279–283.
Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A et al. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem Biophys Res Commun 1998; 245: 190–193.
Loscalzo J, Voetsch B, Liao R, Leopold J . Genetic determinants of vascular oxidant stress and endothelial dysfunction. Congest Heart Fail 2005; 11: 73–79.
Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ et al. Overexpression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 2005; 54: 2109–2116.
Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002; 51: 536–540.
Almind K, Inoue G, Pedersen O, Kahn CR . A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 1996; 97: 2569–2575.
Marchetti P, Lupi R, Federici M, Marselli L, Masini M, Boggi U et al. Insulin secretory function is impaired in isolated human islets carrying the Gly(972)-->Arg IRS-1 polymorphism. Diabetes 2002; 51: 1419–1424.
Baier LJ, Permana PA, Yang X, Pratley RE, Hanson RL, Shen GQ et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 2000; 106: R69–R73.
Kalupahana NS, Moustaid-Moussa N . The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 2012; 13: 136–149.
Hamid YH, Rose CS, Urhammer SA, Glümer C, Nolsøe R, Kristiansen OP et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes. Diabetologia 2005; 48: 251–260.
Fernández-Real JM, Broch M, Vendrell J, Gutiérrez C, Casamitjana R, Pugeat M et al. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes 2000; 49: 517–520.
Kubaszek A, Pihlajamäki J, Punnonen K, Karhapää P, Vauhkonen I, Laakso M . The C-174G promoter polymorphism of the IL-6 gene affects energy expenditure and insulin sensitivity. Diabetes 2003; 52: 558–561.
Filus A, Trzmiel A, Kuliczkowska-Plaksej J, Tworowska U, Jedrzejuk D, Milewicz A et al. Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male 2008; 11: 134–139.
Chiu KC, Chuang LM, Yoon C . The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med Genet 2001; 2: 2.
Köstner K, Denzer N, Müller CS, Klein R, Tilgen W, Reichrath J . The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res 2009; 29: 3511–3536.
Ogunkolade BW, Boucher BJ, Prahl JM, Bustin SA, Burrin JM, Noonan K et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002; 51: 2294–2300.
Reis AF, Hauache OM, Velho G . Vitamin D endocrine system and the genetic susceptibility to diabetes, obesity and vascular disease. A review of evidence. Diabetes Metab 2005; 31: 318–325.
Villareal DT, Robertson H, Bell GI, Patterson BW, Tran H, Wice B et al. TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 2010; 59: 479–485.
Love-Gregory L, Permutt MA . HNF4A genetic variants: role in diabetes. Curr Opin Clin Nutr Metab Care 2007; 10: 397–402.
Mohlke KL, Boehnke M . The role of HNF4A variants in the risk of type 2 diabetes. Curr Diab Rep 2005; 5: 149–156.
Schwanstecher C, Meyer U, Schwanstecher M . K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 2002; 51: 875–879.
Fougeray S, Loriot MA, Nicaud V, Legendre C, Thervet E, Pallet N . Increased body mass index after kidney transplantation in activating transcription factor 6 single polymorphism gene carriers. Transplant Proc 2011; 43: 3418–3422.
Lebovitz HE . Insulin resistance: definition and consequences. Exp Clin EndocrinolDiabetes 2001; 109: S135–S148.
Staiger H, Machicao F, Fritsche A, Häring HU . Pathomechanisms of type 2 diabetes genes. Endocr Rev 2009; 30: 557–585.
Florez JC . Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 2008; 51: 1100–1110.
Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH et al. Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol 2011; 336: 174–179.
Bates GW, Egerman RS, Umstot ES, Buster JE, Casson PR . Dehydroepiandrosterone attenuates study-induced declines in insulin sensitivity in postmenopausal women. Ann NY Acad Sci 1995; 774: 291–293.
de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DRJ . The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 2011; 12: 1281–1291.
Lefebvre P, Chinetti G, Fruchart JC, Staels B . Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116: 571–580.
Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M et al. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006; 55: 1605–1613.
Tordjman K, Bernal-Mizrachi C, Zemany L, Weng S, Feng C, Zhang F et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001; 107: 1025–1034.
Koh EH, Kim MS, Park JY, Kim HS, Youn JY, Park HS et al. Peroxisome proliferator-activated receptor (PPAR)-α activation prevents diabetes in OLETF rats: comparison with PPAR-γ activation. Diabetes 2003; 52: 2331–2337.
Pieper GM . Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia 1999; 42: 204–213.
Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD . Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 2000; 49: 684–687.
Kobayashi J . Nitric oxide and insulin resistance. Immunoendocrinology 2015; 2: e657.
Friederich M, Hansell P, Palm F . Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev 2009; 5: 120–144.
Kim JA, Wei Y, Sowers JR . Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008; 102: 401–414.
Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP . Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J Clin Endocrinol Metab 2003; 88: 5963–5968.
Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab 2009; 10: 260–272.
Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y . Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 1989; 38: 753–758.
Dutkiewicz G, Binczak-Kuleta A, Pawlik A, Safranow K, Wisniewska M, Ciechanowicz A et al. Lack of association of C599T polymorphism in the glutathione peroxidase (GPX1) gene with delayed graft function, acute kidney graft rejection and chronic allograft nephropathy. Ann Transplant 2010; 15: 30–34.
Shand BI, Scott RS, Elder PA, George PM . Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance. Diabetes Obes Metab 2003; 5: 349–353.
Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2006; 281: 2654–2660.
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.
Matsuzawa Y . Adiponectin: a key player in obesity related disorders. Curr Pharm Des 2010; 16: 1896–1901.
Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 2002; 51: 37–41.
Kamar N, Mariat C, Delahousse M, Lefrançois N, Dantal J, Benhamou P . New onset diabetes mellitus incidence and risk factors in kidney transplantation: results of the observational cross-sectional study diapason. Transplant Proc 2006; 38: 2295–2297.
Lyssenko V, Almgren P, Anevski D, Orho-Melander M, Sjögren M, Saloranta C et al. Genetic prediction of future type 2 diabetes. PLoS Med 2005; 2: e345.
Araki E, Lipes MA, Patti ME, Brüning JC, Haag B 3rd, Johson RS et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372: 186–190.
Kovacs P, Hanson RL, Lee YH, Yang X, Kobes S, Permana PA et al. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians. Diabetes 2003; 52: 3005–3009.
Perez-Martinez P, Delgado-Lista J, Garcia-Rios A, Ferguson JF, Gulseth HL, Williams CM et al. Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome. Am J Clin Nutr 2011; 93: 1136–1141.
Sáez ME, González-Sánchez JL, Ramirez-Lorca R, Martinez-Larrad MT, Zabena C, Moron FJ et al. The CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population. PLoS ONE 2008; 3: e2953.
Elbein SC, Chu W, Ren Q, Hemphill C, Schay J, Cox NJ et al. Role of calpain-10 gene variants in familial type 2 diabetes in Caucasians. J Clin Endocrinol Metab 2002; 87: 650–654.
Marshall C, Hitman GA, Partridge CJ, Clark A, Ma H, Shearer TR et al. Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells. Mol Endocrinol 2005; 19: 213–224.
Turner MD . Coordinated control of both insulin secretion and insulin action through calpain-10-mediated regulation of exocytosis? Mol Genet Metab 2007; 91: 305–307.
Lynn S, Evans JC, White C, Frayling TM, Hattersley AT, Turnbull DM et al. Variation in the calpain-10 gene affects blood glucose levels in the British population. Diabetes 2002; 51: 247–250.
Horikawa Y, Oda N, Cox NJ, Orho-Melander M, Hara M, Hinokio Y et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26: 163–175.
Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BMW . Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369: 1208–1219.
Muscogiuri G, Chavez AO, Gastaldelli A, Perego L, Tripathy D, Saas MJ et al. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Curr Vasc Pharmacol 2008; 6: 301–312.
Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M et al. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 2002; 40: 872–879.
Tamura K, Umemura S, Yamakawa T, Nyui N, Hibi K, Watanabe Y et al. Modulation of tissue angiotensinogen gene expression in genetically obese hypertensive rats. Am J Physiol 1997; 272: R1704–R1711.
Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8: 75–79.
Di Gregorio GB, Hensley L, Lu T, Ranganathan G, Kern PA . Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol Endocrinol Metab 2004; 287: E182–E187.
Kim HJ, Higashimori T, Park SY, Choi H, Dong J, Kim YJ et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 2004; 53: 1060–1067.
Senn JJ, Klover PJ, Nowak IA, Mooney RA . Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002; 51: 3391–3399.
Guo X, Cheng S, Taylor KD, Cui J, Hughes R, Quiñones MJ et al. Hypertension genes are genetic markers for insulin sensitivity and resistance. Hypertension 2005; 45: 799–803.
Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T et al. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci USA 2004; 101: 8138–8143.
Moro C, Klimcakova E, Lolmède K, Berlan M, Lafontan M, Stich V et al. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 2007; 50: 1038–1047.
Magnusson M, Jujic A, Hedblad B, Engström G, Persson M, Struck J et al. Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J Clin Endocrinol Metab 2012; 97: 638–645.
McCaughan JA, McKnight AJ, Maxwell AP . Genetics of new-onset diabetes after transplantation. J Am Soc Nephrol 2014; 25: 1037–1049.
Norman AW, Frankel JB, Heldt AM, Grodsky GM . Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 1980; 209: 823–825.
Calle C, Maestro B, García-Arencibia M . Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol 2008; 9: 65.
Chiu KC, Chu A, Go VL, Saad MF . Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 2004; 79: 820–825.
Mathieu C, Gysemans C, Giulietti A, Bouillon R . Vitamin D and diabetes. Diabetologia 2005; 48: 1247–1257.
Yi F, Brubaker PL, Jin T . TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2005; 280: 1457–1464.
Shu L, Sauter NS, Schulthness FT, Matveyenko AV, Oberholzer J, Maedler K . Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 2008; 57: 645–653.
Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007; 117: 2155–2163.
Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K . Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 2009; 18: 2388–2399.
Alibegovic AC, Sonne MP, Høbjerre L, Hansen T, Pedersen O, van Hall G et al. The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest. Diabetes 2010; 59: 836–843.
Miyake K, Horikawa Y, Hara K, Yasuda K, Osawa H, Furuta H et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J Hum Genet 2008; 53: 174–180.
Hansen SK, Rose CS, Glümer C, Drivsholm T, Borch-Johnsen K, Jørgensen T et al. Variation near the hepatocyte nuclear factor (HNF)-4alpha gene associates with type 2 diabetes in the Danish population. Diabetologia 2005; 48: 452–458.
Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K et al. Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 2006; 281: 5246–5257.
Bergman RN . Minimal model: perspective from 2005. Horm Res 2005; 64: 8–15.
Tanaka H, Yamamoto T, Ban T, Satoh S, Tanaka T, Shimoda M et al. Hex stimulates the hepatocyte nuclear factor 1alpha-mediated activation of transcription. Arch Biochem Biophys 2005; 442: 117–124.
Bort R, Martinez-Barbera JP, Beddington RSP, Zaret KS . Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004; 131: 797–806.
Pivovarova O, Nikiforova VJ, Pfeiffer AF, Rudovich N . The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPOcohort. Diabetes Metab Res Rev 2009; 25: 156–162.
Riedel MJ, Steckley DC, Light PE . Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 2005; 116: 133–145.
Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist J et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360–1368.
Heit JJ . Calcineurin/NFAT signaling in the beta-cell: from diabetes to new therapeutics. Bioessays 2007; 29: 1011–1021.
Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR, Kim SK . Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell 2012; 23: 21–34.
