Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia

Abstract

Neutropenia is a common dose-limiting toxicity associated with irinotecan treatment. Although UGT1A1 variants have been associated with neutropenia, a fraction of neutropenia risk remains unaccounted for. To identify additional genetic markers contributing to variability in irinotecan pharmacokinetics and neutropenia, a regression analysis was performed in 78 irinotecan-treated patients to analyze comprehensively three hepatic efflux transporter genes (ABCB1, ABCC1 and ABCG2). rs6498588 (ABCC1) and rs12720066 (ABCB1) were associated with increased SN-38 exposure, and rs17501331 (ABCC1) and rs12720066 were associated with lower absolute neutrophil count nadir. rs6498588 and a variant in high linkage disequilibrium are located in transcriptionally active regions or are predicted to alter transcription factor binding sites. While enhancer activity was not evident in vitro for genomic regions containing these single-nucleotide polymorphisms, rs6498588 was significantly associated with ABCC1 expression in human liver. These results suggest that genetic variation in ABCC1 and ABCB1 may contribute to irinotecan-induced neutropenia by altering expression of transporters involved in irinotecan metabolite disposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Forni M, Bugat R, Chabot GG, Culine S, Extra JM, Gouyette A et al. Phase I and pharmacokinetic study of the camptothecin derivative irinotecan, administered on a weekly schedule in cancer patients. Cancer Res 1994; 54: 4347–4354.

    CAS  PubMed  Google Scholar 

  2. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR . Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 2003; 21: 807–814.

    Article  CAS  Google Scholar 

  3. Slatter JG, Su P, Sams JP, Schaaf LJ, Wienkers LC . Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab Dispos 1997; 25: 1157–1164.

    CAS  PubMed  Google Scholar 

  4. Ramchandani RP, Wang Y, Booth BP, Ibrahim A, Johnson JR, Rahman A et al. The role of SN-38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxicity. J Clin Pharmacol 2007; 47: 78–86.

    Article  CAS  Google Scholar 

  5. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 1382–1388.

    Article  CAS  Google Scholar 

  6. Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genom 2007; 17: 497–504.

    Article  CAS  Google Scholar 

  7. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006; 24: 2237–2244.

    Article  CAS  Google Scholar 

  8. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998; 101: 847–854.

    Article  CAS  Google Scholar 

  9. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000; 60: 6921–6926.

    CAS  PubMed  Google Scholar 

  10. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenom J 2002; 2: 43–47.

    Article  CAS  Google Scholar 

  11. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E . Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res 2004; 10: 5151–5159.

    Article  CAS  Google Scholar 

  12. McLeod HL, Parodi L, Sargent DJ, Marsh S, Green E, Abreu P et al. UGT1A1*28, toxicity and outcome in advanced colorectal cancer: results from trial N9741. J Clin Oncol 2006; 24 (Suppl 18): abstract 3520.

    Google Scholar 

  13. Côté JF, Kirzin S, Kramar A, Mosnier JF, Diebold MD, Soubeyran I et al. UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin Cancer Res 2007; 13: 3269–3275.

    Article  Google Scholar 

  14. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 2009; 27: 2604–2614.

    Article  CAS  Google Scholar 

  15. Lara PN Jr, Natale R, Crowley J, Lenz HJ, Redman MW, Carleton JE et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol 2009; 27: 2530–2535.

    Article  CAS  Google Scholar 

  16. Crona DJ, Ramirez J, Qiao W, de Graan AJ, Ratain MJ, van Schaik RH et al. Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study. Pharmacogenom J 2015; 16: 54–59.

    Article  Google Scholar 

  17. Innocenti F, Schilsky RL, Ramírez J, Janisch L, Undevia S, House LK et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014; 32: 2328–2334.

    Article  CAS  Google Scholar 

  18. Marcuello E, Altés A, Menoyo A, Del Rio E, Gómez-Pardo M, Baiget M . UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 2004; 91: 678–682.

    Article  CAS  Google Scholar 

  19. Braun MS, Richman SD, Thompson L, Daly CL, Meade AM, Adlard JW et al. Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J Clin Oncol 2009; 27: 5519–5528.

    Article  CAS  Google Scholar 

  20. Schulz C, Heinemann V, Schalhorn A, Moosmann N, Zwingers T, Boeck S et al. UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J Gastroenterol 2009; 15: 5058–5066.

