Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetics of pemetrexed combination therapy in lung cancer: pathway analysis reveals novel toxicity associations

Abstract

Identification of polymorphisms that influence pemetrexed tolerability could lead to individualised treatment regimens and improve quality of life. Twenty-eight polymorphisms within eleven candidate genes were genotyped using the Illumina Human Exome v1.1 BeadChip and tested for their association with the clinical outcomes of non-small cell lung cancer and mesothelioma patients receiving pemetrexed/platinum doublet chemotherapy (n=136). GGH rs11545078 was associated with a reduced incidence of grade 3 toxicity within the first four cycles of therapy (odds ratio (OR) 0.25, P=0.018), as well as reduced grade 3 haematological toxicity (OR 0.13, P=0.048). DHFR rs1650697 conferred an increased risk of grade 3 toxicity (OR 2.14, P=0.034). Furthermore, FOLR3 rs61734430 was associated with an increased likelihood of disease progression at mid-treatment radiological evaluation (OR 4.05, P=0.023). Polymorphisms within SLC19A1 (rs3788189, rs1051298 and rs914232) were associated with overall survival. This study confirms previous pharmacogenetic associations and identifies novel markers of pemetrexed toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2008; 26: 3543–3551.

    Article  CAS  PubMed  Google Scholar 

  2. Green MR . Alimta (pemetrexed disodium): a multitargeted antifolate for the treatment of mesothelioma. Lung Cancer 2002; 38: S55–S57.

    Article  PubMed  Google Scholar 

  3. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2003; 21: 2636–2644.

    Article  CAS  Google Scholar 

  4. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 1992; 35: 4450–4454.

    Article  CAS  PubMed  Google Scholar 

  5. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer research 1997; 57: 1116–1123.

    CAS  PubMed  Google Scholar 

  6. Westerhof GR, Schornagel JH, Kathmann I, Jackman AL, Rosowsky A, Forsch RA et al. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 1995; 48: 459–471.

    CAS  PubMed  Google Scholar 

  7. Wang Y, Zhao R, Goldman ID . Decreased expression of the reduced folate carrier and folypolyglutamate synthetase is the basis for acquired resistance to the pemetrexed antifolate (LY231514) in an L1210 murine leukemia cell line. Biochem Pharmacol 2003; 65: 1163–1170.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao R, Zhang S, Hanscom M, Chattopadhyay S, Goldman ID . Loss of reduced folate carrier function and folate depletion result in enhanced pemetrexed inhibition of purine synthesis. Clin Cancer Res 2005; 11: 1294–1301.

    CAS  PubMed  Google Scholar 

  9. Adjei AA, Mandrekar SJ, Dy GK, Molina JR, Gandara DR, Ziegler KL et al. Phase II trial of pemetrexed plus bevacizumab for second-line therapy of patients with advanced non-small-cell lung cancer: NCCTG and SWOG study N0426. J Clin Oncol 2010; 28: 614–619.

    Article  CAS  PubMed  Google Scholar 

  10. Adjei AA, Salavaggione OE, Mandrekar SJ, Dy GK, Ziegler KL, Endo C et al. Correlation between polymorphisms of the reduced folate carrier gene (SLC19A1) and survival after pemetrexed-based therapy in non-small cell lung cancer: a North Central cancer treatment group-based exploratory study. J Thorac Oncol 2010; 5: 1346–1353.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li WJ, Jiang H, Fang XJ, Ye HL, Liu MH, Liu YW et al. Polymorphisms in thymidylate synthase and reduced folate carrier (SLC19A1) genes predict survival outcome in advanced non-small cell lung cancer patients treated with pemetrexed-based chemotherapy. Oncol Lett 2013; 5: 1165–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006; 127: 917–928.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao R, Qiu A, Tsai E, Jansen M, Akabas MH, Goldman ID . The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharmacol 2008; 74: 854–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chattopadhyay S, Wang Y, Zhao R, Goldman ID . Lack of impact of the loss of constitutive folate receptor alpha expression, achieved by RNA Interference, on the activity of the new generation antifolate pemetrexed in HeLa cells. Clin Cancer Res 2004; 10: 7986–7993.

