Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies

Abstract

The highly variable pharmacokinetics of tacrolimus can hamper the optimal management of kidney transplant patients. This variability has been attributed to the genetic polymorphism of CYP3A5 6986A>G, but the evidence is not clear. We conducted a meta-analysis of studies evaluating the effect of CYP3A5 polymorphism on kidney transplant recipients with tacrolimus plasma concentration divided by daily dose per body weight (C/D) and clinical outcomes. We searched in MEDLINE and EMBASE. We found evidence suggesting a significantly lower C/D among CYP3A5*1 allele carriers compared with carriers of the CYP3A5*3/*3 genotype at weeks 1 and 2, and months 1, 3, 6 and 12. We demonstrated that the expresser genotype might have higher risk of acute rejection and chronic nephrotoxicity. In conclusion, CYP3A5 6986A>G polymorphism can affect tacrolimus pharmacokinetics and the incidence of acute rejection and chronic nephrotoxicity on kidney transplant recipients. Patients at high risk of developing tacrolimus-related complications could be detected even before their kidney transplant.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC . Tacrolimus versus cyclosporine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 2005; 19: CD003961.

    Google Scholar 

  2. Bowman LJ, Brennan DC . The role of tacrolimus in renal transplantation. Expert Opin Pharmacother 2008; 9: 635–643.

    Article  CAS  PubMed  Google Scholar 

  3. Barraclough KA, Isbel NM, Johnson DW, Campbell SB, Staatz CE . Once- versus twice-daily tacrolimus: are the formulations truly equivalent? Drugs 2011; 71: 1561–1577.

    Article  CAS  PubMed  Google Scholar 

  4. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34: 836–847.

    Article  CAS  PubMed  Google Scholar 

  5. Choi JH, Lee YJ, Jang SB, Lee JE, Kim KH, Park K . Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol 2007; 64: 185–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  PubMed  Google Scholar 

  7. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  8. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  Google Scholar 

  9. Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA . The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet Genomics 2012; 22: 642–645.

    Article  CAS  PubMed  Google Scholar 

  10. Gijsen VM, Madadi P, Dube MP, Hesselink DA, Koren G, de Wildt SN . Tacrolimus-induced nephrotoxicity and genetic variability: a review. Ann Transplant 2012; 17: 111–121.

    PubMed  Google Scholar 

  11. Gotzsche PC . Why we need a broad perspective on meta-analysis. It may be crucially important for patients. BMJ 2000; 321: 585–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hozo SP, Djulbegovic B, Hozo I . Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Altman DG, Bland JM . Interaction revisited: the difference between two estimates. BMJ 2003; 326: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Op den Buijsch RA, Christiaans MH, Stolk LM, de Vries JE, Cheung CY, Undre NA et al. Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol 2007; 21: 427–435.

    Article  CAS  PubMed  Google Scholar 

  16. De Wildt SN, Van Schaik RHN, Soldin OP, Soldin SJ, Brojeni PY, Van Der Heiden IP et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol 2011; 67: 1231–1241.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Macphee IA, Fredericks S, Mohamed M, Moreton M, Carter ND, Johnston A et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation 2005; 79: 499–502.

    Article  CAS  PubMed  Google Scholar 

  18. Quteineh L, Verstuyft C, Furlan V, Durrbach A, Letierce A, Ferlicot S et al. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin Pharmacol Toxicol 2008; 103: 546–552.

    Article  CAS  PubMed  Google Scholar 

  19. Tavira B, Coto E, Diaz-Corte C, Ortega F, Arias M, Torres A et al. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin Chem Lab Med 2011; 49: 825–833.

    Article  CAS  PubMed  Google Scholar 

  20. Hirano K, Naito T, Mino Y, Takayama T, Ozono S, Kawakami J . Impact of CYP3A5 genetic polymorphism on cross-reactivity in tacrolimus chemiluminescent immunoassay in kidney transplant recipients. Clin Chim Acta 2012; 414: 120–124.

