Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variations in the VEGF pathway as prognostic factors in metastatic colorectal cancer patients treated with oxaliplatin-based chemotherapy

Abstract

Angiogenesis is a significant biological mechanism in the progression and metastasis of solid tumors. Vascular endothelial growth factor (VEGF), its receptors and signaling effectors have a central role in tumor-induced angiogenesis. Genetic variation in the VEGF pathway may impact on tumor angiogenesis and, hence, on clinical cancer outcomes. This study evaluates the influence of common genetic variations within the VEGF pathway in the clinical outcomes of 172 metastatic colorectal cancer (mCRC) patients treated with first-line oxaliplatin/5-fluorouracil chemotherapy. A total of 27 single-nucleotide polymorphisms (SNPs) in 16 genes in the VEGF-dependent angionenesis process were genotyped using a dynamic array on the BioMark™ system. After assessing the KRAS mutational status, we found that four SNPs located in three genes (KISS1, KRAS and VEGFR2) were associated with progression-free survival. Five SNPs in three genes (ITGAV, KRAS and VEGFR2) correlated with overall survival. The gene–gene interactions identified in the survival tree analysis support the importance of VEGFR2 rs2071559 and KISS1 rs71745629 in modulating these outcomes. This study provides evidence that functional germline polymorphisms in the VEGF pathway may help to predict outcome in mCRC patients who undergo oxaliplatin/5-fluorouracil chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  Google Scholar 

  2. de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000; 18: 2938–2947.

    Article  CAS  Google Scholar 

  3. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000; 355: 1041–1047.

    Article  CAS  Google Scholar 

  4. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360: 1408–1417.

    Article  CAS  Google Scholar 

  5. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010; 28: 4697–4705.

    Article  CAS  Google Scholar 

  6. Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008; 26: 2013–2019.

    Article  CAS  Google Scholar 

  7. Folkman J, Shing Y . Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  8. Carmeliet P . Angiogenesis in health and disease. Nat Med 2003; 9: 653–660.

    Article  CAS  Google Scholar 

  9. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  10. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L . VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 2006; 7: 359–371.

    Article  CAS  Google Scholar 

  11. Hicklin DJ, Ellis LM . Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23: 1011–1027.

    Article  CAS  Google Scholar 

  12. Cho SG, Yi Z, Pang X, Yi T, Wang Y, Luo J, et al. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res 2009; 69: 7062–7070.

    Article  CAS  Google Scholar 

  13. Beck BH, Welch DR . The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 2010; 46: 1283–1289.

    Article  CAS  Google Scholar 

  14. Kohne CH, Cunningham D, Di Costanzo F, Glimelius B, Blijham G, Aranda E, et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3825 patients. Ann Oncol 2002; 13: 308–317.

    Article  CAS  Google Scholar 

  15. Pare-Brunet L, Glubb D, Evans P, Berenguer-Llergo A, Etheridge AS, Skol AD, et al. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway. Hum Mutat 2014; 35: 227–235.

    Article  CAS  Google Scholar 

  16. Gerger A, El-Khoueiry A, Zhang W, Yang D, Singh H, Bohanes P, et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17: 5783–5792.

    Article  CAS  Google Scholar 

  17. Sebio A, Pare L, Paez D, Salazar J, Gonzalez A, Sala N, et al. The LCS6 polymorphism in the binding site of let-7 microRNA to the KRAS 3'-untranslated region: its role in the efficacy of anti-EGFR-based therapy in metastatic colorectal cancer patients. Pharmacogenet Genom 2013; 23: 142–147.

    Article  CAS  Google Scholar 

  18. Glubb DM, Cerri E, Giese A, Zhang W, Mirza O, Thompson EE, et al. Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin Cancer Res 2011; 17: 5257–5267.

    Article  CAS  Google Scholar 

  19. Dong G, Guo X, Fu X, Wan S, Zhou F, Myers RE, et al. Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci 2012; 103: 561–568.

    Article  CAS  Google Scholar 

  20. Smith AV . Manipulating HapMap Data Using HaploView. CSH Protoc 2008; 2008: 63–71.

    Google Scholar 

  21. Owzar K, Li Z, Cox N, Jung S-H . Power and sample size calculations for SNP association studies with censored time-to-event outcomes. Genet Epidemiol 2012; 36: 538–548.

    Article  Google Scholar 

  22. Akaike H . A new look at the statistical model identification. IEEE Trans Automat Contr AC-19 1974; 19: 716–723.

    Article  Google Scholar 

  23. Dudbridge F, Gusnanto A, Koeleman BP . Detecting multiple associations in genome-wide studies. Hum Genom 2006; 2: 310–317.

    Article  CAS  Google Scholar 

  24. Benjamini YaH Y . Controlling the false discovery rate: a practical and powerful approach to multipletesting. J R Statist Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  25. Benjamini YaY D . The control of the false discovery rate in multiple hypothesis testing under dependency. Ann Stat 2001; 29: 1165–1188.

    Article  Google Scholar 

  26. Hothorn TKHK, Zeileis A . Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 2006; 15: 651–674.

    Article  Google Scholar 

  27. Loupakis F, Ruzzo A, Salvatore L, Cremolini C, Masi G, Frumento P, et al. Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer. BMC Cancer 2011; 11: 247.

    Article  CAS  Google Scholar 

  28. Loupakis F, Cremolini C, Yang D, Salvatore L, Zhang W, Wakatsuki T, et al. Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. PLoS One 2013; 8: e66774.

    Article  CAS  Google Scholar 

  29. Hansen TF, Garm Spindler KL, Andersen RF, Lindebjerg J, Brandslund I, Jakobsen A . The predictive value of genetic variations in the vascular endothelial growth factor A gene in metastatic colorectal cancer. Pharmacogenom J 2011; 11: 53–60.

    Article  CAS  Google Scholar 

  30. Eng L, Azad AK, Habbous S, Pang V, Xu W, Maitland-van der Zee AH, et al. Vascular endothelial growth factor pathway polymorphisms as prognostic and pharmacogenetic factors in cancer: a systematic review and meta-analysis. Clin Cancer Res 2012; 18: 4526–4537.

    Article  CAS  Google Scholar 

  31. KISS1 KiSS-1 metastasis-suppressor [Homo sapiens (human)]. http://www.ncbi.nlm.nih.gov/gene/3814 accessed on April 2014.

Download references

Acknowledgements

This work was supported by the Instituto de Salud Carlos III (FIS/1101711, CM11/00102 to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Páez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paré-Brunet, L., Sebio, A., Salazar, J. et al. Genetic variations in the VEGF pathway as prognostic factors in metastatic colorectal cancer patients treated with oxaliplatin-based chemotherapy. Pharmacogenomics J 15, 397–404 (2015). https://doi.org/10.1038/tpj.2015.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.1

This article is cited by

Search

Quick links