Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic modifiers of response to glucose–insulin–potassium (GIK) infusion in acute coronary syndromes and associations with clinical outcomes in the IMMEDIATE trial

Abstract

Modifiers of response to glucose, insulin and potassium (GIK) infusion may affect clinical outcomes in acute coronary syndromes (ACS). In an Immediate Myocardial Metabolic Enhancement During Initial Assessment And Treatment In Emergency Care (IMMEDIATE) trial’s sub-study (n=318), we explored effects of 132 634 genetic variants on plasma glucose and potassium response to 12-h GIK infusion. Associations between metabolite-associated variants and infarct size (n=84) were assessed. The ‘G’ allele of rs12641551, near ACSL1, as well as the ‘A’ allele of XPO4 rs2585897 were associated with a differential glucose response (P for 2 degrees of freedom test, P2df4.75 × 10-7) and infarct size with GIK (P2df<0.05). Variants within or near TAS1R3, LCA5, DNAH5, PTPRG, MAGI1, PTCSC3, STRADA, AKAP12, ARFGEF2, ADCYAP1, SETX, NDRG4 and ABCB11 modified glucose response, and near CSF1/AHCYL1 potassium response (P2df4.26 × 10−7), but not outcomes. Gene variants may modify glucose and potassium response to GIK infusion, contributing to cardiovascular outcomes in ACS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Vanoverschelde JL, Janier MF, Bakke JE, Marshall DR, Bergmann SR . Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am J Physiol 1994; 267: H1785–H1794.

    CAS  PubMed  Google Scholar 

  2. Apstein CS, Gravino FN, Haudenschild CC . Determinants of a protective effect of glucose and insulin on the ischemic myocardium. Effects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia and reperfusion. Circ Res 1983; 52: 515–526.

    Article  CAS  Google Scholar 

  3. Cave AC, Ingwall JS, Friedrich J, Liao R, Saupe KW, Apstein CS et al. Atp synthesis during low-flow ischemia: Influence of increased glycolytic substrate. Circulation 2000; 101: 2090–2096.

    Article  CAS  Google Scholar 

  4. Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS . Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991; 68: 466–481.

    Article  CAS  Google Scholar 

  5. Selker HP, Raitt MH, Schmid CH, Laks MM, Beshansky JR, Griffith JL et al. Time-dependent predictors of primary cardiac arrest in patients with acute myocardial infarction. Am J Cardiol 2003; 91: 280–286.

    Article  Google Scholar 

  6. Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D'Agostino RB et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the immediate randomized controlled trial. JAMA 2012; 307: 1925–1933.

    Article  CAS  Google Scholar 

  7. Wahab NN, Cowden EA, Pearce NJ, Gardner MJ, Merry H, Cox JL . Is blood glucose an independent predictor of mortality in acute myocardial infarction in the thrombolytic era? J Am Coll Cardiol 2002; 40: 1748–1754.

    Article  CAS  Google Scholar 

  8. Chutkow WA, Samuel V, Hansen PA, Pu J, Valdivia CR, Makielski JC et al. Disruption of sur2-containing k(atp) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 2001; 98: 11760–11764.

    Article  CAS  Google Scholar 

  9. Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H et al. The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism 2014; 63: 127–136.

    Article  CAS  Google Scholar 

  10. Ranasinghe AM, McCabe CJ, Quinn DW, James SR, Pagano D, Franklyn JA et al. How does glucose insulin potassium improve hemodynamic performance? Evidence for altered expression of beta-adrenoreceptor and calcium handling genes. Circulation 2006; 114: I239–I244.

    PubMed  Google Scholar 

  11. Ellis KL, Zhou Y, Beshansky JR, Ainehsazan E, Yang Y, Selker HP et al. Genetic variation at glucose and insulin trait loci and response to glucose-insulin-potassium (gik) therapy: the immediate trial. Pharmacogenomics J 2014; 15: 55–62.

