Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Complement 3 and metabolic syndrome induced by clozapine: a cross-sectional study and retrospective cohort analysis

Abstract

Metabolic syndrome (MetS) is considered to be an adverse effect of long-term treatment with atypical antipsychotics, particularly clozapine. There is strong evidence that the activation of inflammatory pathways interferes with normal metabolism and contributes to the development of MetS. C3, which is an inflammation molecule, has been reported to be associated with MetS. Because C3 is a heritable trait, we accordingly hypothesized that the gene encoding C3 (C3) would be a candidate gene for inter-individual variation in clozapine-induced MetS. We recruited 576 schizophrenia patients taking clozapine and measured the serum levels of fasting metabolic parameters. We then examined C3 mRNA and genotyped seven polymorphisms in C3. The expression quantitative trait locus (eQTL) data available for tissues were extracted by the Genotype-Tissue Expression Portal. A total of 105 patients’ medical records were retrospectively reviewed to obtain the metabolic parameters during the initial 2-year clozapine treatment. The relative expression levels of C3 mRNA in patients with MetS were significantly higher than in those without MetS (P=0.02). C3 single-nucleotide polymorphism (SNP) rs2277984 was marginally associated with MetS (allelic P=0.06, odds ratio=1.36, 95% confidence interval (CI): 1.07–1.72). We found a significant association of rs2277984 with fasting triglyceride (TG) levels (P=0.004). Further, eQTL analysis revealed that rs2277984 regulates C3 expression in the liver (P=0.002). Similar results were found in the retrospective cohort analysis. The receiver operating characteristic curve showed a significant effect of the rs2277984 G allele on the percentage change of TG levels, with an area under the curve of 0.71 (95% CI: 0.60–0.81). C3 is likely to enhance TG accumulation and to confer susceptibility to clozapine-induced MetS. The C3 SNP rs2277984 may be a potential biomarker for predicting MetS risk in patients receiving clozapine treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kaur J . A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162.

    PubMed  PubMed Central  Google Scholar 

  2. Haffner SM . The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 2006; 97: 3A–11A.

    Article  CAS  PubMed  Google Scholar 

  3. Sicras-Mainar A, Maurino J, Ruiz-Beato E, Navarro-Artieda R . Prevalence of metabolic syndrome according to the presence of negative symptoms in patients with schizophrenia. Neuropsychiatr Dis Treat 2015; 11: 51–57.

    CAS  PubMed  Google Scholar 

  4. McEvoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res 2005; 80: 19–32.

    Article  PubMed  Google Scholar 

  5. Meyer JM, Koro CE . The effects of antipsychotic therapy on serum lipids: a comprehensive review. Schizophr Res 2004; 70: 1–17.

    Article  PubMed  Google Scholar 

  6. Peet M . Diet, diabetes and schizophrenia: review and hypothesis. Br J Psychiatry Suppl 2004; 47: S102–S105.

    Article  PubMed  Google Scholar 

  7. Zhang Y, Chen M, Wu Z, Chen J, Yu S, Fang Y et al. Association study of Val66Met polymorphism in brain-derived neurotrophic factor gene with clozapine-induced metabolic syndrome: preliminary results. PLoS One 2013; 8: e72652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Hert M, Schreurs V, Sweers K, Van Eyck D, Hanssens L, Sinko S et al. Typical and atypical antipsychotics differentially affect long-term incidence rates of the metabolic syndrome in first-episode patients with schizophrenia: a retrospective chart review. Schizophr Res 2008; 101: 295–303.

    Article  PubMed  Google Scholar 

  9. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M . Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—a systematic review and meta-analysis. Schizophr Bull 2013; 39: 306–318.

    Article  PubMed  Google Scholar 

  10. Jassim G, Skrede S, Vazquez MJ, Wergedal H, Vik-Mo AO, Lunder N et al. Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat. Psychopharmacology (Berl) 2012; 219: 783–794.

