Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy

Abstract

Recent studies suggest CD133, a surface protein widely used for isolation of colon cancer stem cells, to be associated with tumor angiogenesis and recurrence. We hypothesized that gene expression levels and germline variations in CD133 will predict clinical outcome in patients with metastatic colorectal cancer (mCRC), treated in first-line setting with 5-fluorouracil, oxaliplatin and bevacizumab (BV), and we investigated whether there is a correlation with gene expression levels of CD133, vascular endothelial growth factor (VEGF) and its receptors. We evaluated intra-tumoral gene expression levels by quantitative real-time (RT) PCR from 54 patients and three germline variants of the CD133 gene by PCR-restriction-fragment length polymorphism from 91 patients with genomic DNA. High gene expression levels of CD133 (>7.76) conferred a significantly greater tumor response (RR=86%) than patients with low expression levels (7.76, RR=38%, adjusted P=0.003), independent of VEGF or its receptor gene expression levels. Gene expression levels of CD133 were significantly associated with VEGF and its receptors messenger RNA levels (VEGFR-1 (P<0.01), -2 and -3, P<0.05). Combined analyses of two polymorphisms showed a significant association with progression-free survival (PFS) (18.5 months vs 9.8 months, P=0.004) in a multivariate analysis as an independent prognostic factor for PFS (adjusted P=0.002). These results suggest that CD133 is a predictive marker for standard first-line BV-based treatment in mCRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ferrandina G, Petrillo M, Bonanno G, Scambia G . Targeting CD133 antigen in cancer. Expert Opin Ther Targets 2009; 13: 823–837.

    Article  CAS  PubMed  Google Scholar 

  2. Pohl A, Lurje G, Kahn M, Lenz HJ . Stem cells in colon cancer. Clin Colorectal Cancer 2008; 7: 92–98.

    Article  PubMed  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  Google Scholar 

  4. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  5. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 2542–2556.

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  Google Scholar 

  7. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  8. Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 2008; 265: 124–134.

    Article  CAS  PubMed  Google Scholar 

  9. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol 2008; 15: 2927–2933.

    Article  PubMed  Google Scholar 

  10. Puglisi MA, Sgambato A, Saulnier N, Rafanelli F, Barba M, Boninsegna A et al. Isolation and characterization of CD133+ cell population within human primary and metastatic colon cancer. Eur Rev Med Pharmacol Sci 2009; 13 (Suppl 1): 55–62.

    PubMed  Google Scholar 

  11. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 2009; 457: 603–607.

    Article  CAS  Google Scholar 

  12. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors. J Clin Invest 2008; 118: 2111–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468: 829–833.

    Article  CAS  Google Scholar 

  14. Elkhafif N, El Baz H, Hammam O, Hassan S, Salah F, Mansour W et al. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis. APMIS 2011; 119: 66–75.

    Article  CAS  PubMed  Google Scholar 

  15. Lord RV, Salonga D, Danenberg KD, Peters JH, DeMeester TR, Park JM et al. Telomerase reverse transcriptase expression is increased early in the Barrett's metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 2000; 4: 135–142.

    Article  CAS  PubMed  Google Scholar 

  16. Lurje G, Nagashima F, Zhang W, Yang D, Chang HM, Gordon MA et al. Polymorphisms in cyclooxygenase-2 and epidermal growth factor receptor are associated with progression-free survival independent of K-ras in metastatic colorectal cancer patients treated with single-agent cetuximab. Clin Cancer Res 2008; 14: 7884–7895.

    Article  CAS  PubMed  Google Scholar 

  17. Halpern J . Maximally selected X2 statistics for small samples. Biometrics 1982; 38: 1017–1023.

    Article  Google Scholar 

  18. Siegmund R . Maximally selected X2 statistics. Biometrics 1982; 38: 1011–1016.

    Article  Google Scholar 

  19. Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997; 15: 3223–3229.

    Article  CAS  PubMed  Google Scholar 

  20. Schneider S, Park DJ, Yang D, El-Khoueiry A, Sherrod A, Groshen S et al. Gene expression in tumor-adjacent normal tissue is associated with recurrence in patients with rectal cancer treated with adjuvant chemoradiation. Pharmacogenet Genomics 2006; 16: 555–563.

    Article  CAS  PubMed  Google Scholar 

  21. Gonen M . Concordance probability and discriminatory power in proportional hazards regression. Biometrika 2005; 92: 965–970.

    Article  Google Scholar 

  22. Berry G, Kitchin RM, Mock PA . A comparison of two simple hazard ratio estimators based on the log-rank test. Stat Med 1991; 10: 749–755.

    Article  CAS  PubMed  Google Scholar 

  23. Molinaro AM, Simon R, Pfeiffer RM . Prediction error estimation: a comparison of resampling methods. Bioinformatics 2005; 21: 3301–3307.

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter J, Bithell J . Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med 2000; 19: 1141–1164.

    Article  CAS  PubMed  Google Scholar 

  25. Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104: 1095–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    CAS  PubMed  Google Scholar 

  27. Senegaglia AC, Brofman PR, Aita CA, Dallagiovanna B, Rebelatto CL, Hansen P et al. In vitro formation of capillary tubules from human umbilical cord blood cells with perspectives for therapeutic application. Rev Bras Cir Cardiovasc 2008; 23: 467–473.

    Article  PubMed  Google Scholar 

  28. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  29. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10: 145–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the NIH Grant 5 P30CA14089-27I and in honor of Jerome Comet Klein MD by the Irving and Estelle Levy Foundation and performed in the Sharon A. Carpenter Laboratory at USC/Norris CCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-J Lenz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Parts of this study were presented at the annual ASCO meeting 2009, Orlando, Florida (J Clin Oncol 27:15 s, 2009; suppl; abstr 4062)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, A., El-Khoueiry, A., Yang, D. et al. Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics J 13, 173–180 (2013). https://doi.org/10.1038/tpj.2011.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.61

Keywords

This article is cited by

Search

Quick links