www.nature.com/tpj

ORIGINAL ARTICLE Association of UGT1A1*28 polymorphisms with irinotecaninduced toxicities in colorectal cancer: a meta-analysis in Caucasians

X Liu^{1,2}, D Cheng¹, Q Kuang¹, G Liu^{1,3,4,6} and W Xu^{1,4,5,6}

A meta-analysis in Caucasians was conducted to investigate the possible association of uridine diphosphate glucuronosyltransferase (UGT) 1A1 gene polymorphisms with irinotecan (IRI)-induced neutropenia and diarrhoea in colorectal cancer (CRC). We searched PubMed and Embase until May 2012 to identify eligible studies, extracted data, assessed methodological quality, and performed statistical analysis using REVMAN 5.1 and R software. Subgroups meta-analyses were performed in groups representing different IRI combination regimens and IRI doses. Sixteen trials were included. UGT1A1*28/*28 genotype was associated with more than fourfold (odds ratio (OR) = 4.79, 95% confidence intervals (CI): 3.28-7.01; P < 0.00001) and threefold (OR = 3.44, 95% CI: 2.45-4.82; P < 0.00001) increases in the risk of neutropenia when compared with wild type and with at least one UGT1A1*1 allele, respectively. UGT1A1*1/*28 genotype had an OR of 1.90 (95% CI: 1.44-2.51; P < 0.00001) for an increased risk of neutropenia. A twofold increase in risk of diarrhoea was associated with UGT1A1*28/*28 genotype (OR = 1.84, 95% CI: 1.24-2.72; P = 0.002). In subgroup meta-analysis, the higher incidence of diarrhoea in UGT1A1*28/*28 patients was limited to studies where when IRI was given at higher doses (OR = 2.37, 95% CI: 1.39-4.04; P = 0.002) or combined with 5-fluorouracil (FU or analogue) (OR = 1.78, 95% CI: 1.16-2.75; P = 0.009). Genotyping of UGT1A1*28 polymorphism before treatment for CRC can tailor IRI therapy and reduce the IRI-related toxicities. IRI-combined 5-FU (or analogue) and a high-dose IRI therapy enhance IRI-induced diarrhoea among patients bearing the UGT1A1*28 allele. Although the toxicity relationships were much stronger with the UGT1A1*28 homozygous variant, associations were also found with the UGT1A1*28 heterozygous variant.

The Pharmacogenomics Journal (2014) 14, 120-129; doi:10.1038/tpj.2013.10; published online 26 March 2013

Keywords: colorectal cancer; irinotecan; meta-analysis; polymorphism; toxicities; UGT1A1*28

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer worldwide¹ and frequently treated with irinotecan (IRI).² IRIbased combination therapy demonstrated superiority in overall response and survival as compared with 5-fluorouracil (5-FU)/ leucovorin alone.³ However, its use is accompanied by a comparably high incidence of unpredictable severe toxicity.⁴ The main toxicities of IRI are neutropenia and diarrhoea, resulting in dose reduction, treatment withdrawals or death.³ A number of studies have attempted to explain these toxicities by analyzing candidate genes in the IRI pathways.⁵

The uridine diphosphate glucuronosyltransferase (UGT) 1A1 is an essential enzyme involved in the complex metabolism of IRI. It inactivates the IRI toxic metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) by biotransforming SN-38 into SN-38 glucuronide (SN-38 G).⁶ There is a common and well-described polymorphism in the promoter region of UGT1A1 gene where a variable number of TA repeats affects gene transcriptional efficiency.⁷ A six-repeat allele is the most commonly identified (wild type) form; a sevenrepeat allele (designated UGT1A1*28) is associated with dramatically reduced expression of UGT1A1, resulting in lower SN-38 glucuronidation.⁸ Researchers have investigated the effect of UGT1A1*28 on the IRI-induced toxicities in patients with CRC.⁹⁻²⁶ However, results are both conflicting and difficult to interpret because of small sample sizes and associated poor statistical power. Although several meta-analyses demonstrated the association between the UGT1A1*28 polymorphism and IRI-induced neutropenia and diarrhoea,^{27–29} they included studies across many different cancers rather than focusing on patients with CRC. This meta-analysis will therefore focus on CRC alone, which will allow an assessment of uniform regimens tied to a single clinical disease site. Moreover, additional CRC studies have been published since these older meta-analyses.^{9–13}

MATERIALS AND METHODS

Retrieval of published studies

Searches were conducted for papers published before May 2012 by two different authors (XL, WX). PubMed and Embase were surveyed by using the search terms 'irinotecan', 'UGT1A1', 'UGT1A1 polymorphism', 'UGT1A1*28', 'colorectal cancer', and 'toxicity'. Furthermore, we screened titles and abstracts to identify relevant studies. Studies in abstract form or meeting reports, without publication of the full paper, were excluded.

⁶Wei Xu and Geoff Liu are co-senior authors.

Received 26 September 2012; revised 22 January 2013; accepted 4 February 2013; published online 26 March 2013

¹Ontario Cancer Institute, Toronto, ON, Canada; ²School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China; ³Division of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada; ⁴Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada and ⁵Department of Biostatistics, Princess Margaret Hospital, University Health Network, University of Toronto, ON, Canada. Correspondence: Dr W Xu, Dalla Lana School of Public Health, University of Toronto, 10-512, Princess Margaret Hospital, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. E-mail: wxu@uhnres.utoronto.ca

The UGT1A1*28 polymorphism is relatively rare in Asian populations and the prevalence of homozygous UGT1A1*28/*28 genotype is significantly greater in Caucasians than in Asian populations.^{30–32} To reduce the heterogeneity among the analyzed studies, ethnic differences were considered. However, available articles in Asian populations were of limited small sample sizes that it was infeasible to perform stratified analysis based on ethnicity. Thus, only studies of primarily Caucasians populations were included in this meta-analysis.

Inclusion and exclusion criteria

Studies were included in the meta-analysis if (1) they were clinical trials or well characterized observational data sets, (2) they explored the association between UGT1A1*28 and IRI-induced toxicities in patients with CRC, (3) numbers of patients with and without IRI-induced neutropenia or diarrhoea (grade III—IV) were provided (or could be calculated), and (4) they were published in English. Exclusion criteria were as follows: (1) case reports; (2) reviews and opinions; (3) allele frequency studies; (4) studies not involving CRC patients; (5) studies that reported general haematological or gastrointestinal toxicity instead of the more specific neutropenia or diarrhoea; and (6) studies conducted only in non-Caucasian populations. When different publications with overlapping subjects were considered eligible, we only included the one with the larger number of patients. Figure 1 summarizes the search methods and inclusion and exclusion steps.

Data extraction

The following information was extracted from each eligible publication: name of first author, year of publication, country, race, sample size, age (median or mean), gender, source of population, mutation detection method, IRI dose, chemotherapy regimens, study design, and number of patients with IRI-induced neutropenia or diarrhoea (grade III—IV) in each genotype group (UGT1A1*1/*1, UGT1A1*1/*28, and UGT1A1*28/*28).

Two or three IRI-containing regimens were administered to patients in some studies;^{12,15,16,20} when possible, we analyzed the patients treated with each regimen as a separate sample. Patients treated with different regimens were analyzed as a single study only if separate data was not available.

Statistical analysis

We followed the PRISMA guidelines.³³ All statistical analyses were performed using Review Manager (v5.1; Oxford, England) and R software (R Foundation, Vienna, Austria; http://www.CRAN.R-project.org). Cochran's χ^2 test and the inconsistency index (l²) were used to evaluate heterogeneity across the included studies. *P*-values of >0.05 for the χ^2 test indicated a lack of heterogeneity, and the fixed-effects model was then used to calculate the summary odds ratio (OR).³⁴ Otherwise, a random-effects model was applied.³⁵ ORs and their corresponding 95% confidence intervals (CI) were estimated. *Z*-test was performed to determine the statistical significance of pooled OR, and was considered significant when *P* < 0.05. We assessed potential publication bias by using

Figure 1. Flow diagram for study selection in meta-analysis. CRC, colorectal cancer.

a funnel plot and Egger's test.³⁶ When the Egger's test was significant (P < 0.05), a trim and fill method was used to adjust for publication bias.³⁷ For each outcome (neutropenia and diarrhoea), we compared the following: UGT1A1*28/*28 versus (vs) UGT1A1*1/*1 (equivalent to homozygous variant vs wild type), UGT1A1*1/*28 vs UGT1A1*1/*1 (equivalent to heterozygous variant vs wild type) and UGT1A1*28/*28 vs all others (equivalent to a recessive genetic model). Previous studies²⁷⁻²⁹ showed a dose-dependent relationship between

Previous studies^{27–29} showed a dose-dependent relationship between UGT1A1*28 genotypes and IRI-induced toxicities. Additionally, the coadministration of 5-FU, a core component of many IRI-based regiments, might enhance the haematological and digestive tract toxicities.^{3,38} Thus, we carried out stratified analyses in two settings: (A) whether 5-FU (or analogue) was combined with IRI; or (B) between high/medium and low doses of IRI. In the former setting, studies were classified into two subgroups, marked + 5FU (studies including 5-FU or a 5-FU analogue) and - 5FU (no 5-FU or analogue), respectively. For dose intensity analysis, 150 mg m⁻² of IRI dose was set as the cutoff value between medium/high (high IRI) and low dose (low IRI). In some studies,^{11,25,26} the patients received different IRI doses at different time points and only combined toxicity-related data were available. The average dose was calculated to classify these studies.

RESULTS

Characteristics of the studies

Figure 1 shows the process of study selection. In total, 32 full-text studies were fully reviewed. Of these, seven did not provide numbers of neutropenia or diarrhoea patients with different genotypes.^{39–45} Two studies did not provide data for individuals' genotypes.^{14,19} Four studies combined CRC patients with those that had other cancers.^{46–49} Three were excluded because they analyzed only Asian populations.^{50–52} Thus, only 16 studies were considered eligible for inclusion in our meta-analysis.

Characteristics of the included studies are summarized in Table 1. Methodological components of study designs may be critically important and take priority over aggregate scores in the meta-analyses.⁵³ Thus, we utilized a modified set of criteria to identify methodological soundness when reporting quality of the studies.⁵⁴ The criteria considered study design, the detection method of the polymorphisms, chemotherapy regimens, and grading systems for toxicity (Table 1).

Of the 16 studies, 11 assessed genotype relationships with both neutropenia and diarrhoea,^{9–13,15,17,18,23–25} two only for diarrhoea,^{20,26} and three only for neutropenia.^{16,21,22} There were four studies that did not clearly report the race of the participants^{9,15,16,23} but they were conducted in Europe or America, and the UGT1A1*28 allele frequencies were similar to Caucasians. Accordingly, the four were assigned as Caucasian studies. Table 1 also showed four 'mainly Caucasian' studies.^{12,13,17,24} One¹³ was reported on the basis of authors' own description, whereas in the other three studies the percentage of Caucasian were 86,¹² 98,¹⁷ and 83%,²⁴ respectively.