    Article  Google Scholar 

  12. Selker HP, Beshansky JR, Griffith JL, D'Agostino RB, Massaro JM, Udelson JE et al. Study design for the immediate myocardial metabolic enhancement during initial assessment and treatment in emergency care (immediate) trial: a double-blind randomized controlled trial of intravenous glucose, insulin, and potassium for acute coronary syndromes in emergency medical services. Am Heart J 2012; 163: 315–322.

    Article  CAS  Google Scholar 

  13. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012; 8: e1002793.

    Article  CAS  Google Scholar 

  14. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD et al. Best practices and joint calling of the humanexome beadchip: The charge consortium. PLoS ONE 2013; 8: e68095.

    Article  CAS  Google Scholar 

  15. Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y et al. Meta-analysis of gene-environment interaction: Joint estimation of snp and snp x environment regression coefficients. Genet Epidemiol 2011; 35: 11–18.

    Article  Google Scholar 

  16. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  17. Selker HP, Udelson JE, Massaro JM, Ruthazer R, D'Agostino RB, Griffith JL et al. One-year outcomes of out-of-hospital administration of intravenous glucose, insulin, and potassium (gik) in patients with suspected acute coronary syndromes (from the immediate [immediate myocardial metabolic enhancement during initial assessment and treatment in emergency care] trial). Am J Cardiol 2014; 113: 1599–1605.

    Article  Google Scholar 

  18. Grossman AN, Opie LH, Beshansky JR, Ingwall JS, Rackley CE, Selker HP . Glucose-insulin-potassium revived: Current status in acute coronary syndromes and the energy-depleted heart. Circulation 2013; 127: 1040–1048.

    Article  Google Scholar 

  19. Ellis JM, Mentock SM, Depetrillo MA, Koves TR, Sen S, Watkins SM et al. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol Cell Biol 2011; 31: 1252–1262.

    Article  CAS  Google Scholar 

  20. Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q et al. Single-nucleotide polymorphisms inside microrna target sites influence the susceptibility to type 2 diabetes. J Hum Genet 2013; 58: 135–141.

    Article  CAS  Google Scholar 

  21. Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM et al. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the acsl1 gene and metabolic syndrome. J Lipid Res 2010; 51: 1793–1800.

    Article  CAS  Google Scholar 

  22. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ et al. Genomic predictors of the maximal o(2) uptake response to standardized exercise training programs. J Appl Physiol (1985) 2011; 110: 1160–1170.

    Article  CAS  Google Scholar 

  23. Johnson CO, Lemaitre RN, Fahrenbruch CE, Hesselson S, Sotoodehnia N, McKnight B et al. Common variation in fatty acid genes and resuscitation from sudden cardiac arrest. Circ Cardiovasc Genet 2012; 5: 422–429.

    Article  CAS  Google Scholar 

  24. Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E et al. Exportin 4: A mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 2000; 19: 4362–4371.

    Article  CAS  Google Scholar 

  25. Luchessi AD, Cambiaghi TD, Hirabara SM, Lambertucci RH, Silveira LR, Baptista IL et al. Involvement of eukaryotic translation initiation factor 5a (eif5a) in skeletal muscle stem cell differentiation. J Cell Physiol 2009; 218: 480–489.

    Article  CAS  Google Scholar 

  26. Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK et al. The unique hypusine modification of eif5a promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010; 120: 2156–2170.

    Article  CAS  Google Scholar 

  27. Hwang HH, Moon PG, Lee JE, Kim JG, Lee W, Ryu SH et al. Identification of the target proteins of rosiglitazone in 3t3-l1 adipocytes through proteomic analysis of cytosolic and secreted proteins. Mol Cells 2011; 31: 239–246.

    Article  CAS  Google Scholar 

  28. Gu HF . Genetic variation screening and association studies of the adenylate cyclase activating polypeptide 1 (adcyap1) gene in patients with type 2 diabetes. Hum Mutat 2002; 19: 572–573.

    Article  Google Scholar 

  29. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 2007; 316: 1341–1345.