    Article  CAS  PubMed  Google Scholar 

  15. Nutt JE, Razak AR, O'Toole K, Black F, Quinn AE, Calvert AH et al. The role of folate receptor alpha (FRalpha) in the response of malignant pleural mesothelioma to pemetrexed-containing chemotherapy. Br J Cancer 2010; 102: 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Habeck LL, Mendelsohn LG, Shih C, Taylor EC, Colman PD, Gossett LS et al. Substrate specificity of mammalian folylpolyglutamate synthetase for 5,10-dideazatetrahydrofolate analogs. Mol Pharmacol 1995; 48: 326–333.

    CAS  PubMed  Google Scholar 

  17. Touroutoglou N, Pazdur R . Thymidylate synthase inhibitors. Clin Cancer Res 1996; 2: 227–243.

    CAS  PubMed  Google Scholar 

  18. Rhee MS, Ryan TJ, Galivan J . Glutamyl hydrolase and the multitargeted antifolate LY231514. Cancer Chemothe Pharmacol 1999; 44: 427–432.

    Article  CAS  Google Scholar 

  19. Rusthoven JJ, Eisenhauer E, Butts C, Gregg R, Dancey J, Fisher B et al. Multitargeted antifolate LY231514 as first-line chemotherapy for patients with advanced non-small-cell lung cancer: A phase II study. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1999; 17: 1194.

    Article  CAS  PubMed  Google Scholar 

  20. Clarke SJ, Abratt R, Goedhals L, Boyer MJ, Millward MJ, Ackland SP . Phase II trial of pemetrexed disodium (ALIMTA, LY231514) in chemotherapy-naive patients with advanced non-small-cell lung cancer. Ann Oncol 2002; 13: 737–741.

    Article  CAS  PubMed  Google Scholar 

  21. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012; 92: 414–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldstein JI, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics 2012; 28: 2543–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patterson N, Price AL, Reich D . Population structure and eigenanalysis. PLoS Genet 2006; 2: e190.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiseo M, Giovannetti E, Tibaldi C, Camerini A, Di Costanzo F, Barbieri F et al. Pharmacogenetic study of patients with advanced non-small cell lung cancer (NSCLC) treated with second-line pemetrexed or pemetrexed-carboplatin. Lung Cancer 2012; 78: 92–99.

    Article  PubMed  Google Scholar 

  27. Chen JS, Chao Y, Bang YJ, Roca E, Chung HC, Palazzo F et al. A phase I/II and pharmacogenomic study of pemetrexed and cisplatin in patients with unresectable, advanced gastric carcinoma. Anticancer Drug 2010; 21: 777–784.

    Article  CAS  Google Scholar 

  28. Jung M, Lee CH, Park HS, Lee JH, Kang YA, Kim SK et al. Pharmacogenomic assessment of outcomes of pemetrexed-treated patients with adenocarcinoma of the lung. Yonsei Med J 2013; 54: 854–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng Q, Wu B, Kager L, Panetta JC, Zheng J, Pui CH et al. A substrate specific functional polymorphism of human gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells. Pharmacogenetics 2004; 14: 557–567.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Shakfa F, Dulucq S, Brukner I, Milacic I, Ansari M, Beaulieu P et al. DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin Cancer Res 2009; 15: 6931–6938.

    Article  CAS  PubMed  Google Scholar 

  31. Chattopadhyay S, Moran RG, Goldman ID . Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 2007; 6: 404–417.

    Article  CAS  PubMed  Google Scholar 

  32. Christoph DC, Asuncion BR, Hassan B, Tran C, Maltzman JD, O'Shannessy DJ et al. Significance of folate receptor alpha and thymidylate synthase protein expression in patients with non-small-cell lung cancer treated with pemetrexed. J Thorac Oncol 2013; 8: 19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen F, Ross JF, Wang X, Ratnam M . Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry 1994; 33: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the assistance given by Hamel Patel. We acknowledge the financial support from Guy’s and St Thomas’ Charity, the Purine Metabolic Patient Association (PUMPA) and from the UK Department of Health via the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. We also acknowledge support from the NIHR BRC for Mental Health at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, King’s College London. King’s College London is an Experimental Cancer Medicine Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Marinaki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrigan, A., Walker, J., Wickramasinghe, S. et al. Pharmacogenetics of pemetrexed combination therapy in lung cancer: pathway analysis reveals novel toxicity associations. Pharmacogenomics J 14, 411–417 (2014). https://doi.org/10.1038/tpj.2014.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.13

This article is cited by

Search

Quick links