For subgroup meta-analysis, in two studies with multiple regimens without separate data,^{17,26} only one or several patients received IRI-based chemotherapy without 5-FU (or analogue). Hence, the two studies were classified into the + 5FU subgroup. The study by Shulman K *et al.*¹⁰ did not provide the exact IRI-dose, but was included in low IRI subgroup based on the authors' own comments. Meta-analyses of these subsets are presented in Table 2. The results of meta-analysis are summarized in Table 3.

Association between UGT1A1*28 and severe neutropenia

*UGT1A1*28/*28 vs UGT1A1*1/*1.* (Presented in Figure 2 and Supplementary Figures 1A and B) Thirteen studies compared the risk of neutropenia between patients with a UGT1A1*28/*28 genotype and those with a wild-type genotype. Pooled data from all studies showed that the risk of neutropenia was higher among UGT1A1*28/*28 patients than among those with a wild-type genotype (OR = 4.79, 95% CI: 3.28–7.01; P < 0.00001).

4	1	2
	,	

Study (year)	Country, races	Phase of clinical trial	No. of patient (male%)	Age	Population source	Mutation detection methods	Regimen	IRI dose (mg m ^{- 2})/ schedule	Grade criteria	Neutropenia grade 3–4 (%)	Diarrhoea grade 3-4 (%)	Study design
Lamas <i>et al⁹</i> Shulman	Spain, U Israel, C	⊃ –	100 (63.4) 214 (46.3)	67 63	⊃≥	SPR SPR	FOLFIRI TEGAFIRI, XELIRI, ECLI EIDI IEI	180/biweekly U	N U	18 (18.0) 48 (22.4)	12 (12.0) 19 (8.9)	ж ж
Martinez	Spain, C	≡	149 (U)	D	M	Sequencing	FOLFIRI, FUIRI	80/weekly or 180/ himaekhy	D	31 (20.8)	45 (30.2)	Я
et al McLeod et al ¹²	USA/UK/ Canada, mainly C	≡	212 (U)	61	Σ	PYRS	IFL, IROX	100–125/weekly or 200/every 3 weeks	N2	Only grade 4: 28 (13.2)	60 (28.3)	٩
Glimelius et al ¹³	Sweden/UK/ Norway, mainly C	≡	136 (U)	62	Σ	SPR	Fliri, Lv5fu-iri	180/biweekly	N2	18 (13.2)	10 (7.4)	К
Braun <i>et al¹⁵</i>	UK, U	≡	326 (U)	64	Σ	SPR	IrFu, IRI	300–350/every 3 weeks, 180/ hiweekly	C	35 (10.7)	18 (5.5)	٩
Parodi et al ¹⁶	USA, U	≡	110 (52.2)	60	Z	SPR	FOLFIRI, mIFL, CapelRI	125 or 180/ biweekly, 250/ every 3 weeks		42 (38.2)	/	٩
Ferraldeschi et al ¹⁷	UK, mainly C	⊃	92 (69.0)	63	S	SPR	FOLFIRI/ IRI—VEGF inhibitor, CapeIRI, UFT- 1 vz. IPL OV	180/biweekly	N2	16 (17.4)	6 (6.5)	٩
Toffoli <i>et al</i> ¹⁸ Kweekel	ltaly, C Netherlands,	-≡	250 (64.8) 218 (62.8)	61 61	ΣΣ	PYRS PYRS	EVE INFOR FOLFIRI, mFOLFIRI CapelRI, IRI	180/biweekly 250 or 350/every 3	N 2 N 2	35 (14.0) /	21 (8.4) 48 (22.0)	ር ድ
et al ²¹ Ruzzo et al ²¹ Côté et al ²²	Ltaly, C France, C	⊃≡=	146 (55.6) 89 (U)	[0 ⊃ 2	≥≥≥	SPR SPR	FOLFIRI FOLFIRI Ini	weeks 180/biweekly 180/biweekly	2 Z Z Z	34 (23.0) 19 (21.3)	/	۵ ۵ ۵
Massacesi et al ²³ Carlini et al ²⁴	USA, mainly	= =	(1.2c) 0c 62 (55.0)	61 04	ē ∑	sequencing	IRI- Talurexed CapelRI	au/weekiy 100 or 125/weekly	Z Z	4 (7.1) 2 (3.3)	20 (32.3)	<u> </u>
Rouits <i>et al²⁵</i>	ر France, C	Ο	73 (61.1)	62	S	PYRS	FOLFIRI, mFOLFIRI	85/weekly or 180/	N2	22 (30.1)	13 (17.8)	Я
Marcuello et al ²⁶	Spain, C	D	95 (63.3)	68	⊃	SPR	IRI-Tomudex, IRI-5FU- LV, IRI-5FU, IRI	B0/weekly or 180/ biweekly or 350/ every 3 weeks	0	~	29 (30.5)	٩

Sub analyses	Subgroup	Regimens or IRI dose	No. of ide	ntified trials
			Neutropenia	Diarrhoea
By 5-FU status	+ 5FU (combined with 5-FU or analogue)	FOLFIRI, mFOLFIRI, IFL, FLIRI, Lv5FU-IR, mIFL, CapeIRI, IrFu, TEGAFIRI, XELIRI, UFT-Lv-IRI-OX, IRI-5FU-LV, IRI-5FU	13 ^{9–13,15–18,21,22,24,25}	12 ^{9–13,15,17,18,20,24,25,24}
	– 5FU (no 5-FU or analogue)	IROX, IRI-raltitrexed, IRI-alone	3 ^{12,15,23}	4 ^{12, 15, 20, 23}
By IRI dose	High IRI (medium and high dose) Low IRI (low dose)	> 150 mg m ⁻² of IRI < 150 mg m ⁻² of IRI	9 ^{9,12,13,15–18,21,22} 7 ^{10–12,16,23–25}	8 ^{9,12,13,15,17,18,20,26} 6 ^{10–12,23–25}

Abbreviations: CAPe, capecitabine; IRI, irinotecan; LV, leucovorin; OX(A), oxaliplatin; TEGAF, UFT/LV; UFT, uracil/tegafur; VEGF, vascular endothelial growth factor; XEL, xeloda; 5FU, 5-fluorouracil.

Toxicity	Compared genotype	Group	No. of studies	No. of partici- pants	Odds ratios (ORs) 95% confidence intervals (Cl)	P-value		t for ogeneity
							P-value	l ² (%)
Neutropenia	*28/*28 vs *1/*1	Total	13	1095	4.79 [3.28, 7.01]	< 0.00001	0.20	22
		+ 5FU subgroup	12	932	4.67 [3.11, 7.00]	< 0.00001	0.14	30
		– 5FU subgroup	3	163	5.87 [1.97, 17.42]	< 0.001	0.41	0
		High IRI subgroup	9	764	4.64 [2.88, 7.17]	< 0.00001	0.06	44
		Low IRI subgroup	6	331	6.37 [2.69, 10.71]	< 0.00001	0.76	0
	*1/*28 vs 1/*1	Total	14	1819	1.90 [1.44, 2.51]	< 0.00001	0.98	0
		+ 5FU subgroup	13	1573	1.87 [1.39, 2.51]	< 0.0001	0.93	0
		– 5FU subgroup	3	246	2.18 [0.91, 5.22]	0.08	0.85	0
		High IRI subgroup	9	1189	1.85 [1.32, 2.58]	0.0003	0.98	0
		Low IRI subgroup	7	630	2.01 [1.21, 3.34]	0.007	0.61	0
	*28/*28 vs *1/*28 or *1/*1	Total	14	2015	3.44 [2.45, 4.82]	< 0.00001	0.15	26
		+ 5FU subgroup	13	1740	3.40 [2.37, 4.88]	< 0.00001	0.14	29
		– 5FU subgroup	3	275	3.70 [1.46, 9.40]	0.006	0.20	38
		High IRI subgroup	9	1311	3.34 [2.21, 5.05]	< 0.00001	0.02	54
		Low IRI subgroup	7	704	3.63 [2.02, 6.53]	< 0.00001	0.96	0
Diarrhoea	*28/*28 vs *1/*1	Total	13	1122	1.84 [1.24, 2.72]	0.002	0.15	27
		+ 5FU subgroup	12	913	1.78 [1.16, 2.75]	0.009	0.07	41
		 5FU subgroup 	4	209	2.09 [0.83, 5.26]	0.12	0.56	0
		High IRI subgroup	8	774	2.37 [1.39, 4.04]	0.002	0.31	15
		Low IRI subgroup	6	348	1.41 [0.79, 2.51]	0.24	0.12	42
	*1/*28 vs 1/*1	Total	13	1794	1.20 [0.93, 1.56]	0.16	0.55	0
		+ 5FU subgroup	12	1472	1.19 [0.89, 1.58]	0.25	0.46	0
		– 5FU subgroup	4	322	1.28 [0.71, 2.30]	0.41	0.44	0
		High IRI subgroup	8	1201	1.39 [0.97, 1.98]	0.07	0.65	0
		Low IRI subgroup	6	593	1.02 [0.70, 1.50]	0.91	0.36	8
	*28/*28 vs *1/*28 or *1/*1	Total	13	1980	1.71 [1.18, 2.47]	0.005	0.29	14
		+ 5FU subgroup	12	1626	1.67 [1.11, 2.52]	0.01	0.17	28
		– 5FU subgroup	4	354	1.85 [0.77, 4.43]	0.17	0.53	0
		High IRI subgroup	8	1317	2.04 [1.23, 3.38]	0.006	0.41	3
		Low IRI subgroup	6	663	1.41 [0.82, 2.43]	0.21	0.20	31

In the subgroup analysis, UGT1A1*28/*28 genotype was found to be associated with significantly increased risk of neutropenia in all subgroups (Table 3). No statistical heterogeneity were detected both in the analysis of all studies ($l^2 = 22\%$, P = 0.20) and in all subgroup analyses. The funnel plots were symmetric, and the Egger's test was not significant (P = 0.75), suggesting little-to-no publication bias.

*UGT1A1*1/*28* vs *UGT1A1*1/*1*. (Presented in Figure 3 and Supplementary Figures 1C and D) A total of 14 studies compared

the risk of neutropenia among patients with the two different genotypes. The pooled OR was 1.90 (95% Cl: 1.44–2.51; P < 0.0001) for all studies. Heterogeneity among studies was not detected ($I^2 = 0\%$, P = 0.76). In subgroup analysis, there were too few - 5FU studies to compare with + 5FU subgroups; the OR were qualitatively similar between high and low IRI subgroups. The funnel plot showed some asymmetry, and Egger's test for publication bias was significant (P = 0.046). The trim and fill method provided the adjusted estimate of OR = 1.68 (95% Cl: 1.29–2.19; P < 0.0001), which was only a slight change from our original estimate of 1.90.

