Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations from Northwest Mexico

Abstract

We previously documented the lowest frequency of CYP2C9*2 in Mexican indigenous Tepehuanos followed by Mestizos and Mexican-Americans populations, suggesting a negative correlation between the CYP2C9*2 frequency and the degree of Asian ancestry in indigenous Americans. We determined the influence of ethnic admixture components on the CYP2C9 allele distribution in 505 Amerindian from eight indigenous populations through genotyping CYP2C9*2, *3 and *6 alleles by real-time PCR and molecular evaluation of ancestry. The frequencies for CYP2C9*2 were 0.026 in Seris and 0.057 in Mayos, being higher than in Asians (P<0.001). CYP2C9*3 was found in Tarahumaras (0.104), Mayos (0.091), Tepehuanos (0.075), Guarijíos (0.067), Huicholes (0.033) and Coras (0.037), with East Asians having lower frequencies than the former three groups (P<0.001). CYP2C9*6 was not found. The frequency of CYP2C9*2 was lower in Amerindians than in European populations, and higher than their Asian ancestors. The presence of this allele in ethnic groups in Mexico can be explained by European admixture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Gardiner SJ, Begg EJ . Pharmacogenetics drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–590.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou SF, Zhou ZW, Yang LP, Cai JP . Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem 2009; 16: 3480–3675.

    Article  CAS  PubMed  Google Scholar 

  3. Kesavan R, Narayan SK, Adithan C . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients. Eur J Clin Pharmacol 2010; 66: 689–696.

    Article  CAS  PubMed  Google Scholar 

  4. Human Cytochrome P450 (CYP) Allele Nomenclature Committee (http://www.cypalleles.ki.se).

  5. Goldstein JA . Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingelman-Sundberg M, Rodriguez-Antona C . Pharmacogenetics of drug metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci 2005; 360: 1563–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–349.

    Article  CAS  PubMed  Google Scholar 

  8. Rettie AE, Haining RL, Bajpai M, Levy RH . A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res 1999; 35: 253–255.

    Article  CAS  PubMed  Google Scholar 

  9. Aithal GP, Day CP, Kesteven PJ, Daly AK . Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–719.

    Article  CAS  PubMed  Google Scholar 

  10. Steward DJ, Naining RL, Henne KR, Davis G, Rushmore TH, Trager WF et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997; 7: 361–367.

    Article  CAS  PubMed  Google Scholar 

  11. McCrea JB, Cribb A, Rushmore T, Osborne B, Gillen L, Lo MW et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999; 65: 348–352.

    Article  CAS  PubMed  Google Scholar 

  12. Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT . Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9: 71–80.

    Article  CAS  PubMed  Google Scholar 

  13. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA . Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001; 11: 803–808.

    Article  CAS  PubMed  Google Scholar 

  14. INALI. Catálogo de las lenguas indígenas nacionales: variantes lingüísticas de México con sus autodenominaciones y referencias geoestadísticas. Diario Oficial de la Federación, 2008.

  15. Schurr TG . The peopling of the new world: Perspectives from Molecular Anthropology. Annu Rev Anthropol 2004; 33: 551–583.

    Article  Google Scholar 

  16. Moridani M, Fu L, Selby R, Yun F, Sukovic T, Wong B et al. Frequency of CYP2C9 polymorphisms affecting warfarin metabolism in a large anticoagulant clinic cohort. Clin Biochem 2006; 39: 606–612.

    Article  CAS  PubMed  Google Scholar 

  17. Mushiroda T, Ohnishi Y, Saito S, Takahashi A, Kikuchi Y, Saito S et al. Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients. J Hum Genet 2006; 51: 249–253.

    Article  CAS  PubMed  Google Scholar 

  18. Pang YS, Wong LP, Lee TC, Mustafa AM, Mohamed Z, Lang CC . Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects. Br J Clin Pharmacol 2004; 58: 332–335.

    Article  CAS  PubMed  Google Scholar 

  19. Llerena A, Dorado P, Kirwan FO’, Jepson R, Licinio J, Wong M-L . Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharmacogenomics J 2004; 4: 403–406.

    Article  CAS  PubMed  Google Scholar 

  20. Dorado P, Sosa M, Peñas-Lledó EM, Alanis-Bañuelos RE, Wong M-L, Licinio J et al. CYP2C9 allele frequency differences between populations of Mexican-Mestizo, Mexican-Tepehuano, and Spaniards. Pharmacogenomics J 2011; 11: 108–112.