    Article  CAS  Google Scholar 

  11. Zhang Y, Chen M, Chen J, Wu Z, Yu S, Fang Y et al. Metabolic syndrome in patients taking clozapine: prevalence and influence of catechol-O-methyltransferase genotype. Psychopharmacology (Berl) 2014; 231: 2211–2218.

    Article  CAS  Google Scholar 

  12. Maury E, Brichard SM . Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314: 1–16.

    Article  CAS  PubMed  Google Scholar 

  13. Kalupahana NS, Moustaid-Moussa N, Claycombe KJ . Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012; 33: 26–34.

    Article  CAS  PubMed  Google Scholar 

  14. Maes M, Meltzer HY, Bosmans E . Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 1994; 89: 346–351.

    Article  CAS  PubMed  Google Scholar 

  15. Maes M, Bosmans E, Kenis G, De Jong R, Smith RS, Meltzer HY . In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr Res 1997; 26: 221–225.

    Article  CAS  PubMed  Google Scholar 

  16. Contreras-Shannon V, Heart DL, Paredes RM, Navaira E, Catano G, Maffi SK et al. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS One 2013; 8: e59012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGeer EG, Klegeris A, McGeer PL . Inflammation, the complement system and the diseases of aging. Neurobiol Aging 2005; 26: 94–97.

    Article  PubMed  Google Scholar 

  18. Halkes CJ, van Dijk H, de Jaegere PP, Plokker HW, van Der Helm Y, Erkelens DW et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: effects of expanded-dose simvastatin. Arterioscler Thromb Vasc Biol 2001; 21: 1526–1530.

    Article  CAS  PubMed  Google Scholar 

  19. Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomassetti V, Drago G et al. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J 2000; 21: 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  20. van Oostrom AJ, Alipour A, Plokker TW, Sniderman AD, Cabezas MC . The metabolic syndrome in relation to complement component 3 and postprandial lipemia in patients from an outpatient lipid clinic and healthy volunteers. Atherosclerosis 2007; 190: 167–173.

    Article  CAS  PubMed  Google Scholar 

  21. Cai J, Zhang W, Yi Z, Lu W, Wu Z, Chen J et al. Influence of polymorphisms in genes SLC1A1, GRIN2B, and GRIK2 on clozapine-induced obsessive-compulsive symptoms. Psychopharmacology (Berl) 2013; 230: 49–55.

    Article  CAS  Google Scholar 

  22. Kent JW Jr, Mahaney MC, Comuzzie AG, Goring HH, Almasy L, Dyer TD et al. Quantitative trait locus on Chromosome 19 for circulating levels of intercellular adhesion molecule-1 in Mexican Americans. Atherosclerosis 2007; 195: 367–373.

    Article  CAS  PubMed  Google Scholar 

  23. Kraja AT, Huang P, Tang W, Hunt SC, North KE, Lewis CE et al. QTLs of factors of the metabolic syndrome and echocardiographic phenotypes: the hypertension genetic epidemiology network study. BMC Med Genet 2008; 9: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mackin P, Watkinson HM, Young AH . Prevalence of obesity, glucose homeostasis disorders and metabolic syndrome in psychiatric patients taking typical or atypical antipsychotic drugs: a cross-sectional study. Diabetologia 2005; 48: 215–221.

    Article  CAS  PubMed  Google Scholar 

  25. Asenjo Lobos C, Komossa K, Rummel-Kluge C, Hunger H, Schmid F, Schwarz S et al. Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev 2010; 11: CD006633.

    Google Scholar 

  26. Ou JJ, Xu Y, Chen HH, Fan X, Gao K, Wang J et al. Comparison of metabolic effects of ziprasidone versus olanzapine treatment in patients with first-episode schizophrenia. Psychopharmacology (Berl) 2013; 225: 627–635.