Kragl M, Lammert E . Calcineurin/NFATc signaling: role in postnatal β cell development and diabetes mellitus. Dev Cell 2012; 23: 7–8.
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003; 26: S5–20.
Holmkvist J, Almgren P, Lyssenko V, Lindgren CM, Eriksson KF, Isomaa B et al. Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes. Diabetes 2008; 57: 1738–1744.
Yang TT, Suk HY, Yang X, Olabisi O, Yu RY, Durand J et al. Role of transcription factor NFAT in glucose and insulin homeostasis. Mol Cell Biol 2006; 26: 7372–7387.
Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 2006; 443: 345–349.
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC . Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102–110.
Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E . Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 2002; 51: 66–72.
Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014; 70: 685–693.
Pouché L, Koitka M, Stojanova J, Woillard JB, Monchaud C, Villeneuve C et al. A candidate gene approach of the calcineurin pathway to identify variants associated with clinical outcomes in renal transplantation. Pharmacogenomics 2016; 17: 375–391.
Bockenhauer D, Jaureguiberry G . HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol 2015; 31: 707–714.
Tudorache E, Sellier-Leclerc AL, Lenoir M, Tubiana-Rufi N, Bensman A, Bellanne-Chantelot C et al. Childhood onset diabetes posttransplant in a girl with TCF2 mutation. Pediatr Diabetes 2012; 13: e35–e39.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004; 27: s5–s10.
Yates CJ, Fourlanos S, Hjelmesaeth J, Colman PG, Cohney SJ . New-onset diabetes after kidney transplantation-changes and challenges. Am J Transplant 2012; 12: 820–828.
Jaber JJ, Feustel PJ, Elbahloul O, Conti AD, Gallichio MH, Conti DJ . Early steroid withdrawal therapy in renal transplant recipients: a steroid-free sirolimus and CellCept-based calcineurin inhibitor-minimization protocol. Clin Transplant 2007; 21: 101–109.
Tsampalieros A, Knoll GA, Molnar AO, Fergusson N, Fergusson DA . Corticosteroid use and growth after pediatric solid organ transplantation: a systematic review and meta-analysis. Transplantation 2016; advance online publication, 12 July 2016; doi: 10.1097/TP.0000000000001320 (e-pub ahead of print).
Vincenti F, Friman S, Scheuermann E, Rostaing L, Jenssen T, Campistol JM et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant 2007; 7: 1506–1514.
Rodriguez-Rodriguez AE, Trinanes J, Velazquez-Garcia S, Porrini E, Vega Prieto MJ, Diez Fuentes ML et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am J Transplant 2013; 13: 1665–1675.
Ghisdal L, Bouchta NB, Broeders N, Crenier L, Hoang AD, Abramowicz D et al. Conversion from tacrolimus to cyclosporine A for new-onset diabetes after transplantation: a single-centre experience in renal transplanted patients and review of the literature. Transpl Int 2008; 21: 146–151.
Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 2005; 5: 443–453.
Masson P, Henderson L, Chapman JR, Craig JC, Webster AC . Belatacept for kidney transplant recipients. Cochrane Database Syst Rev 2014; 11: CD010699.
Rathi M, Rajkumar V, Rao N, Sharma A, Kumar S, Ramachandran R et al. Conversion from tacrolimus to cyclosporine in patients with new-onset diabetes after renal transplant: an open-label randomized prospective pilot study. Transplant Proc 2015; 47: 1158–1161.
Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357: 2562–2575.
Woodward RS, Schnitzler MA, Baty J, Lowell JA, Lopez-Rocafort L, Haider S et al. Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am J Transplant 2003; 3: 590–598.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website
Supplementary information
PowerPoint slides
Rights and permissions
About this article
Cite this article
Lancia, P., Adam de Beaumais, T. & Jacqz-Aigrain, E. Pharmacogenetics of posttransplant diabetes mellitus. Pharmacogenomics J 17, 209–221 (2017). https://doi.org/10.1038/tpj.2017.1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/tpj.2017.1