	*28/*2	8	*1/*1			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
1.1.1 +5FU							
	-		10				
Braun 2009	2	18	12	115	14.7%	1.07 [0.22, 5.25]	
Côté 2007	4	8	5	37	4.5%	6.40 [1.20, 34.20]	
Ferraldeschi 2009	2	8	5	43	6.0%	2.53 [0.40, 16.15]	-
Glimelius 2011	5	13	6	72	5.8%	6.88 [1.70, 27.75]	
Lamas 2012	1	9	8	59	9.6%	0.80 [0.09, 7.25]	
Martinez 2010	6	15	8	56	10.3%	4.00 [1.12, 14.32]	
McLeod 2010	2	11	з	44	5.0%	3.04 [0.44, 20.91]	
Parodi 2008	2	2	7	19	1.7%	8 33 [0 35, 198 09]	
Parodi 2008	3	4	5	13	3.0%	4.80 [0.38, 59.89]	
Parodi 2008	4	5	1	17	0.5%	64.00 [3.25, 1260.65]	
Rouits 2004	5	7	3	31	1.6%	23.33 [3.08, 177.04]	
Ruzzo 2008	12	15	9	59	3.7%	22.22 [5.21, 94.79]	
Shulman 2011	6	25	5	91	8.3%	5.43 [1.50, 19.67]	
Toffoli 2006	4	22	11	114	14.8%	2.08 [0.60, 7.26]	
Subtotal (95% CI)		162		770	89.5%	4.67 [3.11, 7.00]	
Total events	58		88				
Heterogeneity: Chi ² =	18.48, df =	13 (P	= 0.14); 🗗	= 30%			
Test for overall effect:							
			,				
1.1.2 -5FU							
			-		4 66	4 70 10 10 10 10	
Braun 2009	1	11	3	55	4.6%	1.73 [0.16, 18.40]	
Massacesi 2006	1	7	1	27	1.8%	4.33 [0.24, 79.58]	
McLeod 2010	6	11	5	52	4.0%	11.28 [2.51, 50.70]	
Subtotal (95% CI)		29		134	10.5%	5.87 [1.97, 17.42]	
Total events	8		9				
Heterogeneity: Chi ² =	1.79, df = 2	2(P = 0)	0.41); I ² =	0%			
Test for overall effect:							
			· ·				
Total (95% CI)						4 70 70 00 7 041	
		191		904	100.0%	4.79 [3.28, 7.01]	•
	66		97			4.79 [3.28, 7.01]	~
Heterogeneity: Chi ² = 2	20 . 45, df =	16 (P	= 0.20); I ²			F	
Heterogeneity: Chi² = 2 Test for overall effect:	20.45, df = Z = 8.09 (F	16 (P P < 0.0	= 0.20); I ² 0001)			4.79 [3.28, 7.01] + 0.0	01 0.1 1 10 10
Heterogeneity: Chi ² = 2 Test for overall effect:	20.45, df = Z = 8.09 (F	16 (P P < 0.0	= 0.20); I ² 0001)			+ o.c	01 0.1 1 10 10 vours experimental Favours control
Total events Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe	20.45, df = Z = 8.09 (F	16 (P P < 0.0	= 0.20); I ² 0001)			+ o.c	
Heterogeneity: Chi² = 2 Test for overall effect:	20.45, df = Z = 8.09 (F	16 (P P < 0.0 ot appli	= 0.20); I ² 0001)			+ o.c	
Heterogeneity: Chi² = 2 Test for overall effect:	20.45, df = Z = 8.09 (F erences: No	16 (P P < 0.0 ot appli 8	= 0.20); l ² 0001) cable *1/*1	= 22%		⊢ 0.0 Fa	vours experimental Favours control
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup	20.45, df = Z = 8.09 (F erences: No * 28/*2	16 (P P < 0.0 ot appli 8	= 0.20); l ² 0001) cable *1/*1	= 22%		⊢ o.c Fa Odds Ratio	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI	20.45, df = Z = 8.09 (f prences: No *28/*2 Events	16 (P P < 0.0 ot appli 8 Total	= 0.20); l ² 0001) cable *1/*1 Events	= 22% Total	Weight	⊢ 0.0 Fa Odds Ratio M-H, Fixed, 95% CI	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2	16 (P P < 0.0 ot appli 8 Total 18	= 0.20); I ² 0001) cable *1/*1 Events	= 22% Total	Weight	⊢ 0.0 Fa Odds Ratio M-H, Fixed, 95% CI 1.07 [0.22, 5.25]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009	20.45, df = Z = 8.09 (F prences: No *28/*2 Events 2 1	16 (P P < 0.0 ot appli 8 Total 18 11	= 0.20); ² 0001) cable *1/*1 Events 12 3	Total 115 55	Weight 14.7% 4.6%	⊢ o.c Fa Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Coté 2007	20.45, df = Z = 8.09 (f erences: No *28/*2 Events 2 1 4	16 (P	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5	Total 115 55 37	Weight 14.7% 4.6% 4.5%	⊢ 0.0 Fa 0dds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009	20.45, df = Z = 8.09 (F prences: No *28/*2 Events 2 1 4 2	16 (P P < 0.00 ot appli 8 Total 18 11 8 8	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 5	Total 115 55 37 43	Weight 14.7% 4.6% 4.5% 6.0%	+ 0.0 Fa Odds Ratio M-H, Fixed, 95% CI 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011	20.45, df = Z = 8.09 (F rences: No *28/*2 Events 2 1 4 2 5	16 (P < 0.00 ot appli 8 Total 18 11 8 11 8 13	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 6	Total 115 55 37 43 72	Weight 14.7% 4.6% 4.5% 6.0% 5.8%	H 0.dds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Gilimelius 2011 Lamas 2012	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1	16 (P P < 0.00 pt appli 8 Total 18 11 8 13 9	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 5 6 8	Total 115 55 37 43 72 59	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6%	H 0.0 Fa 0dds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6	16 (P P < 0.0 ot appli 8 Total 18 11 8 11 8 13 9 11	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5	Total 115 55 37 43 72 59 52	Weight 14.7% 4.6% 4.5% 6.0% 5.8%	+ 0.0 Fa Odds Ratio M-H, Fixed, 95% CI 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16,15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Gilimelius 2011 Lamas 2012 McLeod 2010	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1	16 (P P < 0.00 pt appli 8 Total 18 11 8 13 9	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 5 6 8	Total 115 55 37 43 72 59	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6%	H 0.0 Fa 0dds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6	16 (P P < 0.0 ot appli 8 Total 18 11 8 11 8 13 9 11	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5	Total 115 55 37 43 72 59 52	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0%	+ 0.0 Fa Odds Ratio M-H, Fixed, 95% CI 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16,15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008	20.45, df = Z = 8.09 (f rences: No *28/*2 Events 2 1 4 2 5 1 6 4 4 4 4 4 4 4 4 4 5 5	16 (P < 0.0 ot appli 8 Total 18 11 8 13 9 11 5	= 0.20); l ² 0001) cable *1/*1 Events 12 3 5 6 8 8 5 1	Total 115 55 37 43 72 59 52 17	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Coté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 2 1 4 2 5 1 6 4 2	16 (P < 0.0 ot appli 8 Total 18 11 8 13 9 11 5 2 15	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7	Total 115 55 37 43 72 59 52 17 19 59	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7%	H 0.0 Fa Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 1280.09] 22.22 [5.21, 94.79]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 1 6 4 2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	16 (P < 0.00 ot appli 8 Total 18 13 8 13 9 11 5 22	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 5 6 8 5 1 7 9	Total 115 55 37 43 72 59 52 17 19 9 114	Weight 14.7% 4.6% 4.5% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.26] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.16] 6.88 [1.70, 27.75] 0.80 [0.09, 7.26] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Gilmelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI)	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 2 12 4	16 (P < 0.0 ot appli 8 Total 18 11 8 13 9 11 5 2 15	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 6 8 5 1 7 9 11	Total 115 55 37 43 72 59 52 17 19 59	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7%	H 0.0 Fa Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 1280.09] 22.22 [5.21, 94.79]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI)	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 4 3 12 4 4 3	16 (P < 0.0 ot appli 8 Total 18 11 8 8 11 8 13 9 11 5 22 15 22 122	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 5 1 7 9 11 7 9	Total 115 55 37 43 72 59 52 17 19 59 114 642	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7% 14.8% 69.9%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.26] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.16] 6.88 [1.70, 27.75] 0.80 [0.09, 7.26] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 12 4 12 4 17.76, df =	16 (P < 0.00 bt appli 8 Total 18 18 18 18 18 8 13 9 11 5 22 15 22 122 10 (P	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 114 642	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7% 14.8% 69.9%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 12 4 12 4 17.76, df =	16 (P < 0.00 bt appli 8 Total 18 18 18 18 18 8 13 9 11 5 22 15 22 122 10 (P	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 114 642	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7% 14.8% 69.9%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 12 4 12 4 17.76, df =	16 (P < 0.00 bt appli 8 Total 18 18 18 18 18 8 13 9 11 5 22 15 22 122 10 (P	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 114 642	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7% 14.8% 69.9%	H Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = - Test for overall effect: 1.2.2 Low IRI	20.45, df = Z = 8.09 (f rences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 17.76, df = Z = 6.51 (f	16 (P < 0.0 ot appli 8 Total 18 11 8 8 11 8 8 11 5 22 15 22 122 10 (P < 0.0	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 5 6 8 5 1 7 9 11 7 9 11 72 = 0.06); I ² 0001)	Total 115 55 37 43 72 59 52 17 19 59 114 642 = 44%	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9%	H 0.0 Fa Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1280.65] 8.33 [0.35, 1280.65] 8.33 [0.35, 1280.65] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26] 4.54 [2.88, 7.17]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1 1.2.2 Low IRI Martinez 2010	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 12 4 12 4 17.76, df =	16 (P < 0.00 bt appli 8 Total 18 18 18 18 18 8 13 9 11 5 22 15 22 122 10 (P	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 114 642	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 0.5% 1.7% 3.7% 14.8% 69.9%	4.00 [1.12, 14.32]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1 1.2.2 Low IRI Martinez 2010	20.45, df = Z = 8.09 (f rences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 17.76, df = Z = 6.51 (f	16 (P < 0.0 ot appli 8 Total 18 18 11 8 11 8 13 9 11 5 22 122 10 (P < 0.0	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 5 6 8 5 1 7 9 11 7 9 11 72 = 0.06); I ² 0001)	Total 115 55 37 43 72 59 52 17 19 59 114 642 = 44%	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9%	H 0.0 Fa Odds Ratio M-H, Fixed, 95% Cl 1.07 [0.22, 5.25] 1.73 [0.16, 18.40] 6.40 [1.20, 34.20] 2.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1280.65] 8.33 [0.35, 1280.65] 8.33 [0.35, 1280.65] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26] 4.54 [2.88, 7.17]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1.2.2 Low IRI Martinez 2010 Mastacesi 2006	20.45, df = Z = 8.09 (f rences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 17.76, df = Z = 6.51 (f	16 (P < 0.0 ot appli 8 Total 18 18 11 8 11 8 13 9 11 5 22 122 10 (P < 0.0	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 5 6 8 5 1 7 9 11 7 9 11 72 = 0.06); I ² 0001)	Total 115 55 37 43 72 59 52 17 19 59 514 642 = 44%	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9%	4.00 [1.12, 14.32]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1.2.2 Low IRI Marsinez 2010 Massacesi 2006 McLeod 2010	20.45, df = Z = 8.09 (forences: Nor- *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 3 17.76, df = Z = 6.51 (forential for the second	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 122 122 10 (P < 0.00 15 7	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7 9 11 7 9 11 72 = 0.06); ² 0001)	Total 115 55 37 43 72 59 52 17 19 59 114 642 7 = 44%	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.30 [1.20, 34.20] 4.53 [0.40, 16.15] 6.88 [1.70, 27.75] 0.80 [0.09, 7.25] 11.28 [2.51, 50.70] 64.00 [3.25, 1260.65] 8.33 [0.35, 198.09] 22.22 [5.21, 94.79] 2.08 [0.60, 7.26] 4.54 [2.88, 7.17]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Gilmelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Toffoli 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 4 2 5 1 6 4 2 12 4 3 17.76, df = Z = 6.51 (f 6 1 2 3	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 15 22 122 10 (P < 0.00 15 7 11 14	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7 9 11 7 9 11 72 = 0.06); ² 0001)	Total 1115 55 37 43 72 59 52 17 19 59 514 642 = 44% 56 27 413	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 1.7% 3.7% 14.8% 69.9% 14.8% 69.9% 10.3% 1.8% 5.0% 3.0%	4.00 [1.12, 14,32] 4.30 [0.24, 79.58] 4.00 [1.12, 14,32] 4.30 [0.24, 79.58] 4.00 [1.12, 14,32] 4.33 [0.24, 79.58] 4.00 [1.12, 14,32] 4.33 [0.34, 20.91] 4.00 [3.25, 1260,55]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Göté 2007 Ferraldeschi 2009 Gilmelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = - Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Rouits 2004	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 3 17.76, df = Z = 6.51 (f 6 1 2 3 5	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 15 2 122 10 (P < 0.00 15 7 11 14 7	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7 9 11 7 9 11 72 = 0.06); ² 0001) 8 1 3 5 5 5 6 8 8 1 1 3 5 5 5 5 6 8 8 1 1 2 8 1 1 2 3 5 5 5 5 6 8 8 1 7 9 1 1 2 8 1 1 2 8 5 5 5 5 5 6 8 8 8 1 7 7 9 1 1 2 8 5 5 5 5 5 6 8 8 8 1 7 7 9 1 1 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Total 115 55 37 43 72 59 52 17 19 59 114 642 56 27 44 43 31	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.8% 5.0% 3.0% 1.6%	4.00 [1.12, 14.32] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 3.04 [0.44, 20.91] 4.50 [3.25, 1260,55] 4.54 [2.88, 7.17]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Toffoli 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 RucLeod 2010 Parodi 2008 Rouits 2004 Shulman 2011	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 4 2 5 1 6 4 2 12 4 3 17.76, df = Z = 6.51 (f 6 1 2 3	16 (P < 0.00 ot appli 8 Total 18 11 8 13 9 11 5 22 122 122 10 < 0.00 15 7 11 4 7 25	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7 9 11 7 9 11 72 = 0.06); ² 0001)	Total 115 55 37 43 72 59 52 17 19 59 114 642 56 27 44 13 31 91	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.4.8% 5.0% 3.0% 3.0% 8.3%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 3.04 [0.44, 20.91] 4.80 [0.38, 59.89] 23.33 [3.08, 177.04] 5.43 [1.50, 19.67]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Coté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Toffoli 2008 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = - Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Roults 2004 Shultas 2011 Shultan 2011 Shultan 2011	20.45, df = Z = 8.09 (f *28/*2 Events 2 1 4 2 5 1 6 4 2 12 4 17.76, df = Z = 6.51 (f 6 1 2 3 5 6	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 15 2 122 10 (P < 0.00 15 7 11 14 7	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 5 1 7 9 11 72 = 0.06); ² 0001) 8 1 3 5 5 5 6 8 5 1 1 7 2 9 11 72 5 0001) 1 5 5 5 6 8 5 5 1 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 9 11 7 7 7 7	Total 115 55 37 43 72 59 52 17 19 59 114 642 56 27 44 43 31	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.8% 5.0% 3.0% 1.6%	4.00 [1.12, 14.32] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 4.33 [0.24, 7958] 3.04 [0.44, 20.91] 4.50 [3.25, 1260,55] 4.54 [2.88, 7.17]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Totfoli 2006 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = -1 Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Rouits 2004 Shuhman 2011 Subtotal (95% Cl) Total events	20.45, df = Z = 8.09 (f prences: No *28/*2 Events 2 1 4 2 5 6 4 17.76, df = Z = 6.51 (f 6 1 2 3 5 6 23	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 15 2 15 2 122 10 (P < 0.00 15 7 11 14 7 25 69	= 0.20); ² 0001) cable *1/*1 Events 12 3 5 5 6 8 8 5 1 7 9 11 7 9 11 72 = 0.06); ² 0001) 8 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Total 115 55 37 43 72 59 52 17 19 59 514 642 56 27 44 642 56 27 44 31 91 262	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.4.8% 5.0% 3.0% 3.0% 8.3%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 3.04 [0.44, 20.91] 4.80 [0.38, 59.89] 23.33 [3.08, 177.04] 5.43 [1.50, 19.67]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Glimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Ruzzo 2008 Toffoli 2006 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Rouits 2004 Shulman 2011 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 2 Total 908 Rouits 2004 Shulman 2011 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 2	20.45, df = $Z = 8.09$ (formalized formalized formaliz	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 122 122 10 (P > < 0.00 15 7 11 4 7 25 69 5 (P = C	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 6 8 5 1 7 9 11 72 = 0.06); I ² 8 1 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 514 642 56 27 44 642 56 27 44 31 91 262	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.4.8% 5.0% 3.0% 3.0% 8.3%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 3.04 [0.44, 20.91] 4.80 [0.38, 59.89] 23.33 [3.08, 177.04] 5.43 [1.50, 19.67]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Côté 2007 Ferraldeschi 2009 Côté 2007 Ferraldeschi 2009 Cotel 2008 Parodi 2008 Ruzzo 2008 Ruzzo 2008 Ruzzo 2008 Tofal 2006 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Rouits 2004 Shulman 2011 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 2 Stal (95% Cl) Total events Heterogeneity: Chi ² = 2 Stal (95% Cl)	20.45, df = $Z = 8.09$ (formalized formalized formaliz	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 122 122 10 (P > < 0.00 15 7 11 4 7 25 69 5 (P = C	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 6 8 5 1 7 9 11 72 = 0.06); I ² 8 1 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 514 642 56 27 44 642 56 27 44 31 91 262	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.4.8% 5.0% 3.0% 3.0% 8.3%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 3.04 [0.44, 20.91] 4.80 [0.38, 59.89] 23.33 [3.08, 177.04] 5.43 [1.50, 19.67]	vours experimental Favours control Odds Ratio
Heterogeneity: Chi ² = 2 Test for overall effect: Test for subgroup diffe Study or Subgroup 1.2.1 High IRI Braun 2009 Côté 2007 Ferraldeschi 2009 Gôté 2007 Ferraldeschi 2009 Galimelius 2011 Lamas 2012 McLeod 2010 Parodi 2008 Parodi 2008 Ruzzo 2008 Totfoli 2008 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = - Test for overall effect: 1.2.2 Low IRI Martinez 2010 Massacesi 2006 McLeod 2010 Parodi 2008 Rouits 2004 Shulman 2011 Subtotal (95% Cl)	20.45, df = $Z = 8.09$ (formalized formalized formaliz	16 (P < 0.00 bt appli 8 Total 18 11 8 13 9 11 5 2 122 122 10 (P > < 0.00 15 7 11 4 7 25 69 5 (P = C	= 0.20); I ² 0001) cable *1/*1 Events 12 3 5 6 8 5 1 7 9 11 72 = 0.06); I ² 8 1 3 5 5 6 8 5 1 7 9 11 72 = 0.06); I ²	Total 115 55 37 43 72 59 52 17 19 59 514 642 7 44% 56 27 44% 56 27 413 31 91 262 0%	Weight 14.7% 4.6% 4.5% 6.0% 5.8% 9.6% 4.0% 0.5% 1.7% 3.7% 14.8% 69.9% 10.3% 1.4.8% 5.0% 3.0% 3.0% 8.3%	4.00 [1.12, 14.32] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 4.33 [0.24, 79.58] 3.04 [0.44, 20.91] 4.80 [0.38, 59.89] 23.33 [3.08, 177.04] 5.43 [1.50, 19.67]	vours experimental Favours control Odds Ratio