    Article  CAS  Google Scholar 

  27. Wu RR, Zhao JP, Liu ZN, Zhai JG, Guo XF, Guo WB et al. Effects of typical and atypical antipsychotics on glucose-insulin homeostasis and lipid metabolism in first-episode schizophrenia. Psychopharmacology (Berl) 2006; 186: 572–578.

    Article  CAS  Google Scholar 

  28. Davey KJ, O'Mahony SM, Schellekens H, O'Sullivan O, Bienenstock J, Cotter PD et al. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 2012; 221: 155–169.

    Article  CAS  Google Scholar 

  29. Ryu S, Oh S, Cho EY, Nam HJ, Yoo JH, Park T et al. Interaction between genetic variants of DLGAP3 and SLC1A1 affecting the risk of atypical antipsychotics-induced obsessive-compulsive symptoms. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 949–959.

    Article  PubMed  Google Scholar 

  30. Zhang C, Li ZZ, Shao Y, Xie B, Du YS, Fang YR et al. Association study of tryptophan hydroxylase-2 gene in schizophrenia and its clinical features in Chinese Han population. J Mol Neurosci 2011; 43: 406–411.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou H, Guo ZR, Yu LG, Hu XS, Xu BH, Liu HB et al. Evidence on the applicability of the ATPIII, IDF and CDS metabolic syndrome diagnostic criteria to identify CVD and T2DM in the Chinese population from a 6.3-year cohort study in mid-eastern China. Diabetes Res Clin Pract 2010; 90: 319–325.

    Article  PubMed  Google Scholar 

  32. Bao YQ, Lu JX, Wang C, Yang M, Li HT, Zhang XY et al. Optimal waist circumference cutoffs for abdominal obesity in Chinese. Atherosclerosis 2008; 201: 378–384.

    Article  CAS  PubMed  Google Scholar 

  33. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 2011; 43: 1232–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oktenli C, Ozgurtas T, Dede M, Sanisoglu YS, Yenen MC, Yesilova Z et al. Metformin decreases circulating acylation-stimulating protein levels in polycystic ovary syndrome. Gynecol Endocrinol 2007; 23: 710–715.

    Article  CAS  PubMed  Google Scholar 

  35. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al. Diagnosis and management of the metabolic syndrome - an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 2735–2752.

    Article  Google Scholar 

  36. Zhang C, Wang Z, Hong W, Wu Z, Peng D, Fang Y . ZNF804A genetic variation confers risk to bipolar disorder. Mol Neurobiol 2015; doi:doi:10.1007/s12035-015-9193-3.

    Article  PubMed  Google Scholar 

  37. Miyagawa H, Yamai M, Sakaguchi D, Kiyohara C, Tsukamoto H, Kimoto Y et al. Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. Rheumatology 2008; 47: 158–164.

    Article  CAS  PubMed  Google Scholar 

  38. Yu QQ, Yao Y, Zhu J, Bao X, Xie TH, Sun C et al. Nonsynonymous single nucleotide polymorphisms in the complement component 3 gene are associated with risk of age-related macular degeneration: a meta-analysis. Gene 2015; 561: 249–255.

    Article  CAS  Google Scholar 

  39. Phillips CM, Goumidi L, Bertrais S, Ferguson JF, Field MR, Kelly ED et al. Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome. Am J Clin Nutr 2009; 90: 1665–1673.

    Article  CAS  PubMed  Google Scholar 

  40. Rhodes B, Hunnangkul S, Morris DL, Hsaio LC, Graham DSC, Nitsch D et al. The heritability and genetics of complement C3 expression in UK SLE families. Genes Immun 2009; 10: 525–530.

    Article  CAS  PubMed  Google Scholar 

  41. Shi YY, He L . SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005; 15: 97–98.

    Article  CAS  PubMed  Google Scholar 

  42. Keen JC, Moore HM . The Genotype-Tissue Expression (GTEx) Project: linking clinical data with molecular analysis to advance personalized medicine. J Pers Med 2015; 5: 22–29.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Akobeng AK . Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 2007; 96: 644–647.