    Article  CAS  Google Scholar 

  30. Marroni F, Pfeufer A, Aulchenko YS, Franklin CS, Isaacs A, Pichler I et al. A genome-wide association scan of rr and qt interval duration in 3 european genetically isolated populations: The eurospan project. Circ Cardiovasc Genet 2009; 2: 322–328.

    Article  CAS  Google Scholar 

  31. Vangipurapu J, Stancakova A, Pihlajamaki J, Kuulasmaa TM, Kuulasmaa T, Paananen J et al. Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic finnish men. Diabetologia 2011; 54: 563–571.

    Article  CAS  Google Scholar 

  32. Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD et al. Variations in the g6pc2/abcb11 genomic region are associated with fasting glucose levels. J Clin Invest 2008; 118: 2620–2628.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takeuchi F, Katsuya T, Chakrewarthy S, Yamamoto K, Fujioka A, Serizawa M et al. Common variants at the gck, gckr, g6pc2-abcb11 and mtnr1b loci are associated with fasting glucose in two asian populations. Diabetologia 2010; 53: 299–308.

    Article  CAS  Google Scholar 

  34. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J et al. Common variants at 10 genomic loci influence hemoglobin a(1)(c) levels via glycemic and nonglycemic pathways. Diabetes 2010; 59: 3229–3239.

    Article  CAS  Google Scholar 

  35. Qu X, Jia H, Garrity DM, Tompkins K, Batts L, Appel B et al. Ndrg4 is required for normal myocyte proliferation during early cardiac development in zebrafish. Dev Biol 2008; 317: 486–496.

    Article  CAS  Google Scholar 

  36. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C et al. Common variants at ten loci modulate the qt interval duration in the qtscd study. Nat Genet 2009; 41: 407–414.

    Article  CAS  Google Scholar 

  37. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K et al. Common variants at ten loci influence qt interval duration in the qtgen study. Nat Genet 2009; 41: 399–406.

    Article  CAS  Google Scholar 

  38. Hamilton JA, Vairo G, Lingelbach SR . Activation and proliferation signals in murine macrophages: Stimulation of glucose uptake by hemopoietic growth factors and other agents. J Cell Physiol 1988; 134: 405–412.

    Article  CAS  Google Scholar 

  39. Wieland SJ, Chou RH, Gong QH . Macrophage-colony-stimulating factor (csf-1) modulates a differentiation-specific inward-rectifying potassium current in human leukemic (hl-60) cells. J Cell Physiol 1990; 142: 643–651.

    Article  CAS  Google Scholar 

  40. Cai BZ, Gong DM, Liu Y, Pan ZW, Xu CQ, Bai YL et al. Homocysteine inhibits potassium channels in human atrial myocytes. Clin Exp Pharmacol Physiol 2007; 34: 851–855.

    Article  CAS  Google Scholar 

  41. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK et alA Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies. Accessed [March 2014].

  42. Gibbons RJ . Tc-99m spect sestamibi for the measurement of infarct size. J Cardiovasc Pharmacol Ther 2011; 16: 321–331.

    Article  Google Scholar 

Download references

Acknowledgements

The Genetic Ancillary Study was funded by the National Institutes of Health (NIH) grant from National Heart, Lung and Blood Institute (NHLBI; R01HL090997). This work was also supported by National Center for Research Resources Grant Number UL1RR025752, now the National Center for Advancing Translational Sciences, NIH Grant Number UL1 TR000073. The IMMEDIATE trial was funded by the NIH cooperative agreement from NHLBI (U01HL077821, U01HL077823 and U01HL077826). Clinical Trial Registration: The IMMEDIATE trial is registered at www.ClinicalTrials.gov (NCT00091507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Peter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, K., Zhou, Y., Beshansky, J. et al. Genetic modifiers of response to glucose–insulin–potassium (GIK) infusion in acute coronary syndromes and associations with clinical outcomes in the IMMEDIATE trial. Pharmacogenomics J 15, 488–495 (2015). https://doi.org/10.1038/tpj.2015.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.10

This article is cited by

Search

Quick links