Total events 66 97 Heterogeneity: $Chi^2 = 20.45$, df = 16 (P = 0.20); $I^2 = 22\%$ Test for overall effect: Z = 8.09 (P < 0.00001) Test for subgroup differences: Not applicable

0.1 Favours experimental Favours control

0.01

Figure 2. Forest plots of *28/*28 vs *1/*1, outcome: neutropenia. (a) (Stratified analysis based on 5-FU or analogue): +5-FU, received 5-FU or an analogue; – 5-FU, did not receive 5-FU or analogue. (b) (Stratified analysis based on IRI-dose): high IRI, received medium or high dose of IRI; low IRI, received low dose of IRI. CI, confidence intervals; FU, fluorouracil; I², inconsistency index.

UGT1A1*28/*28 vs UGT1A1*1/*28 or UGT1A1*1/*1. (Presented in Supplementary Figure 3 and Supplementary Figures 1E and F) Fourteen trials were included for this analysis. No statistical heterogeneity was detected ($l^2 = 26\%$, P = 0.15) except in the high IRI subgroup ($I^2 = 54\%$, P = 0.02). There was no evidence of publication bias, given the symmetrical distribution of funnel plot and Egger's test (P = 0.77). A random-effects model was applied in high IRI subgroup. A pooled OR of 3.42 (95% CI: 1.65-7.09; P = 0.0009) was found, which was slightly different from the OR in

the fixed-effects model (OR = 3.34, 95% CI: 2.21–5.05; P < 0.00001). The total and subgroup analyses all suggested an increased risk of neutropenia in UGT1A1*28/*28 patients when compared with patients with at least one UGT1A1*1 allele (Table 3).