    Article  CAS  PubMed  Google Scholar 

  21. Miura M, Satoh S, Kagaya H, Saito M, Inoue T, Tsuchiya N et al. No impact of age on dose-adjusted pharmacokinetics of tacrolimus, mycophenolic acid and prednisolone 1 month after renal transplantation. Eur J Clin Pharmacol 2009; 65: 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  22. Mourad M, Wallemacq P, De Meyer M, Brandt D, Van Kerkhove V, Malaise J et al. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clin Chem Lab Med 2006; 44: 1192–1198.

    Article  CAS  PubMed  Google Scholar 

  23. Ferraresso M, Tirelli A, Ghio L, Grillo P, Martina V, Torresani E et al. Influence of the Cyp3a5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant 2007; 11: 296–300.

    Article  CAS  PubMed  Google Scholar 

  24. Satoh S, Saito M, Inoue T, Kagaya H, Miura M, Inoue K et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. Eur J Clin Pharmacol 2009; 65: 473–481.

    Article  CAS  PubMed  Google Scholar 

  25. Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76: 1233–1235.

    Article  CAS  Google Scholar 

  26. Zhang J, Zhang X, Liu L, Tong W . Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc 2010; 42: 3459–3464.

    Article  CAS  PubMed  Google Scholar 

  27. Turolo S, Tirelli AS, Ferraresso M, Ghio L, Belingheri M, Groppali E et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol Rep 2010; 62: 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  28. Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y . CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82: 711–725.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Song M, Guan D, Bi S, Meng J, Li Q et al. Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant Proc 2005; 37: 178–181.

    Article  CAS  PubMed  Google Scholar 

  30. Cho J-, Yoon Y-, Park J-, Song E-, Choi J-, Yoon S- et al. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant Proc 2012; 44: 109–114.

    Article  CAS  PubMed  Google Scholar 

  31. Loh PT, Lou HX, Zhao Y, Chin YM, Vathsala A . Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplant Proc 2008; 40: 1690–1695.

    Article  CAS  PubMed  Google Scholar 

  32. Li JL, Wang XD, Chen SY, Liu LS, Fu Q, Chen X et al. Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective. Pharmacogenomics J 2011; 11: 300–306.

    Article  CAS  PubMed  Google Scholar 

  33. Ferraresso M, Turolo S, Ghio L, Tirelli AS, Belingheri M, Villa R et al. Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors. Clin Exp Hypertens 2011; 33: 359–365.

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Li C, Zheng L, Zhang Y, Jiang H, Si-tu B et al. Tacrolimus dosing in Chinese renal transplant recipients: a population-based pharmacogenetics study. Eur J Clin Pharmacol 2011; 67: 787–795.

    Article  CAS  PubMed  Google Scholar 

  35. Glowacki F, Lionet A, Buob D, Labalette M, Allorge D, Provot F et al. CYP3A5 and ABCB1 polymorphisms in donor and recipient: impact on Tacrolimus dose requirements and clinical outcome after renal transplantation. Nephrol Dial Transplant 2011; 26: 3046–3050.

    Article  CAS  PubMed  Google Scholar 

  36. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74: 245–254.

    Article  CAS  PubMed  Google Scholar 

  37. Tirelli S, Ferraresso M, Ghio L, Meregalli E, Martina V, Belingheri M et al. The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients. Med Sci Monit 2008; 14: CR251–CR254.

    CAS  PubMed  Google Scholar 

  38. Chen JS, Li LS, Cheng DR, Ji SM, Sun QQ, Cheng Z et al. Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus. Transplant Proc 2009; 41: 1557–1561.

    Article  CAS  PubMed  Google Scholar 

  39. Ferraris JR, Argibay PF, Costa L, Jimenez G, Coccia PA, Ghezzi LF et al. Influence of CYP3A5 polymorphism on tacrolimus maintenance doses and serum levels after renal transplantation: age dependency and pharmacological interaction with steroids. Pediatr Transplant 2011; 15: 525–532.

    Article  CAS  PubMed  Google Scholar 

  40. Gervasini G, Garcia M, Macias RM, Cubero JJ, Caravaca F, Benitez J . Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int 2012; 25: 471–480.