    Article  CAS  PubMed  Google Scholar 

  21. Wang SL, Huang J, Lai MD, Tsai JJ . Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 1995; 5: 37–42.

    Article  CAS  PubMed  Google Scholar 

  22. Nasu K, Kubota T, Ishizaki T . Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 1997; 7: 405–409.

    Article  CAS  PubMed  Google Scholar 

  23. Falush D, Stephens M, Pritchard JK . Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003; 164: 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. González-Martín A, Gorostiza A, Rangel-Villalobos H, Acunha V, Barrot C, Sánchez C et al. Analyzing the genetic structure of the Tepehua in relation to other neighboring Mesoamerican populations. A study based on allele frequencies of STRs markers. Am J Hum Biol 2008; 20: 605–613.

    Article  PubMed  Google Scholar 

  25. Quinto-Cortés CD, Arriola LA, García-Hughes G, García-López R, Molina DP, Flores M et al. Genetic characterization of indigenous peoples from Oaxaca, Mexico, and its relation to linguistic and geographic isolation. Hum Biol 2010; 82: 409–432.

    Article  PubMed  Google Scholar 

  26. Ibarra-Rivera L, Mirabal S, Regueiro MM, Herrera RJ . Delineating genetic relationships among the Maya. Am J Phys Anthropol 2008; 135: 329–347.

    Article  PubMed  Google Scholar 

  27. González-Andrade F, Sánchez D, González-Solórzano J, Gascón S, Martínez-Jarreta B . Sex-specific genetic admixture of Mestizos, Amerindian Kichwas, and Afro-Ecuadorans from Ecuador. Hum Biol 2007; 79: 51–77.

    Article  PubMed  Google Scholar 

  28. Coudray C, Calderon R, Guitard E, Ambrosio B, González-Martín A, Dugoujon JM . Allele frequencies of 15 tetrameric short tandem repeats (STRs) in Andalusians from Huelva (Spain). Forensic Sci Int 2007; 168: 1–4.

    Article  Google Scholar 

  29. Branco CC, Pacheco PR, Cabral R, Vicente AM, Mota-Vieira L . Genetic signature of the São Miguel Island population (Azores) assessed by 21 microsatellite loci. Am J Hum Biol 2008; 20: 118–120.

    Article  PubMed  Google Scholar 

  30. Calzada P, Suárez I, García S, Barrot C, Sánchez C, Ortega M et al. The Fang population of Equatorial Guinea characterised by 15 STR-PCR polymorphisms. Int J Legal Med 2005; 119: 107–110.

    Article  CAS  PubMed  Google Scholar 

  31. Alves C, Gusmão L, Damasceno A, Soares B, Amorim A . Contribution for an African autosomic STR database (AmpF/STR Identifiler and Powerplex 16 System) and a report on genotypic variations. Forensic Sci Int 2004; 139: 201–205.

    Article  CAS  PubMed  Google Scholar 

  32. Leeder JS, Gaedigk A, Gupta G, Simon S, Henne K, Allen K et al. Determinants of warfarin S:R ratio in orthopedic surgery. J Clin Pharmacol Ther 1999; 65: 194 (abstract PIII-170).

    Article  Google Scholar 

  33. Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E . Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004; 50: 195–200.

    Article  CAS  PubMed  Google Scholar 

  34. Bozina N, Granic P, Lalic Z, Tramisak I, Lovrić M, Stavljenić-Rukavina A . Genetic polymorphisms of cytochromes P450:CYP2C9, CYP2C19, and CYP2D6 in Croatian population. Croat Med J 2003; 44: 425–428.

    PubMed  Google Scholar 

  35. Dorado P, Berecz R, Norberto MJ, Yasar U, Dahl ML, Llerena A . CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur J Clin Pharmacol 2003; 59: 221–225.

    Article  CAS  PubMed  Google Scholar 

  36. Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS . Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 2001; 79: 841–847.

    Article  CAS  PubMed  Google Scholar 

  37. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–387.

    Article  CAS  PubMed  Google Scholar 

  38. Xie HG, Prasad HC, Kim RB, Stein CM . CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002; 54: 1257–1270.

    Article  CAS  PubMed  Google Scholar 

  39. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003; 59: 303–312.

    Article  CAS  PubMed  Google Scholar 

  40. Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M . Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 2001; 52: 447–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S . Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 1998; 20: 243–247.