Association between UGT1A1*28 and severe diarrhoea UGT1A1*28/*28 vs UGT1A1*1/*1. (Presented in Figure 4 and Supplementary Figures 2A and B) Relevant data for this

10

1

100

	*1/*2	в	*1/*1			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Tota	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
2.1.1 +5FU							
Braun 2009	10	77	12	115	11.4%	1.28 [0.52, 3.13]	
Carlini 2005	2	29	0	28	0.6%	5.18 [0.24, 112.89]	
Côté 2007	10	44	5	37	5.7%	1.88 [0.58, 6.11]	
Ferraldeschi 2009	9	41	5	43	5.2%	2.14 [0.65, 7.03]	
Glimelius 2011	7	51	6	72	5.8%	1.75 [0.55, 5.56]	
Lamas 2012	9	32	8	59	5.5%	2.49 [0.85, 7.29]	
Martinez 2010	17	78	8	56	9.9%	1.67 [0.67, 4.20]	
McLeod 2010	6	54	з	44	4.0%	1.71 [0.40, 7.26]	
Parodi 2008	8	14	7	19	3.5%	2.29 [0.56, 9.37]	
Parodi 2008	9	24	5	13	5.5%	0.96 [0.24, 3.85]	
Parodi 2008	з	12	1	17	0.8%	5.33 [0.48, 59.14]	
Rouits 2004	14	35	з	31	2.6%	6.22 [1.58, 24.47]	
Ruzzo 2008	13	72	9	59	11.0%	1.22 [0.48, 3.10]	
Shulman 2011	8	98	5	91	6.5%	1 53 [0 48, 4 86]	
Toffoli 2006	20	114	11	114	12.3%	1.99 [0.91, 4.38]	
Subtotal (95% CI)		775		798	90.5%	1.87 [1.39, 2.51]	
Total events	145		88				
Heterogeneity: Chi ² =	7.11, df =	14 (P =	0.93); l²	= 0%			
Test for overall effect:	Z = 4.17 (P < 0.0	001)				
2.1.2 -5FU							
Braun 2009	7	50	з	55	3.3%	2.82 [0.69, 11.58]	
Massacesi 2006	2	22	1	27	1.1%	2.60 [0.22, 30.75]	
McLeod 2010	6	40	5	52	5.0%	1.66 [0.47, 5.88]	
Subtotal (95% CI)		112		134	9.5%	2.18 [0.91, 5.22]	
Total events	15		9				
Heterogeneity: Chi ² =	0.33, df =	2 (P = 0	.85); I² =	0%			
Test for overall effect:	Z = 1.75 (P = 0.0	8)				
Total (95% CI)		887		932	100.0%	1.90 [1.44, 2.51]	•
Total events	160		97				
Heterogeneity: Chi ² =		17 (P =		= 0%		⊢–	
Test for overall effect:		-		- 70		0.01	0.1 1 10 1
Test for subgroup diffe			-			Fav	ours experimental Favours control
-3			_			i av	
	*1/*28	з	*1/*1			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
2.2.1 High IRI							
Braun 2009	7	50	з	55	3.3%	2.82 [0.69, 11.58]	
Braun 2009	, 10	77	12	115	11.4%	1.28 [0.52, 3.13]	
Côté 2007	10	44	5	37	5.7%	1.88 [0.58, 6.11]	
Cote 2007	.0	41	5	43	5.2%	3 14 [0.65, 7,03]	

2.2.1 High IRI										
Braun 2009	7	50	з	55	3.3%	2.82 [0.69, 11.58]				
Braun 2009	10	77	12	115	11.4%	1.28 [0.52, 3.13]				
Côté 2007	10	44	5	37	5.7%	1.88 [0.58, 6.11]				
Ferraldeschi 2009	9	41	5	43	5.2%	2.14 [0.65, 7.03]				
Glimelius 2011	7	51	6	72	5.8%	1.75 [0.55, 5.56]			_	
Lamas 2012	9	32	8	59	5.5%	2.49 [0.85, 7.29]				
McLeod 2010	6	40	5	52	5.0%	1.66 [0.47, 5.88]				
Parodi 2008	8	14	7	19	3.5%	2.29 [0.56, 9.37]				
Parodi 2008	з	12	1	17	0.8%	5.33 [0.48, 59.14]				
Ruzzo 2008	13	72	9	59	11.0%	1.22 [0.48, 3.10]				
Toffoli 2006	20	114	11	114	12.3%	1.99 [0.91, 4.38]			-	
Subtotal (95% CI)		547		642	69.7%	1.85 [1.32, 2.58]				
Total events	102		72							
Heterogeneity: Chi ² = 3	0.01, df = 1	IO(P=0.	.98); I ² =	= 0%						
Test for overall effect: 2	z = 3.60 (F	> = 0.000	3)							
2.2.2 Low IRI										
Carlini 2005	2	29	о	28	0.6%	5 18 [0.24, 112.89]	-		-	\rightarrow
Martinez 2010	17	78	8	56	9.9%	1.67 [0.67, 4.20]			-	
Massacesi 2006	2	22	1	27	1.1%	2.60 [0.22, 30.75]	_			
McLeod 2010	6	54	з	44	4.0%	1.71 [0.40, 7.26]				
Parodi 2008	9	24	5	13	5.5%	0.96 [0.24, 3.85]	-			
Rouits 2004	14	35	з	31	2.6%	6.22 [1.58, 24.47]				
Shulman 2011	8	98	5	91	6.5%	1.53 [0.48, 4.86]			_	
Subtotal (95% Cl)		340		290	30.3%	2.01 [1.21, 3.34]		-		
Total events	58		25							
Heterogeneity: Chi ² = 4	.53, df = 6	6 (P = 0.6)	51); I ² = -	0%						
Test for overall effect: 2	Z = 2.71 (F	P = 0.007)							
Total (95% Cl)		887		932	100.0%	1.90 [1.44, 2.51]		•		
Total events	160		97							
Heterogeneity: Chi² = 7	.55, df = 1	17 (P = 0.	.98); I ² =	= 0%						
Test for overall effect: 2	Z = 4.51 (F	> < 0.000	01)			0.01	0.1	1	10	100

Figure 3. Forest plots of *1/*28 vs *1/*1, outcome: neutropenia. (a) (Stratified analysis based on 5-FU or analogue): + 5-FU, received 5-FU or an analogue; - 5-FU, did not receive 5-FU or analogue. (b) (Stratified analysis based on IRI-dose): high IRI, received medium or high dose of IRI; low IRI, received low dose of IRI. CI, confidence intervals; FU, fluorouracil; 1^2 , inconsistency index.

comparison were available in 13 trials. Overall, there was an increased risk of diarrhoea associated with the UGT1A1*28/*28 genotype (OR = 1.84, 95% Cl: 1.24–2.72; P = 0.002). The higher incidence of diarrhoea in UGT1A1*28/*28 patients was observed in the +5FU subgroup (OR = 1.78, 95% Cl: 1.16–2.75; P = 0.009) and in the high IRI subgroup (OR = 2.37, 95% Cl: 1.39–4.04; P = 0.002), but not in the other subgroups (Table 3). Heterogeneity was not statistically significant across all studies (I² = 27%, P = 0.15). There was no evidence of publication bias, given the symmetrical distribution of funnel plot and Egger's test (P = 0.84).

*UGT1A1*1/*28 vs UGT1A1*1/*1.* (Presented in Figure 5 and Supplementary Figures 2C and D) Thirteen studies were included in the comparison (Table 3). No publication bias was detected in the funnel plot and Egger's test (P = 0.18), and there was no heterogeneity noted ($l^2 = 0\%$, P = 0.55). Overall analyses showed no statistical difference between UGT1A1*1/*28 and UGT1A1*1/*1 patients for the risk of diarrhoea (OR = 1.20, 95% CI: 0.93–1.56; P = 0.16). In the high IRI subgroup, there was still a slightly higher risk of diarrhoea in UGT1A1*1/*28 patients (OR = 1.39, 95% CI: 0.97–1.98; P = 0.07), of borderline significance.

npg

	*28/*2	8	*1/*1	I		Odds Ratio		c	dds Rati	>	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	21	м-н,	Fixed, 95	% CI	
1.3.1 +5FU											
Braun 2009	2	18	5	115	3.6%	2.75 [0.49, 15.38]					
Carlini 2005	0	5	10	29	9.5%	0.17 [0.01, 3.36]					
Ferraldeschi 2009	2	8	1	43	0.7%	14.00 [1.09, 179.00]					
Glimelius 2011	1	13	4	72	3.4%	1.42 [0.15, 13.79]					
Kweekel 2008	4	11	14	65	7.7%	2.08 [0.53, 8.14]					
Lamas 2012	о	9	9	59	7.7%	0.28 [0.01, 5.22]		-			
Marcuello 2004	7	10	7	40	2.5%	11.00 [2.27, 53.37]				-	
Martinez 2010	9	15	13	56	6.5%	4.96 [1.49, 16.55]				-	
McLeod 2010	4	11	10	44	7.6%	1 94 [0 47, 8 01]					
Rouits 2004	2	7	4	31	3.1%	2.70 [0.39, 18.92]					
Shulman 2011	5	25	25	91	25.6%	0.66 [0.22, 1.95]					
Toffoli 2006	1	22	6	114	5.5%	0.86 [0.10, 7.49]			-		
Subtotal (95% Cl)		154		759	83.2%	1.78 [1.16, 2.75]			-		
Total events	37		108								
Heterogeneity: Chi ² =	18.50, df =	= 11 (P	= 0.07); 1	² = 41%	,						
Test for overall effect:	Z = 2.62 (P = 0.0	09)								
1.3.2 -5FU											
Braun 2009	1	11	4	52	3.8%	1.20 [0.12, 11.91]					
Kweekel 2008	2	з	7	46	0.8%	11 14 [0.89, 140 12]					
Massacesi 2006	1	7	з	27	3.1%	1.33 [0.12, 15.20]					
McLeod 2010	5	11	16	52	9.0%	1.88 [0.50, 7.05]					
Subtotal (95% CI)		32		177	16.8%	2.09 [0.83, 5.26]					
Total events	9		30								
Heterogeneity: Chi ² =	2.06. df =	3 (P = 0	$(56): 1^2 =$	0%							
Test for overall effect:											
Total (95% Cl)		186		936	100 <u>.</u> 0%	1.84 [1.24, 2.72]			•		
Total events	46		138			_					
Heterogeneity: Chi ² =	20.53, df =	= 15 (P	= 0,15);	$^{2} = 27\%$			+				
Test for overall effect:		•					0.01	0.1	1	10	10
Test for subgroup diffe							Favour	s experime	əntal Fa	vours cor	ntrol

