Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Beyond single-marker analyses: mining whole genome scans for insights into treatment responses in severe sepsis

Abstract

Management of severe sepsis, an acute illness with high morbidity and mortality, suffers from the lack of effective biomarkers and largely empirical predictions of disease progression and therapeutic responses. We conducted a genome-wide association study using a large randomized clinical trial cohort to discover genetic biomarkers of response to therapy and prognosis utilizing novel approaches, including combination markers, to overcome limitations of single-marker analyses. Sepsis prognostic models were dominated by clinical variables with genetic markers less informative. In contrast, evidence for gene–gene interactions were identified for sepsis treatment responses with genetic biomarkers dominating models for predicting therapeutic responses, yielding candidates for replication in other cohorts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR . Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  2. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H et al. Sepsis occurrence in acutely Ill patients investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34: 344–353.

    Article  PubMed  Google Scholar 

  3. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J et al. Surviving sepsis campaign. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 2010; 38: 367–374.

    Article  PubMed  Google Scholar 

  4. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 2007; 33: 606–618.

    Article  PubMed  Google Scholar 

  5. Bone RC . Important new findings in sepsis. JAMA 1997; 278: 249.

    Article  CAS  PubMed  Google Scholar 

  6. Remick DG . Pathophysiology of sepsis. Am J Pathol 2007; 170: 1435–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sriskandan S, Altmann DM . The immunology of sepsis. J Pathol 2008; 214: 211–223.

    Article  CAS  PubMed  Google Scholar 

  8. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG . The pathogenesis of sepsis. Ann Rev Pathol 2011; 6: 19–48.

    Article  CAS  Google Scholar 

  9. Dhainaut JF, Yan SB, Margolis BD, Lorente JA, Russell JA, Freebairn RC et al. PROWESS Sepsis Study Group. Drotrecogin alfa (activated) (recombinant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Haemost 2003; 90: 642–653.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Su F, Rogiers P, Vincent JL . Beneficial effects of recombinant human activated protein C in a ewe model of septic shock. Crit Care Med 2007; 35: 2594–2600.

    Article  CAS  PubMed  Google Scholar 

  11. Mosnier LO, Zlokovic BV, Griffin JH . The cytoprotective protein C pathway. Blood 2007; 109: 3161–3172.

    Article  CAS  PubMed  Google Scholar 

  12. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A et al. Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant activated protein C for severe sepsis. N Engl J Med 2001; 344: 699–709.

    Article  CAS  PubMed  Google Scholar 

  13. Leone M, Textoris J, Michel F, Wiramus S, Martin C . Emerging drugs in sepsis. Expert Opin Emerg Drugs 2010; 15: 41–52.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson R, Schmidt R . Clinical biomarkers in sepsis. Front Biosci (Elite Ed) 2010; 2: 504–520.

    Google Scholar 

  15. National Human Genome Research Institute, National Institutes of Health. A catalog of published genome-wide association studies. Available: http://www.genome.gov/2652538 accessed April 2011.

  16. Hindorffa LA, Sethupathy P, Junkins HA, Ramosa EM, Mehtac JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    Article  Google Scholar 

  17. Groop L, Lyssenko V . Genes and type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 192–197.

    Article  CAS  PubMed  Google Scholar 

  18. McPherson R, Pertsemlidis A, Kavaslar, Stewart A, Roberts R, Cox DR et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007; 316: 1488–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cordell HJ . Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 2009; 10: 392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobo I . Epistasis: gene interaction and the phenotypic expression of complex diseases like Alzheimer's. Nature Education 2008; 1, Available: http://www.nature.com/scitable/topicpage/Epistasis-Gene-Interaction-and-the-Phenotypic-Expression-90 accessed April 2011.

  21. Wu Z, Zhao H . Statistical power of model selection strategies for genome-wide association studies. PLoS Genet 2009; 5: e1000582.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dupuis J, O’Donnell CJ . Interpreting results of large-scale genetic association studies: separating gold from fool's gold. JAMA 2007; 297: 529–531.

    Article  CAS  PubMed  Google Scholar 

  23. Marchini J, Donnelly P, Cardon LR . Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 2005; 37: 413–417.

    Article  CAS  PubMed  Google Scholar 

  24. Evans DM, Marchini J, Morris AP, Cardon LR . Two-stage two-locus models in genomewide association. PLoS Genet 2006; 2: e157.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ionita I, Man M . Optimal two-stage strategy for detecting interacting genes in complex diseases. BMC Genet 2006; 7: 39.

    PubMed  Google Scholar 

  26. Storey JD, Akey JM, Kruglyak L . Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol 2005; 3: e267.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brem RB, Storey JD, Whittle J, Kruglyak L . Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 2005; 436: 701–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Z, Niu A, Sha Q . Identification of interacting genes in genome-wide association studies using a model-based two-stage approach. Ann Hum Genet 2010; 74: 406–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lukaszewicz AC, Payen D . The future is predetermined in severe sepsis, so what are the implications? Crit Care Med 2010; 38: S512–S517.