    Article  CAS  Google Scholar 

  21. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 3246–3253.

    CAS  PubMed  Google Scholar 

  22. Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 2007; 110: 138–147.

    Article  Google Scholar 

  23. Han JY, Lim HS, Park YH, Lee SY, Lee JS . Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer 2009; 63: 115–120.

    Article  Google Scholar 

  24. Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD . Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat 2003; 6: 71–84.

    Article  CAS  Google Scholar 

  25. Sai K, Kaniwa N, Itoda M, Saito Y, Hasegawa R, Komamura K et al. Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics 2003; 13: 741–757.

    Article  CAS  Google Scholar 

  26. Glimelius B, Garmo H, Berglund A, Fredriksson LA, Berglund M, Kohnke H et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenom J 2011; 11: 61–71.

    Article  CAS  Google Scholar 

  27. Sai K, Saito Y, Maekawa K, Kim SR, Kaniwa N, Nishimaki-Mogami T et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 2010; 66: 95–105.

    Article  CAS  Google Scholar 

  28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  29. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2015.

  30. Harrell FE . rms: Regression Modeling Strategies. R package version 4.4-0, 2015. Available at: http://CRAN.R-project.org/package=rms. Accessed on November 9, 2015.

    Chapter  Google Scholar 

  31. Ward LD, Kellis M . HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40: D930–D934.

    Article  CAS  Google Scholar 

  32. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790–1797.

    Article  CAS  Google Scholar 

  33. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473: 43–49.

    Article  CAS  Google Scholar 

  34. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  35. Roadmap Epigenomics Consortium Roadmap Epigenomics Consortium Kundaje A Roadmap Epigenomics Consortium Meuleman W Roadmap Epigenomics Consortium Ernst J Roadmap Epigenomics Consortium Bilenky M Roadmap Epigenomics Consortium Yen A et al. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518: 317–330.

    Article  Google Scholar 

  36. Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E . MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 2003; 31: 3576–3579.

    Article  CAS  Google Scholar 

  37. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al. Primer3—new capabilities and interfaces. Nucleic Acids Res 2012; 40: e115.

    Article  CAS  Google Scholar 

  38. Koressaar T, Remm M . Enhancements and modifications of primer design program Primer3. Bioinformatics 2007; 23: 1289–1291.

    Article  CAS  Google Scholar 

  39. Simonet WS, Bucay N, Lauer SJ, Taylor JM . A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J Biol Chem 1993; 268: 8221–8229.

    CAS  PubMed  Google Scholar 

  40. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genom 2011; 21: 152–161.

    Article  CAS  Google Scholar 

  41. Létourneau IJ, Deeley RG, Cole SP . Functional characterization of non-synonymous single nucleotide polymorphisms in the gene encoding human multidrug resistance protein 1 (MRP1/ABCC1). Pharmacogenet Genom 2005; 15: 647–657.

    Article  Google Scholar 

  42. Conseil G, Cole SP . Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab Dispos 2013; 41: 2187–2196.

    Article  CAS  Google Scholar 

  43. Yee SW, Chen L, Giacomini KM . Pharmacogenomics of membrane transporters: past, present and future. Pharmacogenomics 2010; 11: 475–479.

    Article  CAS  Google Scholar 

  44. Hesselson SE, Matsson P, Shima JE, Fukushima H, Yee SW, Kobayashi Y et al. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation. PLoS One 2009; 4: e6942.

    Article  Google Scholar 

  45. Choi JH, Yee SW, Kim MJ, Nguyen L, Lee JH, Kang JO et al. Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet Genom 2009; 19: 770–780.

    Article  CAS  Google Scholar 

  46. Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M et al. Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). J Pharmacol Exp Ther 2009; 329: 262–271.

    Article  CAS  Google Scholar 

  47. Yee SW, Shima JE, Hesselson S, Nguyen L, De Val S, Lafond RJ et al. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). J Pharmacol Exp Ther 2009; 328: 699–707.

    Article  CAS  Google Scholar 

  48. To KK, Zhan Z, Litman T, Bates SE . Regulation of ABCG2 expression at the 3' untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008; 28: 5147–5161.

    Article  CAS  Google Scholar 

  49. Pan YZ, Morris ME, Yu AM . MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009; 75: 1374–1379.

    Article  CAS  Google Scholar 

  50. Kim MJ, Skewes-Cox P, Fukushima H, Hesselson S, Yee SW, Ramsey LB et al. Functional characterization of liver enhancers that regulate drug-associated transporters. Clin Pharmacol Ther 2011; 89: 571–578.