0	*28/*2	8	*1/*1			Odds Ratio		0	dds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		м-н,	Fixed, 95% Cl	
1.4.1 High IRI										
Braun 2009	2	18	5	115	3.6%	2.75 [0.49, 15.38]				_
Braun 2009	1	11	4	52	3.8%	1.20 [0.12, 11.91]				-
Ferraldeschi 2009	2	8	1	43	0.7%	14.00 [1.09, 179.00]				
Glimelius 2011	1	13	4	72	3.4%	1.42 [0.15, 13.79]			-	_
Kweekel 2008	2	з	7	46	0.8%	11.14 [0.89, 140.12]			·	
Kweekel 2008	4	11	14	65	7.7%	2.08 [0.53, 8.14]				
Lamas 2012	0	9	9	59	7.7%	0.28 [0.01, 5.22]				
Marcuello 2004	7	10	7	40	2.5%	11.00 [2.27, 53.37]				-
McLeod 2010	5	11	16	52	9.0%	1.88 [0.50, 7.05]				
Toffoli 2006	1	22	6	114	5.5%	0.86 [0.10, 7.49]			-	
Subtotal (95% CI)		116		658	44.6%	2.37 [1.39, 4.04]			-	
Total events	25		73							
Heterogeneity: Chi ² =	10.54, df =	9 (P =	0.31); l ² :	= 15%						
Test for overall effect:	Z = 3.15 (I	⊃ = 0.0	02)							
1.4.2 Low IRI										
Carlini 2005	0	5	10	29	9.5%	0.17 [0.01, 3.36]	•	-		
Martinez 2010	9	15	13	56	6.5%	4 96 [1 49, 16 55]				
Massacesi 2006	1	7	з	27	3.1%	1.33 [0.12, 15.20]			-	_
McLeod 2010	4	11	10	44	7.6%	1.94 [0.47, 8.01]				
Rouits 2004	2	7	4	31	3.1%	2.70 [0.39, 18.92]		-		
Shulman 2011	5	25	25	91	25.6%	0.66 [0.22, 1.95]				
Subtotal (95% CI)		70		278	55.4%	1.41 [0.79, 2.51]			-	
Total events	21		65							
Heterogeneity: Chi ² =	8.64, df =	5 (P = 0	0.12); I ² =	42%						
Test for overall effect:	Z = 1.17 (I	P = 0.2	4)							
Total (95% Cl)		186		936	100.0%	1.84 [1.24, 2.72]			•	
Total events	46		138							
Heterogeneity: Chi ² =	20.53, df =	15 (P	= 0.15);	= 27%				-		
Test for overall effect:							0.01	0.1	1 10	0 100
Test for subgroup diffe	•		,				Favours	exPerime	ntal Favours	s control

Figure 4. Forest plots of *28/*28 vs *1/*1, outcome: diarrhoea. (**a**) (Stratified analysis based on 5-FU or analogue): + 5-FU, received 5-FU or an analogue; - 5-FU, did not receive 5-FU or analogue. (**b**) (Stratified analysis based on IRI-dose): high IRI, received medium or high dose of IRI; low IRI, received low dose of IRI. CI, confidence intervals; FU, fluorouracil; I², inconsistency index.

*UGT1A1*28/*28 vs UGT1A1*1/*28 or UGT1A1*1/*1.* (Presented in Supplementary Figure 4 and Supplementary Figures 2E and F) Thirteen trials provided relevant data for this comparison (Table 3). No statistical heterogeneity were detected ($l^2 = 14\%$, P = 0.29). There was no evidence of publication bias, given the symmetrical funnel plot and Egger's test (P = 0.34). Although the pooled OR was 1.71 (95% CI: 1.18–2.47; P = 0.005) across all studies, the relationship was only seen in the subgroup of studies receiving

concurrent 5FU or its analogues (+ 5FU) and in the subgroup of studies that used a higher dose of IRI (high IRI).

DISCUSSION

Previously reported meta-analyses^{27–29} mainly focused on dosedependent associations between UGT1A1*28 genotype and IRIinduced neutropenia or diarrhoea. However, results from these

	*1/*28	в	*1/*1			Odds Ratio		Odds Ra	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 9	95% CI	
2.3.1 +5FU										
Braun 2009	4	75	5	115	3.6%	1 24 [0.32, 4.77]				
Carlini 2005	10	29	10	28	6.4%	0.95 [0.32, 2.81]			_	
Ferraldeschi 2009	з	41	1	43	0.9%	3.32 [0.33, 33.25]				-
Glimelius 2011	5	51	4	72	2.9%	1 85 [0 47, 7 25]				
Kweekel 2008	14	62	14	65	10.2%	1.06 [0.46, 2.46]			-	
Lamas 2012	з	32	9	59	5.5%	0.57 [0.14, 2.29]				
Marcuello 2004	15	45	7	40	4.7%	2.36 [0.85, 6.57]		+		
Martinez 2010	23	78	13	56	10.2%	1.38 [0.63, 3.04]			_	
McLeod 2010	12	54	10	44	8.2%	0.97 [0.37, 2.52]			-	
Rouits 2004	7	35	4	31	3.3%	1.69 [0.44, 6.43]				
Shulman 2011	18	98	25	91	20.3%	0.59 [0.30, 1.18]				
Toffoli 2006	14	114	6	114	5.1%	2.52 [0.93, 6.81]		<u> </u>		
Subtotal (95% CI)		714		758	81.2%	1 19 [0 89, 1 58]		•		
Total events	128		108							
Total events Heterogeneity: Chi ² =		11 (P		. = 0%						
	10.85, df =		= 0.46); I ²	² = 0%						
Heterogeneity: Chi ² =	10.85, df =		= 0.46); I ²	^e = 0%						
Heterogeneity: Chi² = Test for overall effect:	10.85, df = Z = 1.15 (I	≥ = 0.2	= 0.46); I ²		3.7%	0.48 [0.08, 2.74]	-		_	
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU	10.85, df =		= 0.46); I ² 5)	² = 0% 52 46	3.7% 4.2%	0.48 [0.08, 2.74] 1.63 [0.51, 5.21]	-		-	
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009	10.85, df = Z = 1.15 (I 2	⊃ = 0.2 52	= 0.46); I ² 5) 4	52	4.2%	1.63 [0.51, 5.21]	-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008	10.85, df = Z = 1.15 (I 2 7	⊃ = 0.2 52 31	= 0.46); 1 2 5) 4 7	52 46			-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Massacesi 2006	10.85, df = Z = 1.15 (I 2 7 6	⊃ = 0.2 52 31 22	= 0.46); l ² 5) 4 7 3	52 46 27	4.2% 1.9%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76]	-		 	
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Massacesi 2006 McLeod 2010	10.85, df = Z = 1.15 (I 2 7 6	> = 0.2 52 31 22 40	= 0.46); l ² 5) 4 7 3	52 46 27 52	4.2% 1.9% 9.0%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63]	-		 	
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Massacesi 2006 McLeod 2010 Subtotal (95% CI)	10.85, df = Z = 1.15 (l 7 6 13 28	P = 0.2 52 31 22 40 145	= 0.46); I ² 5) 4 7 3 16 30	52 46 27 52 177	4.2% 1.9% 9.0%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63]	-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Massacesi 2006 McLeod 2010 Subtotal (95% CI) Total events	10.85, df = Z = 1.15 (f 2 7 6 13 28 2.72, df = 3	P = 0.2 52 31 22 40 145	= 0.46); l ² 5) 4 7 3 16 30 0.44); l ² =	52 46 27 52 177	4.2% 1.9% 9.0%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63]	-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Maseacesi 2006 McLeod 2010 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect:	10.85, df = Z = 1.15 (f 2 7 6 13 28 2.72, df = 3	P = 0.2 52 31 22 40 145	= 0.46); l ² 5) 4 7 3 16 30 0.44); l ² =	52 46 27 52 177 0%	4.2% 1.9% 9.0%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63] 1.28 [0.71, 2.30]	-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Massacesi 2006 McLeod 2010 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: Total (95% Cl)	10.85, df = Z = 1.15 (l 2 7 6 13 28 2.72, df = : Z = 0.82 (l	P = 0.2 52 31 22 40 145 3 (P = 0 P = 0.4	= 0.46); I ² 5) 4 7 3 16 30 0.44); I ² = 1)	52 46 27 52 177 0%	4.2% 1.9% 9.0% 18.8%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63]	-			
Heterogeneity: Chi ² = Test for overall effect: 2.3.2 -5FU Braun 2009 Kweekel 2008 Maseacesi 2006 McLeod 2010 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect:	10.85, df = Z = 1.15 (f 2 7 6 13 28 2.72, df = Z = 0.82 (f 156	P = 0.2 52 31 22 40 145 3 (P = 0 P = 0.4 859	= 0.46); I ² 5) 4 7 3 16 30 0.44); I ² = 1) 138	52 46 27 52 177 0% 935	4.2% 1.9% 9.0% 18.8%	1.63 [0.51, 5.21] 3.00 [0.65, 13.76] 1.08 [0.45, 2.63] 1.28 [0.71, 2.30]	-	•	 	

