Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CXCR4 polymorphism predicts progression-free survival in metastatic colorectal cancer patients treated with first-line bevacizumab-based chemotherapy

Abstract

We analyzed associations between CXCR4/CXCL12 single-nucleotide polymorphisms and outcomes in metastatic colorectal cancer (mCRC) patients who underwent first-line bevacizumab-based chemotherapy. A total of 874 patients were included in this study: 144 treated with bevacizumab and FOLFOX or XELOX (training cohort), 653 treated with bevacizumab and FOLFIRI or FOLFOXIRI (validation cohort A or B) and 77 treated with cetuximab- and oxaliplatin-based regimens (control cohort). One CXCR4 polymorphism (rs2228014) and two CXCL12 polymorphisms (rs1801157 and rs3740085) were analyzed by PCR-based direct sequencing. Patients with a C/C genotype had a prolonged progression-free survival (PFS) compared with those with any T allele (P=0.030) in the training cohort. Similarly, patients with the C/C genotype had a superior PFS in the validation cohorts, but not in the control cohort. Our findings suggest that a common genetic variant, CXCR4 rs2228014, could predict PFS and may guide therapeutic decisions in mCRC patients receiving first-line bevacizumab-based chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zlotnik A . Chemokines and cancer. Int J Cancer 2006; 119: 2026–2029.

    Article  CAS  Google Scholar 

  2. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    Article  CAS  Google Scholar 

  3. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005; 23: 879–894.

    Article  CAS  Google Scholar 

  4. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  Google Scholar 

  5. Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G . Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 2002; 99: 2703–2711.

    Article  CAS  Google Scholar 

  6. Guleng B, Tateishi K, Ohta M, Kanai F, Jazag A, Ijichi H et al. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res 2005; 65: 5864–5871.

    Article  CAS  Google Scholar 

  7. Kim J, Mori T, Chen SL, Amersi FF, Martinez SR, Kuo C et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg 2006; 244: 113–120.

    Article  PubMed Central  Google Scholar 

  8. Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gonner U, Wilsberg V et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 2005; 11: 1743–1750.

    Article  CAS  Google Scholar 

  9. Mrowicki J, Przybylowska-Sygut K, Dziki L, Sygut A, Chojnacki J, Dziki A et al. The role of polymorphisms of genes CXCL12/CXCR4 and MIF in the risk development IBD the Polish population. Mol Biol Rep 2014; 41: 4639–4652.

    Article  CAS  Google Scholar 

  10. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014; 371: 1609–1618.

    Article  Google Scholar 

  11. Tsuji A, Nakamura M, Sunakawa Y, Kochi M, Denda T, Yamaguchi T et al. A phase II study of cetuximab and mFOLFOX6 in mCRC including prospective early tumor shrinkage analysis (JACCRO-CC05). 2013 Ann Oncol 24: iv38–iv121.

    Article  Google Scholar 

  12. Tsuji A, Sunakawa Y, Denda T, Takinishi Y, Kotaka M, Tanioka H et al. A phase I/II study of cetuximab (cet) in combination with S–1 and oxaliplatin (SOX) in first-line treatment for metastatic colorectal cancer (mCRC) (JACCRO CC-06). J Clin Oncol 2014; 32 (Suppl 3): abstract 571.

    Article  Google Scholar 

  13. Loupakis F, Yang D, Yau L, Feng S, Cremolini C, Zhang W et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 2015; 107, dju427.

  14. Dwinell MB, Ogawa H, Barrett KE, Kagnoff MF . SDF-1/CXCL12 regulates cAMP production and ion transport in intestinal epithelial cells via CXCR4. Am J Physiol Gastrointest Liver Physiol 2004; 286: G844–G850.

    Article  CAS  Google Scholar 

  15. Cai C, Wang LH, Dong Q, Wu ZJ, Li MY, Sun YH . Association of CXCL12 and CXCR4 gene polymorphisms with the susceptibility and prognosis of renal cell carcinoma. Tissue Antigens 2013; 82: 165–170.