    Article  PubMed  Google Scholar 

  30. The Wellcome Trust Case Control Consortium (WTCCC). Genome-wide association study of 14000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  31. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317: 944–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  34. Gabriel SB, Schaffer SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  35. Pearson TA, Manolio TA . How to interpret a genome-wide association study. JAMA 2008; 299: 1335–1344.

    Article  CAS  PubMed  Google Scholar 

  36. Jose PA, Eisner GM, Felder RA . Renal dopamine receptors in health and hypertension. Pharmacol Ther 1998; 80: 149–182.

    Article  CAS  PubMed  Google Scholar 

  37. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG . Dopamine receptors: from structure to function. Physiol Rev 1998; 78: 189–225.

    Article  CAS  PubMed  Google Scholar 

  38. Sato M, Soma M, Nakayama T, Kanmatsuse K . Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension 2000; 36: 183–186.

    Article  CAS  PubMed  Google Scholar 

  39. Staessen JA, Kuznetsova T, Zhang H, Maillard M, Bochud M, Hasenkamp S et al. Blood pressure and renal sodium handling in relation to genetic variation in the DRD1 promoter and GRK4. Hypertension 2008; 51: 1643–1650.

    Article  CAS  PubMed  Google Scholar 

  40. Fung MM, Rana BK, Tang CM, Shiina T, Nievergelt CM, Rao F et al. Dopamine D1 receptor (DRD1) genetic polymorphism: pleiotropic effects on heritable renal traits. Kidney Int 2009; 76: 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Svanberg E, Frost RA, Lang CH, Isgaard J, Jefferson LS, Kimball SR et al. IGF-I/IGFBP-3 binary complex modulates sepsis-induced inhibition of protein synthesis in skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279: E1145–E1158.

    Article  CAS  PubMed  Google Scholar 

  42. Briard N, Dadoun F, Pommier G, Sauze N, Lebouc Y, Oliver C et al. IGF-I/IGFBPs system response to endotoxin challenge in sheep. J Endocrinol 2000; 164: 361–369.

    Article  CAS  PubMed  Google Scholar 

  43. Song G, Ouyang G, Bao S . The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9: 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vangerow B, Shorr AF, Wyncoll D, Janes J, Nelson DR, Reinhart K . The protein C pathway: implications for the design of the RESPOND study. Crit Care 2007; 11: S4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shorr AF, Nelson DR, Wyncoll DL, Reinhart K, Brunkhorst F, Vail GM et al. Protein C: a potential biomarker in severe sepsis and a possible tool for monitoring treatment with drotrecogin alfa (activated). J Crit Care 2008; 12: R45.

    Article  Google Scholar 

  46. Sutherland AM, Walley KR, Russell JA . Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005; 33: 638–644.

    Article  CAS  PubMed  Google Scholar 

  47. Manocha S, Russell JA, Sutherland AM, Wattanathum A, Walley KR . Fibrinogen-beta gene haplotype is associated with mortality in sepsis. J Infect 2007; 54: 572–577.

    Article  PubMed  Google Scholar 

  48. Namath A, Patterson AJ . Genetic polymorphisms in sepsis. Crit Care Clin 2009; 4: 835–856.

    Article  Google Scholar 

  49. Thair SA, Walley KR, Nakada TA, McConechy MK, Boyd JH, Wellman H et al. A single nucleotide polymorphism in NF-{kappa}B inducing kinase is associated with mortality in septic shock. J Immunol 2011; 186: 2321–2328.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by Eli Lilly and Company. We thank Michael Bell and Cindy Lee (both Eli Lilly and Company), Duytrac Nguyen (Inventiv Clinical), and Jared Kohler and Angela Prokop (both BioStat Solutions) for assistance in statistical analysis. We also thank Julie Sherman (Eli Lilly and Company) for technical assistance with the illustrations.

Author contribution: Drs Man, Close, Fossceco, Janes, O’Brien and Williams participated in the conception and design of the study. Drs Shaw, Bernard, Douglas, Kaner, Payen, Vincent and Garcia acted as advisors to the study. Dr Man conducted the statistical analysis. Drs Man, Close and Leishman wrote the first draft of the manuscript. All authors reviewed the manuscript critically for intellectual content, read and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Man.

Ethics declarations

Competing interests

Drs Man, Fossceco, Janes, Leishman, and O’Brien are employees and stockholders of Eli Lilly and Company, and Drs Close and Williams were employees of Eli Lilly and Company at the time of the study. Dr Douglas serves on the academic steering committee for an ongoing study in septic shock sponsored by Eli Lilly and Company. Drs Shaw and Garcia have received consultancy payments from Eli Lilly and Company. Drs Bernard, Kaner, Payen and Vincent have no conflicts relevant to this manuscript to declare.

Additional information

Supplementary Information accompanies the paper on The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, M., Close, S., Shaw, A. et al. Beyond single-marker analyses: mining whole genome scans for insights into treatment responses in severe sepsis. Pharmacogenomics J 13, 218–226 (2013). https://doi.org/10.1038/tpj.2012.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.1

Keywords

This article is cited by

Search

Quick links