Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients

Abstract

Levodopa is the most effective symptomatic therapy for Parkinson’s disease, but its chronic use could lead to chronic adverse outcomes, such as motor fluctuations, dyskinesia and visual hallucinations. HOMER1 is a protein with pivotal function in glutamate transmission, which has been related to the pathogenesis of these complications. This study investigates whether polymorphisms in the HOMER1 gene promoter region are associated with the occurrence of the chronic complications of levodopa therapy. A total of 205 patients with idiopathic Parkinson’s disease were investigated. Patients were genotyped for rs4704559, rs10942891 and rs4704560 by allelic discrimination with Taqman assays. The rs4704559 G allele was associated with a lower prevalence of dyskinesia (prevalence ratio (PR)=0.615, 95% confidence interval (CI) 0.426–0.887, P=0.009) and visual hallucinations (PR=0.515, 95% CI 0.295–0.899, P=0.020). Our data suggest that HOMER1 rs4704559 G allele has a protective role for the development of levodopa adverse effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Lau LML, Breteler MMB . Epidemiology of Parkinson’s disease. Lancet Neurology 2006; 5: 525–535.

    Article  Google Scholar 

  2. Fénelon G, Alves G . Epidemiology of psychosis in Parkinson’s disease. J Neurol Sci 2010; 289: 12–17.

    Article  Google Scholar 

  3. Ahlskog JE, Muenter MD . Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001; 16: 448–458.

    Article  CAS  Google Scholar 

  4. Nutt JG . Motor fluctuations and dyskinesia in Parkinson’s disease. Mov Disord 2001; 8: 101–108.

    CAS  Google Scholar 

  5. Hauser RA, McDermott MP, Messing S . Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 2006; 63: 1756–1760.

    Article  Google Scholar 

  6. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B . Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 2010; 9: 1106–1117.

    Article  CAS  Google Scholar 

  7. Forsaa EB, Larsen JP, Wentzel-Larsen T, Goetz CG, Stebbins GT, Aarsland D et al. A 12-year population-based study of psychosis in Parkinson disease. Arch Neurol 2010; 67: 996–1001.

    Article  Google Scholar 

  8. Linazasoro G . New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci 2005; 26: 391–397.

    Article  CAS  Google Scholar 

  9. Thomas U . Modulation of synaptic signalling complexes by Homer proteins. J Neurochem 2002; 81: 407–413.

    Article  CAS  Google Scholar 

  10. Luo P, Li X, Fei Z, Poon W . Scaffold protein Homer 1: implications for neurological diseases. Neurochem Int 2012; 61: 731–738.

    Article  CAS  Google Scholar 

  11. Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR . A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci 1998; 18: 5301–5310.

    Article  CAS  Google Scholar 

  12. Sgambato-Faure V, Buggia V, Gilbert F, Lévesque D, Benabid A-L, Berger F . Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol 2005; 64: 936–947.

    Article  CAS  Google Scholar 

  13. Yamada H, Kuroki T, Nakahara T, Hashimoto K, Tsutsumi T, Hirano M et al. The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Res 2007; 1131: 88–96.

    Article  CAS  Google Scholar 

  14. Henning J, Koczan D, Glass A, Karopka T, Pahnke J, Rolfs A et al. Deep brain stimulation in a rat model modulates TH, CaMKIIa and Homer1 gene expression. Eur J Neurosci 2007; 25: 239–250.

    Article  Google Scholar 

  15. Rieck M, Schumacher-Schuh AF, Altmann V, Francisconi CL, Fagundes PT, Monte TL et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics 2012; 13: 1701–1710.

    Article  CAS  Google Scholar 

  16. Schumacher-Schuh AF, Francisconi C, Altmann V, Monte TL, Callegari-Jacques SM, Rieder CR et al. Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Int J Neuropsychopharmacol 2013; 16: 1251–1258.

    Article  CAS  Google Scholar 

  17. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ . What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 1992; 42: 1142–1146.

    Article  CAS  Google Scholar 

  18. Martínez-Martín P, Gil-Nagel A, Gracia LM, Gómez JB, Martínez-Sarriés J, Bermejo F . Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov Disord 1994; 9: 76–83.

    Article  Google Scholar 

  19. Hoehn MM, Yahr MD . Parkinsonism: onset, progression and mortality. Neurology 1967; 17: 427–442.

    Article  CAS  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR . ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–198.

    Article  CAS  Google Scholar 

  21. Lahiri DK, Bye S, Nurnberger JI, Hodes ME, Crisp M . A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods 1992; 25: 193–205.

    Article  CAS  Google Scholar 

  22. De Luca V, Annesi G, De Marco EV, De Bartolomeis A, Nicoletti G, Pugliese P et al. HOMER1 promoter analysis in Parkinson’s disease: association study with psychotic symptoms. Neuropsychobiology 2009; 59: 239–245.

    Article  CAS  Google Scholar 

  23. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 89–98.

    Article  Google Scholar 

  24. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  25. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE . Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 2010; 25: 2649–2653.

    Article  Google Scholar 

  26. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol 2005; 62: 601–605.

    Article  Google Scholar 

  27. Katz KA . The (relative) risks of using odds ratios. Arch Dermatol 2006; 142: 761–764.

    Article  Google Scholar 

  28. Barros AJD, Hirakata VN . Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 2003; 3: 21.

    Article  Google Scholar 

  29. Goetz CG, Leurgans S, Pappert EJ, Raman R, Stemer AB . Prospective longitudinal assessment of hallucinations in Parkinson’s disease. Neurology 2001; 57: 2078–2082.

    Article  CAS  Google Scholar 

  30. Holroyd S, Currie L, Wooten GF . Prospective study of hallucinations and delusions in Parkinson’s disease. J Neurol Neurosurg Psychiatr 2001; 70: 734–738.

    Article  CAS  Google Scholar 

  31. Aarsland D, Larsen JP, Cummins JL, Laake K . Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999; 56: 595–601.

    Article  CAS  Google Scholar 

  32. Elahi B, Phielipp N, Chen R . N-Methyl-D-Aspartate antagonists in levodopa induced dyskinesia: a meta-analysis. Can J Neurol Sci 2012; 39: 465–472.

    Article  Google Scholar 

  33. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 2011; 134: 979–986.

    Article  Google Scholar 

  34. Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Tan E-K, Drozdzik M . The association of functional catechol-O-methyl transferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics 2008; 18: 815–821.

    Article  CAS  Google Scholar 

  35. Paus S, Gadow F, Knapp M, Klein C, Klockgether T, Wüllner U . Motor complications in patients form the German Competence Network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Mov Disord 2009; 24: 1080–1084.

    Article  Google Scholar 

  36. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AKC, Pereira R, Gusmão L, Amorim A et al. Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 2010; 31: 184–190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from ‘Financiadora de Estudos e Projetos’ (FINEP 01.08.01230.00), ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq) and ‘Fundo de Incentivo à Pesquisa (FIPE – HCPA). Source of grants: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Financiadora de Estudos e Projetos (FINEP, Brazil) and Fundo de Incentivo à Pesquisa (FIPE – HCPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Hutz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher-Schuh, A., Altmann, V., Rieck, M. et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenomics J 14, 289–294 (2014). https://doi.org/10.1038/tpj.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2013.37

Keywords

This article is cited by

Search

Quick links