    Article  CAS  PubMed  Google Scholar 

  41. Kim IW, Moon YJ, Ji E, Kim KI, Han N, Kim SJ et al. Clinical and genetic factors affecting tacrolimus trough levels and drug-related outcomes in Korean kidney transplant recipients. Eur J Clin Pharmacol 2012; 68: 657–669.

    Article  CAS  PubMed  Google Scholar 

  42. Ro H, Min SI, Yang J, Moon KC, Kim YS, Kim SJ et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit 2012; 34: 680–685.

    Article  CAS  PubMed  Google Scholar 

  43. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Vizzini G, Salis P et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med 2011; 28: 1093–1102.

    CAS  PubMed  Google Scholar 

  44. Jun KR, Lee W, Jang MS, Chun S, Song G-, Park KT et al. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. Transplantation 2009; 87: 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Liu ZH, Zheng JM, Chen ZH, Tang Z, Chen JS et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transplant 2005; 19: 638–643.

    Article  PubMed  Google Scholar 

  46. Singh R, Srivastava A, Kapoor R, Sharma R K, D Mittal R . Impact of CYP3A5 and CYP3A4 gene polymorphisms on dose requirement of calcineurin inhibitors, cyclosporine and tacrolimus, in renal allograft recipients of North India. Naunyn Schmiedebergs Arch Pharmacol 2009; 380: 169–177.

    Article  CAS  PubMed  Google Scholar 

  47. Min SI, Kim SY, Ahn SH, Min SK, Kim SH, Kim YS et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation 2010; 90: 1394–1400.

    Article  CAS  PubMed  Google Scholar 

  48. Galiana M, Herrero M, Bosó V, Bea S, Ros E, Sánchez-Plumed J et al. Pharmacogenetics of immunosuppressive drugs in renal transplantation. In: L Layron (ed) Renal Transplantation- Updates and Advances. InTech: Croatia, 2012, pp 143–162.

    Google Scholar 

  49. Chandel N, Aggarwal PK, Minz M, Sakhuja V, Kohli KK, Jha V . CYP3A5*1/*3 genotype influences the blood concentration of tacrolimus in response to metabolic inhibition by ketoconazole. Pharmacogenet Genomics 2009; 19: 458–463.

    Article  CAS  PubMed  Google Scholar 

  50. Kuypers DR, Naesens M, de Jonge H, Lerut E, Verbeke K, Vanrenterghem Y . Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther Drug Monit 2010; 32: 394–404.

    Article  CAS  PubMed  Google Scholar 

  51. Wang P, Mao Y, Razo J, Zhou X, Wong ST, Patel S et al. Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics 2010; 11: 1389–1402.

    Article  CAS  PubMed  Google Scholar 

  52. Roy JN, Barama A, Poirier C, Vinet B, Roger M . Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 2006; 16: 659–665.

    Article  CAS  PubMed  Google Scholar 

  53. Santoro A, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Struchiner CJ, Ojopi EB et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics 2011; 12: 1293–1303.

    Article  CAS  PubMed  Google Scholar 

  54. Hesselink DA, van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Zeier M et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics 2008; 18: 339–348.

    Article  CAS  PubMed  Google Scholar 

  55. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 2010; 87: 721–726.

    CAS  PubMed  Google Scholar 

  56. Tang HL, Ma LL, Xie HG, Zhang T, Hu YF . Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis. Pharmacogenet Genomics 2010; 20: 525–531.

    Article  CAS  PubMed  Google Scholar 

  57. Quaglia M, Terrazzino S, Boldorini R, Stratta P, Genazzani AA . Severe acute nephrotoxicity in a kidney transplant patient despite low tacrolimus levels: a possible interaction between donor and recipient genetic polymorphisms. J Clin Pharm Ther 2013; 4: 333–336.

    Article  Google Scholar 

  58. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005; 33: 884–887.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M José Herrero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, L., Neumann, I., Herrero, M. et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J 15, 38–48 (2015). https://doi.org/10.1038/tpj.2014.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.38

This article is cited by

Search

Quick links