    Article  CAS  Google Scholar 

  16. Kucukgergin C, Isman FK, Dasdemir S, Cakmakoglu B, Sanli O, Gokkusu C et al. The role of chemokine and chemokine receptor gene variants on the susceptibility and clinicopathological characteristics of bladder cancer. Gene 2012; 511: 7–11.

    Article  CAS  Google Scholar 

  17. Teng YH, Liu TH, Tseng HC, Chung TT, Yeh CM, Li YC et al. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck 2009; 31: 1282–1288.

    Article  Google Scholar 

  18. Oskarsson T, Batlle E, Massague J . Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 2014; 14: 306–321.

    Article  CAS  PubMed Central  Google Scholar 

  19. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003; 198: 1391–1402.

    Article  CAS  PubMed Central  Google Scholar 

  20. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003; 425: 307–311.

    Article  CAS  PubMed Central  Google Scholar 

  21. Fransen K, Fenech M, Fredrikson M, Dabrosin C, Soderkvist P . Association between ulcerative growth and hypoxia inducible factor-1alpha polymorphisms in colorectal cancer patients. Mol Carcinog 2006; 45: 833–840.

    Article  CAS  Google Scholar 

  22. Gerger A, El-Khoueiry A, Zhang W, Yang D, Singh H, Bohanes P et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17: 5783–5792.

    Article  CAS  PubMed Central  Google Scholar 

  23. Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC, Lauwers GY et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 2009; 69: 7905–7910.

    Article  CAS  PubMed Central  Google Scholar 

  24. Matsusaka S, Mishima Y, Suenaga M, Terui Y, Kuniyoshi R, Mizunuma N et al. Circulating endothelial progenitors and CXCR4-positive circulating endothelial cells are predictive markers for bevacizumab. Cancer 2011; 117: 4026–4032.

    Article  CAS  Google Scholar 

  25. Federsppiel B, Melhado IG, Duncan AM, Delaney A, Schappert K, Clark-Lewis I et al. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics 1993; 16: 707–712.

    Article  CAS  Google Scholar 

  26. Petersen DC, Glashoff RH, Shrestha S, Bergeron J, Laten A, Gold B et al. Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr 2005; 40: 521–526.

    Article  CAS  PubMed Central  Google Scholar 

  27. Okuyama Kishima M, Brajão de Oliveira K, Ariza CB, de Oliveira CE, Losi Guembarovski R, Banin Hirata BK et al. Genetic polymorphism and expression of CXCR4 in breast cancer. Anal Cell Pathol (Amst) 2015 2015: 289510.

    Google Scholar 

  28. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  29. Mitchell B, Leone D, Feller JK, Bondzie P, Yang S, Park HY et al. Correlation of chemokine receptor CXCR4 mRNA in primary cutaneous melanoma with established histopathologic prognosticators and the BRAF status. Melanoma Res 2014; 24: 621–625.

    Article  CAS  Google Scholar 

  30. Torregrossa L, Giannini R, Borrelli N, Sensi E, Melillo RM, Leocata P et al. CXCR4 expression correlates with the degree of tumor infiltration and BRAF status in papillary thyroid carcinomas. Mod Pathol 2012; 25: 46–55.

    Article  CAS  Google Scholar 

  31. Thomaidis T, Maderer A, Al-Batran SE, Kany J, Pauligk C, Steinmetz K et al. VEGFR-3 and CXCR4 as predictive markers for treatment with fluorouracil, leucovorin plus either oxaliplatin or cisplatin in patients with advanced esophagogastric cancer: a comparative study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer 2014; 14: 476.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

S Matsusaka is a recipient of Takashi Tsuruo Memorial Fund. MD Berger received a grant from the Swiss Cancer League (BIL KLS-3334-02-2014). S Stremitzer is a recipient of an Erwin Schrödinger fellowship of the Austrian Science Fund (J3501-B13). This study was partly funded by NIH Grant P30CA14089-27S1 and Yvonne Bogdanovich. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-J Lenz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsusaka, S., Cao, S., Hanna, D. et al. CXCR4 polymorphism predicts progression-free survival in metastatic colorectal cancer patients treated with first-line bevacizumab-based chemotherapy. Pharmacogenomics J 17, 543–550 (2017). https://doi.org/10.1038/tpj.2016.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.59

This article is cited by

Search

Quick links