    Article  CAS  Google Scholar 

  51. O'Brien VP, Bokelmann K, Ramírez J, Jobst K, Ratain MJ, Brockmöller J et al. Hepatocyte nuclear factor 1 regulates the expression of the organic cation transporter 1 via binding to an evolutionary conserved region in intron 1 of the OCT1 gene. J Pharmacol Exp Ther 2013; 347: 181–192.

    Article  CAS  Google Scholar 

  52. Poonkuzhali B, Lamba J, Strom S, Sparreboom A, Thummel K, Watkins P et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos 2008; 36: 780–795.

    Article  CAS  Google Scholar 

  53. Zhou Q, Sparreboom A, Tan EH, Cheung YB, Lee A, Poon D et al. Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br J Clin Pharmacol 2005; 59: 415–424.

    Article  CAS  Google Scholar 

  54. Iyer L, Ramírez J, Shepard DR, Bingham CM, Hossfeld DK, Ratain MJ et al. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother Pharmacol 2002; 49: 336–341.

    Article  CAS  Google Scholar 

  55. Tagen M, Zhuang Y, Zhang F, Harstead KE, Shen J, Schaiquevich P et al. P-glycoprotein, but not multidrug resistance protein 4, plays a role in the systemic clearance of irinotecan and SN-38 in mice. Drug Metab Lett 2010; 4: 195–201.

    Article  CAS  Google Scholar 

  56. Chen ZS, Furukawa T, Sumizawa T, Ono K, Ueda K, Seto K et al. ATP-dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol Pharmacol 1999; 55: 921–928.

    Article  CAS  Google Scholar 

  57. Roelofsen H, Vos TA, Schippers IJ, Kuipers F, Koning H, Moshage H et al. Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells. Gastroenterology 1997; 112: 511–521.

    Article  CAS  Google Scholar 

  58. Seiser EL, Xia K, Wright FA, Innocenti F . Meta-analysis of liver eQTL studies and cross-tissue eQTL comparison using GTEx data. Presented at the 64th Annual Meeting of The American Society of Human Genetics, 20 October 2014, San Diego, CA, USA, (abstract 667S).

  59. Schellens JH, Maliepaard M, Scheper RJ, Scheffer GL, Jonker JW, Smit JW et al. Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann NY Acad Sci 2000; 922: 188–194.

    Article  CAS  Google Scholar 

  60. Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 2004; 109: 858–854.

    Article  Google Scholar 

  61. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002; 1: 611–616.

    CAS  PubMed  Google Scholar 

  62. Phelps MA, Sparreboom A . Irinotecan pharmacogenetics: a finished puzzle? J Clin Oncol 2014; 32: 2287–2289.

    Article  CAS  Google Scholar 

  63. Fujiwara Y, Minami H . An overview of the recent progress in irinotecan pharmacogenetics. Pharmacogenomics 2010; 11: 391–406.

    Article  CAS  Google Scholar 

  64. Marsh S, Hoskins JM . Irinotecan pharmacogenomics. Pharmacogenomics 2010; 11: 1003–1010.

    Article  CAS  Google Scholar 

  65. Hoskins JM, Rosner GL, Ratain MJ, McLeod HL, Innocenti F . Pharmacodynamic genes do not influence risk of neutropenia in cancer patients treated with moderately high-dose irinotecan. Pharmacogenomics 2009; 10: 1139–1146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NIGMS U01GM061390 (Pharmacogenetics of Membrane Transporters), NIH/NIGMS U01GM0061393 (PAAR-Pharmacogenomics of Anticancer Agents Research Group), NIH/NIGMS T32 GM007175, NIH/NIDDK R21DK081157 and NIH/NCI K07CA140390-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Kroetz.

Ethics declarations

Competing interests

Drs Innocenti and Ratain are patent holders on the UGT1A1 testing for irinotecan neutropenia. Dr Ratain also receives intermittent royalties on multiple patents related to irinotecan pharmacogenetics and is an inventor on a pending patent application for a genomic prescribing system. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Seiser, E., Baldwin, R. et al. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J 18, 35–42 (2018). https://doi.org/10.1038/tpj.2016.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.75

This article is cited by

Search

Quick links