    Article  CAS  PubMed  Google Scholar 

  42. Camorlinga-Ponce M, Perez-Perez G, Gonzalez-Valencia G, Mendoza I, Peñaloza-Espinosa R, Ramos I et al. Helicobacter pylori genotyping from American indigenous groups shows novel Amerindian vacA and cagA alleles and Asian, African and European admixture. PLos One 2011; 6: e27212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF . High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol Biol Evol 2004; 21: 164–175.

    Article  CAS  PubMed  Google Scholar 

  44. Barrot C, Sánchez C, Ortega M, González-Martín A, Brand-Casadevall C, Gorostiza A et al. Characterization of three Amerindian populations from Hidalgo State (Mexico) by 15 STR-PCR polymorphisms. Int J Legal Med 2005; 119: 111–115.

    Article  CAS  PubMed  Google Scholar 

  45. Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G et al. Genetic variation and population structure in Native Americans. PLoS Genet 2007; 3: e185.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A, Gorostiza A, Magaña MT, Páez-Riberos LA . Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 2008; 135: 448–461.

    Article  CAS  PubMed  Google Scholar 

  47. Barquera R, Zúñiga J, Hernández-Díaz R, Acuña-Alonzo V, Montoya-Gama K, Moscoso J et al. HLA class I and class II haplotypes in admixed families from several regions of Mexico. Mol Immunol 2008; 45: 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  48. Dreisbach AW, Japa S, Sigel A, Parenti MB, Hess AE, Srinouanprachanh SL et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am J Hypertens 2005; 18: 1276–1281.

    Article  CAS  PubMed  Google Scholar 

  49. Nebert DW . Polymorphism in Drug-metabolizing Enzymes: What is their Clinical Relevance and why do they exist? Am J Human Genet 1997; 60: 265–271.

    CAS  Google Scholar 

  50. Sosa-Macías M, Elizondo G, Flores-Pérez C, Flores-Pérez J, Bradley-Alvarez F, Alanis-Bañuelos RE et al. CYP2D6 genotype and phenotype in Amerindians of Tepehuano origin and Mestizos of Durango, Mexico. J Clin Pharmacol 2006; 46: 527–536.

    Article  PubMed  Google Scholar 

  51. Yasar U, Lundgren S, Eliasson E, Bennet A, Wiman B, de Faire U et al. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 2002; 299: 25–28.

    Article  CAS  PubMed  Google Scholar 

  52. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702–710.

    Article  CAS  PubMed  Google Scholar 

  53. Kirchheiner J, Seeringer A . Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochem Biophys Acta 2007; 1770: 489–494.

    Article  CAS  PubMed  Google Scholar 

  54. Mark L, Marki-Zay J, Fodor L, Hajdara I, Paragh G, Katona A . Cytochrome P450 2C9 polymorphism and acenocoumarol therapy. Kardiol Pol 2006; 64: 397–402.

    PubMed  Google Scholar 

  55. Lee CR, Goldstein JA, Pieper JA . Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251–263.

    Article  CAS  PubMed  Google Scholar 

  56. Günther T, Schmitt AO, Bortfeldt RH, Hinney A, Hebebrand J, Brockmann GA . Where in the genome are significant single nucleotide polymorphisms from genome-wide association studies located? OMICS 2011; 15: 507–512.

    Article  PubMed  Google Scholar 

  57. Tracy RP . ‘Deep phenotyping’: characterizing populations in the era of genomics and systems biology. Curr Opin Lipidol 2008; 19: 151–157.

    Article  CAS  PubMed  Google Scholar 

  58. Haring R, Wallaschofski H . Diving through the ‘-Omics’: The case for deep phenotyping and systems epidemiology. OMICS 2012; 16: 231–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K et al. A genome-wide association study of metabolic traits in human urine. Nat Genet 2011; 43: 565–569.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by CONACYT-Mexico Project 2009-01-113063. This study was partially supported by the Institute of Health Carlos III-FIS and the European Union (FEDER) Grants PI10/02010, PI10/02758 and CP06/00030 (P Dorado) and Gobierno de Extremadura AEXCID Cooperación Extremeña (11IA002). The study was coordinated in the RIBEF-SIFF network (Red Iberoamericana de Farmacogenética y Farmacogenómica; www.ribef.com) Consortium CEIBA for the Study of Pharmacogenetics of Iberoamerican Populations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Sosa-Macías or A LLerena.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa-Macías, M., Lazalde-Ramos, B., Galaviz-Hernández, C. et al. Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations from Northwest Mexico. Pharmacogenomics J 13, 567–572 (2013). https://doi.org/10.1038/tpj.2012.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.52

Keywords

This article is cited by

Search

Quick links