4	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
	75	5	115	3.6%	1 24 [0 32, 4 77]	
2	52	4	52	3.7%	0.48 [0.08, 2.74]	
з	41	1	43	0.9%	3.32 [0.33, 33.25]	
5	51	4	72	2.9%	1 85 [0 47, 7 25]	
7	31	7	46	4.2%	1.63 [0.51, 5.21]	
14	62	14	65	10.2%	1.06 [0.46, 2.46]	
з	32	9	59	5.5%	0.57 [0.14, 2.29]	
15	45	7	40	4.7%	2.36 [0.85, 6.57]	
13	40	16	52	9.0%	1.08 [0.45, 2.63]	
14	114	6	114	5.1%	2.52 [0.93, 6.81]	
	543		658	49.7%	1.39 [0.97, 1.98]	►
80		73				
6.90, df = 1	9 (P = 0	$(0.65); I^2 =$	0%			
Z = 1.80 (P = 0.0	7)				
10	29	10	28	6.4%	0.95 [0.32, 2.81]	
23	78	13	56	10.2%	1.38 [0.63, 3.04]	
6	22	з	27	1.9%	3 00 [0 65, 13 76]	
12	54	10	44	8.2%	0.97 [0.37, 2.52]	
7	35	4	31	3.3%	1.69 [0.44, 6.43]	
18	98	25	91	20.3%	0.59 [0.30, 1.18]	
	316		277	50.3%	1.02 [0.70, 1.50]	•
76		65				
5.44, df = :	5 (P = 0	0.36); I ² =	8%			
Z = 0.11 (P = 0.9	1)				
	859		935	100.0%	1.20 [0.93, 1.56]	•
156		138				
13.63, df =	15 (P	= 0.55); I	² = 0%			0.1 1 10 1
z = 1.39 (P = 0.1	6)			0.01	0.1 1 10 1
	$5 \\ 7 \\ 14 \\ 3 \\ 15 \\ 13 \\ 14 \\ 80 \\ .90, df = : \\ 2 = 1.80 (l \\ 10 \\ 23 \\ 6 \\ 12 \\ 7 \\ 18 \\ 76 \\ .44, df = : \\ 2 = 0.11 (l \\ 156 \\ 3.63, df = \\ 2 = 1.39 (l \\ 136 \\ 156 \\ 3.63, df = 1 \\ 2 = 1.39 (l \\ 136 \\ 3.63, df = 1 \\ 136 \\$	5 51 $7 31$ $14 62$ $3 32$ $15 45$ $13 40$ $14 114$ 543 80 $2 = 1.80 (P = 0.0$ $10 29$ $23 78$ $6 22$ $12 54$ $7 35$ $18 98$ 316 76 $644, df = 5 (P = 0.9)$ 859 156 $3.63, df = 15 (P = 0.1)$	5 51 47 31 714 62 143 32 915 45 713 40 1614 114 654380 735.90, df = 9 (P = 0.65); P =Z = 1.80 (P = 0.07)10 29 1023 78 136 22 312 54 107 35 418 98 2531676 655.44, df = 5 (P = 0.36); P =Z = 0.11 (P = 0.91)859156 138	$5 51 4 72$ $7 31 7 46$ $14 62 14 65$ $3 32 9 59$ $15 45 7 40$ $13 40 16 52$ $14 114 6 114$ $543 658$ $80 73$ $;;0, df = 9 (P = 0.65); I^2 = 0\%$ $Z = 1.80 (P = 0.07)$ $10 29 10 28$ $23 78 13 56$ $6 22 3 27$ $12 54 10 44$ $7 35 4 31$ $18 98 25 91$ $316 277$ $76 65$ $;;44, df = 5 (P = 0.36); I^2 = 8\%$ $Z = 0.11 (P = 0.91)$ $859 935$ $156 138$ $3.63, df = 15 (P = 0.55); I^2 = 0\%$ $Z = 1.39 (P = 0.16)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5 51 4 72 2.9\% 1.85 [0.47, 7.25] \\ 7 31 7 46 4.2\% 1.63 [0.51, 5.21] \\ 14 62 14 65 10.2\% 1.06 [0.46, 2.46] \\ 3 32 9 59 5.5\% 0.57 [0.14, 2.29] \\ 15 45 7 40 4.7\% 2.36 [0.85, 6.57] \\ 13 40 16 52 9.0\% 1.08 [0.45, 2.63] \\ 14 114 6 114 5.1\% 2.52 [0.93, 6.81] \\ 543 658 49.7\% 1.39 [0.97, 1.98] \\ 80 73 \\ .590, df = 9 (P = 0.65); P = 0\% \\ Z = 1.80 (P = 0.65); P = 0\% \\ Z = 1.80 (P = 0.07) \\ \hline 10 29 10 28 6.4\% 0.95 [0.32, 2.81] \\ 12 54 10 44 8.2\% 0.97 [0.37, 2.52] \\ 7 35 4 31 3.3\% 1.69 [0.44, 6.43] \\ 18 98 25 91 20.3\% 0.59 [0.30, 1.18] \\ 18 98 25 91 20.3\% 0.59 [0.30, 1.18] \\ 18 98 25 91 20.3\% 0.59 [0.30, 1.18] \\ 18 98 25 91 20.3\% 0.59 [0.30, 1.18] \\ 76 65 \\ .44, df = 5 (P = 0.36); P = 8\% \\ Z = 0.11 (P = 0.91) \\ \hline 859 935 100.0\% 1.20 [0.93, 1.56] \\ 156 138 \\ 3.63, df = 15 (P = 0.55); P = 0\% \\ Z = 1.39 (P = 0.16) \\ \hline 10 10 10 10 10 10 10 10$

Figure 5. Forest plots of *1/*28 vs *1/*1, outcome: diarrhoea. (a) (Stratified analysis based on 5-FU or analogue): + 5-FU, received 5-FU or an analogue; - 5-FU, did not receive 5-FU or analogue. (b) (Stratified analysis based on IRI-dose): high IRI, received medium or high dose of IRI; low IRI, received low dose of IRI. CI, confidence intervals; FU, fluorouracil; 1², inconsistency index.

studies were not completely consistent. This could be a consequence of including studies conducted across various tumour types, as the risk of severe toxicity with IRI can vary by disease site. Thus, the present meta-analysis assessed the association of UGT1A1*28 polymorphisms with IRI-induced neutropenia and diarrhoea in a single cancer site; CRC.

In this meta-analysis, the relationship between UGT1A1*28 genotypes and IRI-induced neutropenia (grade III-IV) was first evaluated; patients with UGT1A1*28 allele in either heterozygote or homozygote form were at an increased risk of neutropenia regardless of the dose of IRI administrated, and regardless of whether 5FU (or analogue) was included in the regimens. The results from our meta-analysis of high IRI and low IRI subgroup are consistent with the meta-analysis of Zhe-Yi H et al,²⁸ where the UGT1A1*28/*28 genotype was associated with an increased risk of neutropenia not only at high doses of IRI but also at low doses in an analysis across various tumour types.

Unlike Zhe-Yi H et al²⁸ we also compared the UGT1A1*28/*28 vs UGT1A1*1/*1 (homozygous model) separately for neutropenia, while the previous meta-analyses focused on various tumour

128

types,^{27,28} assessing only the heterozygous and recessive models. An important message of our study is that UGT1A1*28/*28 homozygous patients had more than double the risk than UGT1A1*28 heterozygous patients (OR = 4.79 vs 1.90). Our data support the recommendation of US Food and Drug Administration in 2005 to warn of elevated risk of neutropenia for UGT1A1*28/*28 patients in the IRI product label, but does not identify what the proper clinical management should be for these at-risk patients.

The association between UGT1A1*28 polymorphism and severe diarrhoea, another important toxicity of IRI, was detected in CRC. The UGT1A1*28 genotypes were significantly associated with an increased risk of IRI-induced diarrhoea. We observed that UGT1A1*28/*28 patients were at an increased risk of diarrhoea following medium or high doses of IRI, but not at low doses. A similar result was reported in a previous meta-analysis.²⁹ Our observation did confirm that the IRI dose modulated the association between UGT1A1*28 genotype and IRI-induced diarrhoea. Our results do not suggest that receiving a second diarrhoea-including chemotherapeutic agent (i.e., 5-FU or analogue) modifies the relationship between UGT1A1*28 and diarrhoea. In fact, there was a hint that the relationship was stronger in the no-5-FU (-5FU) subgroup when compared with the +5FU subgroup of patients. Perhaps the greater risk of overall diarrhoea associated with 5-FU overpowered any differential effects of UGT1A1*28 on diarrhoea.

We observed that pooled ORs for diarrhoea were much smaller than the pooled ORs for neutropenia in all comparisons. This is not surprising, as the risk of diarrhoea is modulated by gut-flora-producing enzymes that activate or inactivate SN-38.⁵⁵ Confounding by gut flora may have attenuated the primary relationship. Another reason may be related to local treatment factors in the gut, such as previous surgery and radiotherapy. For example, local irradiation can worsen diarrhoea independent of the UGT1A1 genotype.²⁶

In both neutropenia and diarrhoea, there were suggestions that the heterozygous variant UGT1A1*1/*28 had an intermediate effect. By assessing the heterozygous variant separately, we are able to suggest that when combined with other clinical factors, even the heterozygous variant may have clinical relevance.

In Caucasian populations, the homozygous variant genotype UGT1A1*28/*28 has been associated with Gilbert's syndrome, which is characterized by intermittent hyperbilirubinaemia.⁵⁶ With the intention to avoid participants with Gilbert's syndrome, nine studies excluded patients with elevated bilirubin from the trials. The exclusion of patients with markedly pathological laboratory values from the trial may explain why no other correlation was found.⁵⁷

There are limitations to this analysis. First, there is inherent heterogeneity to all meta-analyses, and in the analyzed studies different combinations of chemotherapy regimens were used, and patients were of varied performance status. Further, there were differences in study design, the source of population, IRI doses, polymorphism detection methods, toxicity grade criteria, stage of CRC, and pretreatment with other regimens. Second, articles included in this meta-analysis were restricted to English language publications. Articles with potentially high-quality data in other languages were excluded because of anticipated difficulties in obtaining accurate medical translation. This may also result in a decreased power during our analysis. Third, not all studies included adequate data for all subgroup comparison analyses. Fourth, the possibility of information and selection biases cannot be completely excluded. For example, some of these studies may have arms where patients are not receiving IRI. We selected patients from subgroup samples receiving IRI.

In summary, this meta-analysis provided evidence for the association between the UGT1A1*28 polymorphism and an increased risk of IRI-induced neutropenia and diarrhoea in CRC. Associations with significant neutropenia were consistent and strong. In contrast, associations with diarrhoea were weaker, and

primarily seen when higher doses of IRI were administrated. Clinical validity is only one step of several that determine whether a biomarker is adopted into clinical practice. Assessment of clinical utility is also important. Generally the combination of prolonged severe neutropenia and/or prolonged diarrhoea provides the greatest risk to morbidity and mortality of IRI. Whether UGT1A1*28 rises to the level of clinical utility is still unclear. It is possible that UGT1A1 can be incorporated into a useful risk model of toxicity that includes a panel of clinical and genetic factors. Nonetheless, elucidating the mechanisms through pharmacogenetic association studies will improve our understanding of the biology of drug action and provide the basis upon which personalized medicine can be implemented.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was sponsored in part by the Alan B Brown Chair in Molecular Genomics, CCO Chair in Experimental Therapeutics and Population studies and Posluns Family Foundation to Professor GL. This work was also supported by the Scholarship Fund Award for Young Teachers Studying Abroad from Hubei University of Chinese Medicine and the Education Department of Hubei Province in PRC Foundation to Dr XL (no. Q20071601).