    Article  PubMed  Google Scholar 

  44. Janssens AC, Pardo MC, Steyerberg EW, van Duijn CM . Revisiting the clinical validity of multiplex genetic testing in complex diseases. Am J Hum Genet 2004; 74: 585–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang L, Chen JH, Liu DT, Yu SY, Cong EZ, Li Y et al. Association between SREBF2 gene polymorphisms and metabolic syndrome in clozapine-treated patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56: 136–141.

    Article  CAS  PubMed  Google Scholar 

  46. Dong X, Liao Y, Chen K, Fang Y, Li W, Chen J et al. Elevated red blood cell distribution width in benign prostatic hyperplasia patients with metabolic syndrome. Int J Clin Exp Med 2015; 8: 1213–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nadar SK . Lip GYH. New insights into complement C3 and inflammation in hypertension. J Hum Hypertens 2007; 21: 261–263.

    Article  CAS  PubMed  Google Scholar 

  48. Hertle E, Stehouwer CD, van Greevenbroek MM . The complement system in human cardiometabolic disease. Mol Immunol 2014; 61: 135–148.

    Article  CAS  PubMed  Google Scholar 

  49. Qin X, Gao B . The complement system in liver diseases. Cell Mol Immunol 2006; 3: 333–340.

    CAS  PubMed  Google Scholar 

  50. Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B . The role of complement factor C3 in lipid metabolism. Mol Immunol 2015; 67: 101–107.

    Article  CAS  PubMed  Google Scholar 

  51. Pritchard MT, McMullen MR, Stavitsky AB, Cohen JI, Lin F, Medof ME et al. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 2007; 132: 1117–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Backhed F . Changes in intestinal microflora in obesity: cause or consequence? J Pediatr Gastroenterol Nutr 2009; 48: S56–S57.

    Article  PubMed  Google Scholar 

  53. Tam CS, Clement K, Baur LA, Tordjman J . Obesity and low-grade inflammation: a paediatric perspective. Obes Rev 2010; 11: 118–126.

    Article  CAS  PubMed  Google Scholar 

  54. Engstrom G, Hedblad B, Janzon L, Lindgarde F . Weight gain in relation to plasma levels of complement factor 3: results from a population-based cohort study. Diabetologia 2005; 48: 2525–2531.

    Article  CAS  PubMed  Google Scholar 

  55. Murray I, Havel PJ, Sniderman AD, Cianflone K . Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology 2000; 141: 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  56. Deltas C, Gale D, Cook T, Voskarides K, Athanasiou Y, Pierides A . C3 glomerulonephritis/CFHR5 nephropathy is an endemic disease in Cyprus: clinical and molecular findings in 21 families. Adv Exp Med Biol 2013; 735: 189–196.

    Article  CAS  PubMed  Google Scholar 

  57. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W . Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15: 693–704.

    Article  CAS  PubMed  Google Scholar 

  58. Sladek R, Hudson TJ . Elucidating cis- and trans-regulatory variation using genetical genomics. Trends Genet 2006; 22: 245–250.

    Article  CAS  PubMed  Google Scholar 

  59. Cunninghame Graham DS . Genome-wide association studies in systemic lupus erythematosus: a perspective. Arthritis Res Ther 2009; 11: 119.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to all participants. This work was supported by the National Natural Science Foundation of China (81000581 and 81471358), the Shanghai Science and Technology Commission (14411969000), the Emerging Advanced Technology Projects from Shanghai Hospital Development Center (SHDC12013116) and the Projects of Shanghai Shen Kang Municipality Hospital Appropriate Technology Development and Application (SHDC12012234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Zhang or L Song.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, Y., Cai, J. et al. Complement 3 and metabolic syndrome induced by clozapine: a cross-sectional study and retrospective cohort analysis. Pharmacogenomics J 17, 92–97 (2017). https://doi.org/10.1038/tpj.2015.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.68

This article is cited by

Search

Quick links