Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation


The clinical response to sulphonylurea, an oral antidiabetic agent often used in combination with metformin to control blood glucose in type 2 diabetes (T2DM) patients, has been widely associated with a number of gene polymorphisms, particularly those involved in insulin release. We have reviewed the genetic markers of CYP2C9, ABCC8, KCNJ11, TCF7L2 (transcription factor 7-like 2), IRS-1 (insulin receptor substrate-1), CDKAL1, CDKN2A/2B, KCNQ1 and NOS1AP (nitric oxide synthase 1 adaptor protein) genes that predict treatment outcomes of sulphonylurea therapy. A convincing pattern for poor sulphonylurea response was observed in Caucasian T2DM patients with rs7903146 and rs1801278 polymorphisms of the TCF7L2 and IRS-1 genes, respectively. However, limitations in evaluating the available studies including dissimilarities in study design, definitions of clinical end points, sample sizes and types and doses of sulphonylureas used as well as ethnic variability make the clinical applications challenging. Future studies need to address these limitations to develop personalized sulphonylurea medicine for T2DM management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2


  1. 1

    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE . Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103: 137–149.

  2. 2

    Ashcroft Frances M, Rorsman P . Diabetes mellitus and the β cell: the last ten years. Cell 2012; 148: 1160–1171.

  3. 3

    Cefalu WT . Pharmacotherapy for the treatment of patients with type 2 diabetes mellitus: rationale and specific agents. Clin Pharmacol Ther 2007; 81: 636–649.

  4. 4

    Satoh J, Takahashi K, Takizawa Y, Ishihara H, Hirai M, Katagiri H et al. Secondary sulfonylurea failure: comparison of period until insulin treatment between diabetic patients treated with gliclazide and glibenclamide. Diabetes Res Clin Pract 2005; 70: 291–297.

  5. 5

    Thulé P, Umpierrez G . Sulfonylureas: a new look at old therapy. Curr Diab Rep 2014; 14: 1–8.

  6. 6

    Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC . UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabetic Med 1998; 15: 297–303.

  7. 7

    DeFronzo RA . Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131: 281.

  8. 8

    Riedel AA, Heien H, Wogen J, Plauschinat CA . Secondary failure of glycemic control for patients adding thiazolidinedione or sulfonylurea therapy to a metformin regimen. Am J Manag Care 2007; 13: 457–463.

  9. 9

    Huang C, Florez J . Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Med 2011; 3: 76.

  10. 10

    Cowie P, Hay EA, MacKenzie A . The noncoding human genome and the future of personalised medicine. Expert Rev Mol Med 2015; 17: e4.

  11. 11

    Caiola E, Broggini M, Marabese M . Genetic markers for prediction of treatment outcomes in ovarian cancer. Pharmacogenom J 2014; 14: 401–410.

  12. 12

    Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220–2232.

  13. 13

    Florez J, Jablonski K, Bayley N, Pollin T, de Bakker P, Shuldiner A et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006; 355: 241–250.

  14. 14

    Feng Y, Mao G, Ren X, Xing H, Tang G, Li Q et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 2008; 31: 1939–1944.

  15. 15

    Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S, Irace C et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab 2006; 91: 2334–2339.

  16. 16

    Javorsky M, Klimcakova L, Schroner Z, Zidzik J, Babjakova E, Fabianova M et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med 2012; 23: 245–249.

  17. 17

    Pearson ER, Donnelly LA, Kimber C, Whitley A, Doney ASF, McCarthy MI et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas. Diabetes 2007; 56: 2178–2182.

  18. 18

    Xu H, Murray M, McLachlan AJ . Influence of genetic polymorphisms on the pharmacokinetics and pharmaco-dynamics of sulfonylurea drugs. Curr Drug Metab 2009; 10: 643–658.

  19. 19

    Aquilante CL . Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther 2010; 8: 359–372.

  20. 20

    Seeringer A, Parmar S, Fischer A, Altissimo B, Zondler L, Lebedeva E et al. Genetic variants of the insulin receptor substrate-1 are influencing the therapeutic efficacy of oral antidiabetics. Diabetes Obes Metab 2010; 12: 1106–1112.

  21. 21

    Holstein A, Plaschke A, Ptak M, Egberts EH, El-Din J, Brockmoller J et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol 2005; 60: 103–106.

  22. 22

    Zhou K, Donnelly L, Burch L, Tavendale R, Doney ASF, Leese G et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: A Go-DARTS study. Clin Pharmacol Ther 2010; 87: 52–56.