REFERENCES

- 1 Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. *Lancet* 2005; **365**: 153–165.
- 2 Pizzolato JF, Saltz LB. The camptothecins. Lancet 2003; 361: 2235-2242.
- 3 Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P *et al.* Irinotecan combined with fluorouracil compared with fluorouracil alone as firstline treatment for metastatic colorectal cancer: a multicentre randomised trial. *Lancet* 2000; **355**: 1041–1047.
- 4 Ratain MJ. Irinotecan dosing: does the CPT in CPT-11 stand for "Can't Predict Toxicity"? J Clin Oncol 2002; 20: 7–8.
- 5 Funke S, Brenner H, Chang-Claude J. Pharmacogenetics in colorectal cancer: a systematic review. *Pharmacogenomics* 2008; **9**: 1079–1099.
- 6 Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. *Cancer Res* 1991; **51**: 4187–4191.
- 7 Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? *Proc Natl Acad Sci USA* 1998; **95**: 8170–8174.
- 8 Iyer L, Hall D, Das S, Mortell MA, Ramírez J, Kim S et al. Phenotype-genotype correlation of *in vitro* SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. *Clin Pharmacol Ther* 1999; **65**: 576–582.
- 9 Lamas MJ, Duran G, Balboa E, Bernardez B, Candamio S, Vidal Y et al. The value of genetic polymorphisms to predict toxicity in metastatic colorectal patients with irinotecan-based regimens. *Cancer Chemother Pharmacol* 2012; 69: 1591–1599.
- 10 Shulman K, Cohen I, Barnett-Griness O, Kuten A, Gruber SB, Lejbkowicz F et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. *Cancer* 2011; **117**: 3156–3162.
- 11 Martinez-Balibrea E, Abad A, Martínez-Cardús A, Ginés A, Valladares M, Navarro M *et al.* UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. *Br J Cancer* 2010; **103**: 581–589.
- 12 McLeod HL, Sargent DJ, Marsh S, Green EM, King CR, Fuchs CS et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol 2010; 28: 3227–3233.
- 13 Glimelius B, Garmo H, Berglund A, Fredriksson LA, Berglund M, Kohnke H *et al.* Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. *Pharmacogenomics J* 2011; **11**: 61–71.
- 14 Schulz C, Heinemann V, Schalhorn A, Moosmann N, Zwingers T, Boeck S et al. UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J Gastroenterol 2009; 15: 5058–5066.
- 15 Braun MS, Richman SD, Thompson L, Daly CL, Meade AM, Adlard JW et al. Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J Clin Oncol 2009; 27: 5519–5528.

- 16 Parodi L, Pickering E, Cisar LA, Lee D, Soufi-Mahjoubi R. Utility of pretreatment bilirubin level and UGT1A1 polymorphisms in multivariate predictive models of neutropenia associated with irinotecan treatment in previously untreated patients with colorectal cancer. Arch Drug Inf 2008; 1: 97–106.
- 17 Ferraldeschi R, Minchell LJ, Roberts SA, Tobi S, Hadfield KD, Blackhall FH *et al.* UGT1A1*28 genotype predicts gastrointestinal toxicity in patients treated with intermediate-dose irinotecan. *Pharmacogenomics* 2009; **10**: 733–739.
- 18 Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D'Andrea M et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006; 24: 3061–3068.
- 19 Rouits E, Charasson V, Pétain A, Boisdron-Celle M, Delord JP, Fonck M et al. Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 2008; 99: 1239–1245.
- 20 Kweekel DM, Gelderblom H, Van der Straaten T, Antonini NF, Punt CJ, Guchelaar HJ. UGT1A1*28 genotype and irinotecan dosage in patients with metastatic colorectal cancer: a Dutch Colorectal Cancer Group study. Br J Cancer 2008; 99: 275–282.
- 21 Ruzzo A, Graziano F, Loupakis F, Santini D, Catalano V, Bisonni R *et al.* Pharmacogenetic profiling in patients with advanced colorectal cancer treated with firstline FOLFIRI chemotherapy. *Pharmacogenomics J* 2008; **8**: 278–288.
- 22 Côté JF, Kirzin S, Kramar A, Mosnier JF, Diebold MD, Soubeyran I *et al.* UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. *Clin Cancer Res* 2007; **13**: 3269–3275.
- 23 Massacesi C, Terrazzino S, Marcucci F, Rocchi MB, Lippe P, Bisonni R *et al.* Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. *Cancer* 2006; **106**: 1007–1016.
- 24 Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P *et al.* UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. *Clin Cancer Res* 2005; **11**: 1226–1236.
- 25 Rouits E, Boisdron-Celle M, Dumont A, Guérin O, Morel A, Gamelin E. Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. *Clin Cancer Res* 2004; **10**: 5151–5159.
- 26 Marcuello E, Altés A, Menoyo A, Del Rio E, Gómez-Pardo M, Baiget M. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. *Br J Cancer* 2004; **91**: 678–682.
- 27 Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 2007; 99: 1290–1295.
- 28 Zhe-Yi H, Qi Y, Pei Q, Guo C. Dose-dependent association between ugt1a1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. *Clin Cancer Res* 2010; 16: 3832–3842.
- 29 Hu ZY, Yu Q, Zhao YS. Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. *Eur J Cancer* 2010; **46**: 1856–1865.
- 30 Yong WP, Innocenti F, Ratain MJ. The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol 2006; 62: 35–46.
- 31 Hall D, Ybazeta G, Destro-Bisol G, Petzl-Erler ML, Di Rienzo A. Variability at the uridine diphosphate glucuronosyltransferase 1A1 promoter in human populations and primates. *Pharmacogenetics* 1999; **9**: 591–599.
- 32 Premawardhena A, Fisher CA, Liu YT, Verma IC, de Silva S, Arambepola M *et al.* The global distribution of length polymorphisms of the promoters of the glucuronosyltransferase 1 gene (UGT1A1): hematologic and evolutionary implications. *Blood Cells Mol Dis* 2003; **31**: 98–101.
- 33 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. J Clin Epidemiol 2009; 62: 1006–1012.
- 34 Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–748.
- 35 DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; **7**: 177–188.
- 36 Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.
- 37 Duval S, Tweedie R. A nonparametric 'Trim and Fill' method of accounting for publication bias in meta-analysis. *Biometrics* 2000; 56: 455–463.
- 38 Kohne CH, van Cutsem E, Wils J, Bokemeyer C, El-Serafi M, Lutz MP et al. Phase III study of weekly high-dose infusional fluorouracil plus folinic acid with or without irinotecan in patients with metastatic colorectal cancer: European Organisation for Research and Treatment of Cancer Gastrointestinal Group Study 40986. J Clin Oncol 2005; 23: 4856–4865.
- 39 Choi YH, Kim TW, Kim KP, Lee SS, Hong YS, Ryu MH *et al.* A phase ii study of clinical outcomes of 3-week cycles of irinotecan and s-1 in patients with

previously untreated metastatic colorectal cancer: influence of the UGT1A1 and CYP2A6 polymorphisms on clinical activity. *Oncology* 2012; **82**: 290–297.

- 40 Sunakawa Y, Ichikawa W, Fujita K, Nagashima F, Ishida H, Yamashita K et al. UGT1A1*1/*28 and *1/*6 genotypes have no effects on the efficacy and toxicity of FOLFIRI in Japanese patients with advanced colorectal cancer. Cancer Chemother Pharmacol 2011; 68: 279–284.
- 41 Boige V, Mendiboure J, Pignon JP, Loriot MA, Castaing M, Barrois M et al. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J Clin Oncol 2010; 28: 2556–2564.
- 42 Cecchin E, Innocenti F, D'Andrea M, Corona G, De Mattia E, Biason P *et al.* Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. *J Clin Oncol* 2009; **27**: 2457–2465.
- 43 Martinez-Balibrea E, Manzano JL, Martinez-Cardus A, Moran T, Cirauqui B, Catot S et al. Combined analysis of genetic polymorphisms in thymidylate synthase, uridine diphosphate glucoronosyltransferase and X-ray cross complementing factor 1 genes as a prognostic factor in advanced colorectal cancer patients treated with 5-fluorouracil plus oxaliplatin or irinotecan. Oncol Rep 2007; 17: 637–645.
- 44 Rhodes KE, Zhang W, Yang D, Press OA, Gordon M, Vallböhmer D *et al.* ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer patients treated with first-line irinotecan. *Drug Metab Lett* 2007; **1**: 23–30.
- 45 Ishida H, Fujita K, Akiyama Y, Sunakawa Y, Yamashita K, Mizuno K *et al.* Regimen selection for first-line FOLFIRI and FOLFOX based on UGT1A1 genotype and physical background is feasible in Japanese patients with advanced colorectal cancer. *Jpn J Clin Oncol* 2011; **41**: 617–623.
- 46 Fakih MG, Ross ME, Starostik P. Increased frequency of uridine diphosphate glucuronosyltransferase 1A1 7/7 in patients experiencing severe irinotecaninduced toxicities. *Clin Colorectal Cancer* 2007; 6: 583–587.
- 47 de Jong FA, Kehrer DF, Mathijssen RH, Creemers GJ, de Bruijn P, van Schaik RH *et al.* Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. *Oncologist* 2006; **11**: 944–954.
- 48 Park SR, Kong SY, Rhee J, Park YI, Ryu KW, Lee JH et al. Phase II study of a triplet regimen of S-1 combined with irinotecan and oxaliplatin in patients with metastatic gastric cancer: clinical and pharmacogenetic results. Ann Oncol 2011; 22: 890–896.
- 49 Denlinger CS, Blanchard R, Xu L, Bernaards C, Litwin S, Spittle C et al. Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors. Cancer Chemother Pharmacol 2009; 65: 97–105.
- 50 Okuyama Y, Hazama S, Nozawa H, Kobayashi M, Takahashi K, Fujikawa K et al. Prospective phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1 28/6 polymorphisms. Jpn J Clin Oncol 2011; 41: 477–482.
- 51 Hazama S, Nagashima A, Kondo H, Yoshida S, Shimizu R, Araki A et al. Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. *Cancer Sci* 2010; **101**: 722–727.
- 52 Liu CY, Chen PM, Chiou TJ, Liu JH, Lin JK, Lin TC *et al*. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. *Cancer* 2008; **112**: 1932–1940.
- 53 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. JAMA 2000; 283: 2008–2012.
- 54 Jorgensen AL, Williamson PR. Methodological quality of pharmacogenetic studies: issues of concern. *Stat Med* 2008; **27**: 6547–6569.
- 55 Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. *Clin Pharmacokinet* 2002; 41: 751–790.
- 56 Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? *Proc Natl Acad Sci USA* 1998; **95**: 8170–8174.
- 57 Sorbye H, Kohne CH, Sargent DJ, Glimelius B. Patient characteristics and stratification in medical treatment studies for metastatic colorectal cancer: a proposal for standardization of patient characteristic reporting and stratification. *Ann Oncol* 2007; **18**: 1666–1672.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)