Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Profiling of drug-metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin

Abstract

Genetic heterogeneity in drug-metabolizing enzyme/transporter (DMET) genes affects specific drug-related cancer phenotypes. To investigate the relationships between genetic variation and response to treatment in acute myeloid leukemia (AML), we genotyped 1931 variants on DMET genes in 94 CD33-positive AML patients enrolled in a phase III multicenter clinical trial combining Gemtuzumab-Ozogamicin (GO) with Fludarabine–Cytarabine–Idarubicin (FLAI) regimen, with the DMET Plus platform. Two ADH1A variants showed statistically significant differences (odds ratio (OR)=5.68, P=0.0006; OR=5.35, P=0.0009) in allele frequencies between patients in complete/partial remission and patients without response, two substitutions on CYP2E1 (OR=0.13, P=0.001; OR=0.09, P=0.003) and one on SLCO1B1 (OR=4.68, P=0.002) were found to differently influence liver toxicity, and two nucleotide changes on SULTB1 and SLC22A12 genes correlated with response to GO (OR=0.24, P=0.0009; OR=2.75, P=0.0029). Genetic variants were thus found for the first time to be potentially associated with differential response and toxicity in AML patients treated with a combination of GO–FLAI regimen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Deeken J . The Affymetrix DMET platform and pharmacogenetics in drug development. Curr Opin Mol Ther 2009; 11: 260–268.

    CAS  PubMed  Google Scholar 

  2. Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5: 193–202.

    Article  CAS  PubMed  Google Scholar 

  3. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I . Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008; 9: 415–422.

    Article  CAS  PubMed  Google Scholar 

  5. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 2009; 360: 363–375.

    Article  CAS  PubMed  Google Scholar 

  6. Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 2009; 373: 309–317.

    Article  CAS  PubMed  Google Scholar 

  7. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360: 354–362.

    Article  CAS  PubMed  Google Scholar 

  8. Dezentje VO, Guchelaar HJ, Nortier JW, van de Velde CJ, Gelderblom H . Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin Cancer Res 2009; 15: 15–21.

    Article  CAS  PubMed  Google Scholar 

  9. Dahut WL, Gulley JL, Arlen PM, Liu Y, Fedenko KM, Steinberg SM et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 2004; 22: 2532–2539.

    Article  CAS  PubMed  Google Scholar 

  10. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106–4112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deeken JF, Cormier T, Price DK, Sissung TM, Steinberg SM, Tran K et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2009; 10: 191–199.

    Article  PubMed  Google Scholar 

  12. Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005; 106: 3618–3620.

    Article  CAS  PubMed  Google Scholar 

  13. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  14. Boissel N, Cayuela JM, Preudhomme C, Thomas X, Grardel N, Fund X et al. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy. Leukemia 2002; 16: 1699–1704.

    Article  CAS  PubMed  Google Scholar 

  15. Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T . Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia 2011; 25: 1297–1304.

    Article  CAS  PubMed  Google Scholar 

  16. Bacher U, Kohlmann A, Haferlach T . Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies. Cancer Treat Rev 2010; 36: 637–646.

    Article  CAS  PubMed  Google Scholar 

  17. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  Google Scholar 

  18. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94: 1086–1099.

    CAS  PubMed  Google Scholar 

  19. Damiani D, Tiribelli M, Calistri E, Geromin A, Chiarvesio A, Michelutti A et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006; 91: 825–828.

    CAS  PubMed  Google Scholar 

  20. Song JH, Kim SH, Kweon SH, Lee TH, Kim HJ, Kim TS . Defective expression of deoxycytidine kinase in cytarabine-resistant acute myeloid leukemia cells. Int J Oncol 2009; 34: 1165–1171.

    CAS  PubMed  Google Scholar 

  21. Lamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther 2007; 323: 935–945.

    Article  CAS  PubMed  Google Scholar 

  22. Mahlknecht U, Dransfeld CL, Bulut N, Kramer M, Thiede C, Ehninger G et al. SNP analyses in cytarabine metabolizing enzymes in AML patients and their impact on treatment response and patient survival: identification of CDA SNP C-451T as an independent prognostic parameter for survival. Leukemia 2009; 23: 1929–1932.

    Article  CAS  PubMed  Google Scholar 

  23. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 2001; 7: 1490–1496.

    CAS  PubMed  Google Scholar 

  24. Tallman MS . New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology Am Soc Hematol Educ Program 2005: 143–150.

    Article  Google Scholar 

  25. Burmester JK, Sedova M, Shapero MH, Mansfield E . DMET microarray technology for pharmacogenomics-based personalized medicine. Methods Mol Biol 2010; 632: 99–124.

    Article  CAS  PubMed  Google Scholar 

  26. Luo X, Kranzler HR, Zuo L, Wang S, Schork NJ, Gelernter J . Multiple ADH genes modulate risk for drug dependence in both African- and European-Americans. Hum Mol Genet 2007; 16: 380–390.

    Article  CAS  PubMed  Google Scholar 

  27. Birley AJ, James MR, Dickson PA, Montgomery GW, Heath AC, Martin NG et al. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo. Hum Mol Genet 2009; 18: 1533–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salaspuro M . Acetaldehyde and gastric cancer. J Dig Dis 2011; 12: 51–59.

    Article  CAS  PubMed  Google Scholar 

  29. Knockaert L, Fromenty B, Robin MA . Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS J 2011; 278: 4252–4260.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Yin L, Liang G, Liu R, Fan K, Pu Y . Detection of CYP2E1, a genetic biomarker of susceptibility to benzene metabolism toxicity in immortal human lymphocytes derived from the Han Chinese Population. Biomed Environ Sci 2011; 24: 300–309.

    CAS  PubMed  Google Scholar 

  31. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

  32. Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 2006; 54: 292–300.

    Article  CAS  PubMed  Google Scholar 

  33. Wakida N, Tuyen DG, Adachi M, Miyoshi T, Nonoguchi H, Oka T et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab 2005; 90: 2169–2174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European LeukemiaNet, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, PRIN 2008, Ateneo RFO grants, Project of Integrated Program (PIO) and Programma di Ricerca Regione – Università 2007–2009.

Author contributions: GM and II: project conception; II, MS, AL: manuscript writing; II, AL, SF, EA and AA: DMET array analysis; MS: statistical analyses; II, MS and GM: data interpretation; AL and AF: Sanger sequencing validation analysis; AC, CP, AM, ET, MCA, MM, FC, DR, DD, FG, MG and FP: clinical data and biological sample collection; GI MAR and MB: final approve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Martinelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacobucci, I., Lonetti, A., Candoni, A. et al. Profiling of drug-metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharmacogenomics J 13, 335–341 (2013). https://doi.org/10.1038/tpj.2012.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.13

Keywords

Search

Quick links