Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The cyclin D1 (CCND1) rs9344 G>A polymorphism predicts clinical outcome in colon cancer patients treated with adjuvant 5-FU-based chemotherapy

Abstract

Recent evidence indicates a potential prognostic and predictive value for germline polymorphisms in genes involved in cell cycle control. We investigated the effect of cyclin D1 (CCND1) rs9344 G>A in stage II/III colon cancer patients and validated the findings in an independent study cohort. For evaluation and validation set, a total of 264 and 234 patients were included. Patients treated with 5-fluorouracil-based chemotherapy, carrying the CCND1 rs9344 A/A genotype had significantly decreased time-to-tumor recurrence (TTR) in univariate analysis and multivariate analysis (hazard ratio (HR) 2.47; 95% confidence interval (CI) 1.16–5.29; P=0.019). There was no significant association between CCND1 rs9344 G>A and TTR in patients with curative surgery alone. In the validation set, the A allele of CCND1 rs9344 G>A remained significantly associated with decreased TTR in univariate and multivariate analyses (HR 1.94; 95% CI 1.05–3.58; P=0.035). CCND1 rs9344 G>A may be a predictive and/or prognostic biomarker in stage II/III colon cancer patients, however, prospective trials are warranted to confirm our findings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Boyle P, Ferlay J . Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005; 16: 481–488.

    Article  CAS  PubMed  Google Scholar 

  3. Tejpar S, Bertagnolli M, Bosman F, Lenz HJ, Garraway L, Waldman F et al. Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into biomarker discovery. Oncologist 2010; 15: 390–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B et al. Colorectal cancer. Lancet 2010; 375: 1030–1047.

    Article  PubMed  Google Scholar 

  5. Gill S, Loprinzi CL, Sargent DJ, Thome SD, Alberts SR, Haller DG et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J Clin Oncol 2004; 22: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  6. Winder T, Lenz HJ . Molecular predictive and prognostic markers in colon cancer. Cancer Treat Rev 2010; 36: 550–556.

    Article  CAS  PubMed  Google Scholar 

  7. Le Voyer TE, Sigurdson ER, Hanlon AL, Mayer RJ, Macdonald JS, Catalano PJ et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 2003; 21: 2912–2919.

    Article  CAS  PubMed  Google Scholar 

  8. Sinicrope FA, Sargent DJ . Clinical implications of microsatellite instability in sporadic colon cancers. Curr Opin Oncol 2009; 21: 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coate L, Cuffe S, Horgan A, Hung RJ, Christiani D, Liu G . Germline genetic variation, cancer outcome, and pharmacogenetics. J Clin Oncol 2010; 28: 4029–4037.

    Article  CAS  PubMed  Google Scholar 

  10. Reed SI . The role of p34 kinases in the G1 to S-phase transition. Annu Rev Cell Biol 1992; 8: 529–561.

    Article  CAS  PubMed  Google Scholar 

  11. Diehl JA . Cycling to cancer with cyclin D1. Cancer Biol Ther 2002; 1: 226–231.

    Article  CAS  PubMed  Google Scholar 

  12. Sellers WR, Kaelin Jr WG . Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol 1997; 15: 3301–3312.

    Article  CAS  PubMed  Google Scholar 

  13. Pirkmaier A, Yuen K, Hendley J, O'Connell MJ, Germain D . Cyclin d1 overexpression sensitizes breast cancer cells to fenretinide. Clin Cancer Res 2003; 9: 1877–1884.

    CAS  PubMed  Google Scholar 

  14. Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA et al. Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol 2003; 21: 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  15. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J . Alternate splicing produces a novel cyclin D1 transcript. Oncogene 1995; 11: 1005–1011.

    CAS  PubMed  Google Scholar 

  16. Pagano M, Theodoras AM, Tam SW, Draetta GF . Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev 1994; 8: 1627–1639.

    Article  CAS  PubMed  Google Scholar 

  17. Gerger A, Renner W, Langsenlehner T, Hofmann G, Knechtel G, Szkandera J et al. Association of interleukin-10 gene variation with breast cancer prognosis. Breast Cancer Res Treat 2010; 119: 701–705.

    Article  CAS  PubMed  Google Scholar 

  18. Rogers S, Wells R, Rechsteiner M . Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234: 364–368.

    Article  CAS  PubMed  Google Scholar 

  19. Michalides R, van Veelen N, Hart A, Loftus B, Wientjens E, Balm A . Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res 1995; 55: 975–978.

    CAS  PubMed  Google Scholar 

  20. Lu C, Dong J, Ma H, Jin G, Hu Z, Peng Y et al. CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 2009; 116: 571–575.

    Article  CAS  PubMed  Google Scholar 

  21. Holley SL, Parkes G, Matthias C, Bockmuhl U, Jahnke V, Leder K et al. Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck. Am J Pathol 2001; 159: 1917–1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arber N, Gammon MD, Hibshoosh H, Britton JA, Zhang Y, Schonberg JB et al. Overexpression of cyclin D1 occurs in both squamous carcinomas and adenocarcinomas of the esophagus and in adenocarcinomas of the stomach. Hum Pathol 1999; 30: 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa T, Furihata M, Ohtsuki Y, Murakami H, Inoue A, Ogoshi S . Cyclin D1 overexpression related to retinoblastoma protein expression as a prognostic marker in human oesophageal squamous cell carcinoma. Br J Cancer 1998; 77: 92–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maeda K, Chung Y, Kang S, Ogawa M, Onoda N, Nishiguchi Y et al. Cyclin D1 overexpression and prognosis in colorectal adenocarcinoma. Oncology 1998; 55: 145–151.

    Article  PubMed  Google Scholar 

  25. McKay JA, Douglas JJ, Ross VG, Curran S, Murray GI, Cassidy J et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int J Cancer 2000; 88: 77–81.

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O et al. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res 2010; 70: 8802–8811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gautschi O, Hugli B, Ziegler A, Bigosch C, Bowers NL, Ratschiller D et al. Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer 2006; 51: 303–311.

    Article  PubMed  Google Scholar 

  28. Zhang W, Azuma M, Lurje G, Gordon MA, Yang D, Pohl A et al. Molecular predictors of combination targeted therapies (cetuximab, bevacizumab) in irinotecan-refractory colorectal cancer (BOND-2 study). Anticancer Res 2010; 30: 4209–4217.

    CAS  PubMed  Google Scholar 

  29. Zhang W, Gordon M, Press OA, Rhodes K, Vallbohmer D, Yang DY et al. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics 2006; 16: 475–483.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the START research grant of the Medical University of Graz and the Daniel Butler Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Gerger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Absenger, G., Benhaim, L., Szkandera, J. et al. The cyclin D1 (CCND1) rs9344 G>A polymorphism predicts clinical outcome in colon cancer patients treated with adjuvant 5-FU-based chemotherapy. Pharmacogenomics J 14, 130–134 (2014). https://doi.org/10.1038/tpj.2013.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2013.15

Keywords

This article is cited by

Search

Quick links