  23. 23

    Becker ML, Visser LE, Trienekens PH, Hofman A, van Schaik RH, Stricker BH . Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin Pharmacol Ther 2008; 83: 288–292.

  24. 24

    Salam R, Zeyada R, Osman N . Effect of CYP2C9 gene polymorphisms on response to treatment with sulfonylureas in a cohort of Egyptian type 2 diabetes mellitus patients. Comp Clin Pathol 2014; 23: 341–346.

  25. 25

    Klen J, Dolžan V, Janež A . CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol 2014; 70: 421–428.

  26. 26

    Surendiran A, Pradhan SC, Agrawal A, Subrahmanyam DKS, Rajan S, Anichavezhi D et al. Influence of CYP2C9 gene polymorphisms on response to glibenclamide in type 2 diabetes mellitus patients. Eur J Clin Pharmacol 2011; 67: 797–801.

  27. 27

    Association AD. Standards of medical care in diabetes—2014. Diabetes Care 2014; 37: S14–S80.

  28. 28

    Proks P, de Wet H, Ashcroft FM . Molecular mechanism of sulphonylurea block of K(ATP) channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. Diabetes 2013; 62: 3909–3919.

  29. 29

    Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004; 350: 1838–1849.

  30. 30

    Haghverdizadeh P, Sadat Haerian M, Haghverdizadeh P, Sadat Haerian B . ABCC8 genetic variants and risk of diabetes mellitus. Gene 2014; 545: 198–204.

  31. 31

    Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S . Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab 2007; 9: 28–39.

  32. 32

    Zhang H, Liu X, Kuang H, Yi R, Xing H . Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract 2007; 77: 58–61.

  33. 33

    Nikolac N, Simundic A-M, Katalinic D, Topic E, Cipak A, Zjacic Rotkvic V . Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res 2009; 40: 387–392.

  34. 34

    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015; 38: 140–149.

  35. 35

    Segre AV, Wei N, Altshuler D, Florez JC . Pathways targeted by anti-diabetes drugs are enriched for multiple genes associated with type 2 diabetes risk. Diabetes 2015; 64: 1470–1483.

  36. 36

    Li Y-y . The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects. Mol Biol Rep 2013; 40: 141–146.

  37. 37

    Phani NM, Guddattu V, Bellampalli R, Seenappa V, Adhikari P, Nagri SK et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case–control and meta-analysis study. PLoS One 2014; 9: e107021.

  38. 38

    Shimajiri Y, Yamana A, Morita S, Furuta H, Furuta M, Sanke T . Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patients with type 2 diabetes. J Diabetes Invest [Internet] 2013; 4: 445–449; available at: last assessed date: 6th February 2015.

  39. 39

    El-sisi AE, Hegazy SK, Metwally SS, Wafa AM, Dawood NA . Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in Egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab 2011; 2: 155–164.

  40. 40

    Jiang Y-D, Chuang L-M, Pei D, Lee Y-J, Wei J-N, Sung F-C et al. Genetic variations in the Kir6.2 subunit (KCNJ11) of pancreatic ATP-sensitive potassium channel gene are associated with insulin response to glucose loading and early onset of type 2 diabetes in childhood and adolescence in Taiwan. Int J Endocrinol 2014; 2014: 7.

  41. 41

    Barros CM, Araujo-Neto AP, Lopes TR, Barros MA, Motta FJ, Canalle R et al. Association of the rs7903146 and rs12255372 polymorphisms in the TCF7L2 gene with type 2 diabetes in a population from northeastern Brazil. Genet Mol Res 2014; 13: 7889–7898.

  42. 42

    Zhou Y, Park S-Y, Su J, Bailey K, Ottosson-Laakso E, Shcherbina L et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet 2014; 23: 6419–6431.

  43. 43

    Gloyn AL, Braun M, Rorsman P . Type 2 diabetes susceptibility gene TCF7L2 and its role in β-cell function. Diabetes 2009; 58: 800–802.

  44. 44

    Weedon MN . The importance of TCF7L2. Diabetic Med 2007; 24: 1062–1066.

  45. 45

    Mitchell RK, Mondragon A, Chen L, McGinty JA, French PM, Ferrer J et al. Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass. Hum Mol Genet 2014; 24: 1390–1399.

  46. 46

    Pearson ER . Translating TCF7L2: from gene to function. Diabetologia 2009; 52: 1227–1230.

  47. 47

    Holstein A, Hahn M, Korner A, Stumvoll M, Kovacs P . TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet 2011; 12: 30.

  48. 48

    Schroner Z, Javorsky M, Tkacova R, Klimcakova L, Dobrikova M, Habalova V et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab 2011; 13: 89–91.

  49. 49

    Wang J, Hu F, Feng T, Zhao J, Yin L, Li L et al. Meta-analysis of associations between TCF7L2 polymorphisms and risk of type 2 diabetes mellitus in the Chinese population. BMC Med Genet 2013; 14: 8.

  50. 50

    Wang J, Zhang J, Li L, Wang Y, Wang Q, Zhai Y et al. Association of rs12255372 in the TCF7L2 gene with type 2 diabetes mellitus: a meta-analysis. Braz J Med Biol Res 2013; 46: 382–393.

  51. 51

    Jellema A, Zeegers MPA, Feskens EJM, Dagnelie PC, Mensink RP . Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 2003; 46: 990–995.

  52. 52

    Johansen A, Jensen DP, Bergholdt R, Mortensen HB, Pociot F, Nerup J et al. IRS1, KCNJ11, PPARγ2 and HNF-1α: do amino acid polymorphisms in these candidate genes support a shared aetiology between type 1 and type 2 diabetes? Diabetes. Obes Metab 2006; 8: 75–82.

  53. 53

    Arikoglu H, Aksoy Hepdogru M, Erkoc Kaya D, Asik A, Ipekci SH, Iscioglu F . IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta Gene 2014; 2: 579–585.

  54. 54

    Youngren JF . Regulation of insulin receptor function. Cell Mol Life Sci 2007; 64: 873–891.

  55. 55

    Zhao H, Liu S, Long M, Peng L, Deng H, You Y . Arg972 insulin receptor substrate-1 polymorphism and risk and severity of rheumatoid arthritis. Int J Rheum Dis 2014: 1–5.

  56. 56

    McGettrick AJ, Feener EP, Kahn CR . Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 2005; 280: 6441–6446.

  57. 57

    Huri HZ, Makmor-Bakry M, Hashim R, Mustafa N, Wan Ngah WZ . Optimisation of glycaemic control during episodes of severe/acute hyperglycaemia in patients with type 2 diabetes mellitus. Int J Clin Pharm 2012; 34: 863–870.

  58. 58

    Sesti G, Marini MA, Cardellini M, Sciacqua A, Frontoni S, Andreozzi F et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care 2004; 27: 1394–1398.

  59. 59

    Chistiakov D, Potapov VA, Smetanina SA, Bel’chikova LN, Suplotova LA, Nosikov VV . The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. Acta Diabetol 2011; 48: 227–235.

  60. 60

    Schroner Z, Javorsky M, Haluskova J, Klimcakova L, Babjakova E, Fabianova M et al. Variation in CDKAL1 gene is associated with therapeutic response to sulphonylureas. Physiol. Res. 2012; 61: 177–183.

  61. 61

    Ren Q, Han X, Tang Y, Zhang X, Zou X, Cai X et al. Search for genetic determinants of sulfonylurea efficacy in type 2 diabetic patients from China. Diabetologia 2014; 57: 746–753.

  62. 62

    Liu J, Wang F, Wu Y, Huang X, Sheng L, Xu J et al. Meta-analysis of the effect of KCNQ1 gene polymorphism on the risk of type 2 diabetes. Mol Biol Rep 2013; 40: 3557–3567.

  63. 63

    Schroner Z, Dobrikova M, Klimcakova L, Javorsky M, Zidzik J, Kozarova M et al. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med Sci Monit [Internet] 2011; 17: Cr392–Cr396.

  64. 64

    Becker ML, Aarnoudse A-JLHJ, Newton-Cheh C, Hofman A, Witteman JCM, Uitterlinden AG et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet Genom 2008; 18: 591–597.

  65. 65

    Holden SE, Currie CJ . Mortality risk with sulphonylureas compared to metformin. Diabetes Obes Metab 2014; 16: 885–890.

Download references


This study received funding from the University of Malaya, Malaysia (University of Malaya Research Grant RP024-14HTM and Postgraduate Research Grant PG056-2014A) and also Doctor of Philosophy scholarship award from the Ministry of Health, Malaysia.

Author information

Correspondence to H Z Huri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loganadan, N., Huri, H., Vethakkan, S. et al. Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation. Pharmacogenomics J 16, 209–219 (2016).

Download citation

Further reading