Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA-damage response gene polymorphisms and therapeutic outcomes in ovarian cancer

Abstract

Epithelial ovarian cancer has a poor prognosis owing to late diagnosis and frequent relapse after first-line therapy. Analysis of individual genetic variability could aid in the identification of markers, which could help in stratifying patients with the aim of optimizing individual therapy. In this study we assessed polymorphisms in three genes important in drugs' response in 97 early and 235 late-stage ovarian cancer patients. The Asp1104His polymorphism in xpg, a gene important for removal of platinum adducts, was associated with progression-free survival in early- and late-stage ovarian cancer. Our data indicate that a simple diagnostic analysis such as xpg genotyping can help in predicting response, and extension to other possibly relevant genotypes could be useful in selecting patients with epithelial ovarian cancer for optimal therapy and hence increase the chance of response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Hoskins WJ, McGuire WP, Brady MF, Homesley HD, Creasman WT, Berman M et al. The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 1994; 170: 974–979; discussion 979–980.

    Article  CAS  PubMed  Google Scholar 

  3. Hoskins WJ, Bundy BN, Thigpen JT, Omura GA . The influence of cytoreductive surgery on recurrence-free interval and survival in small-volume stage III epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 1992; 47: 159–166.

    Article  CAS  PubMed  Google Scholar 

  4. McGuire V, Jesser CA, Whittemore AS . Survival among US women with invasive epithelial ovarian cancer. Gynecol Oncol 2002; 84: 399–403.

    Article  PubMed  Google Scholar 

  5. Armstrong DK . Relapsed ovarian cancer: challenges and management strategies for a chronic disease. Oncologist 2002; 7 (Suppl 5): 20–28.

    Article  CAS  PubMed  Google Scholar 

  6. McHugh PJ, Spanswick VJ, Hartley JA . Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol 2001; 2: 483–490.

    Article  CAS  PubMed  Google Scholar 

  7. Earley JN, Turchi JJ . Interrogation of nucleotide excision repair capacity: impact on platinum-based cancer therapy. Antioxid Redox Signal 2011; 14: 2465–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Darcy KM, Birrer MJ . Translational research in the Gynecologic Oncology Group: evaluation of ovarian cancer markers, profiles, and novel therapies. Gynecol Oncol 2010; 117: 429–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Au WW, Navasumrit P, Ruchirawat M . Use of biomarkers to characterize functions of polymorphic DNA repair genotypes. Int J Hyg Environ Health 2004; 207: 301–313.

    Article  CAS  PubMed  Google Scholar 

  10. Auranen A, Song H, Waterfall C, Dicioccio RA, Kuschel B, Kjaer SK et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 2005; 117: 611–618.

    Article  CAS  PubMed  Google Scholar 

  11. Lord RV, Brabender J, Gandara D, Alberola V, Camps C, Domine M et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002; 8: 2286–2291.

    CAS  PubMed  Google Scholar 

  12. Joshi MB, Shirota Y, Danenberg KD, Conlon DH, Salonga DS, Herndon II JE et al. High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res 2005; 11: 2215–2221.

    Article  PubMed  Google Scholar 

  13. Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 2006; 17: 1818–1825.

    Article  CAS  PubMed  Google Scholar 

  14. Bellmunt J, Paz-Ares L, Cuello M, Cecere FL, Albiol S, Guillem V et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 2007; 18: 522–528.

    Article  CAS  PubMed  Google Scholar 

  15. Yu JJ, Lee KB, Mu C, Li Q, Abernathy TV, Bostick-Bruton F et al. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol 2000; 16: 555–560.

    CAS  PubMed  Google Scholar 

  16. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I et al. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 2006; 12 (7 Part 1): 2101–2108.

    Article  CAS  PubMed  Google Scholar 

  17. Park DJ, Zhang W, Stoehlmacher J, Tsao-Wei D, Groshen S, Gil J et al. ERCC1 gene polymorphism as a predictor for clinical outcome in advanced colorectal cancer patients treated with platinum-based chemotherapy. Clin Adv Hematol Oncol 2003; 1: 162–166.

    PubMed  Google Scholar 

  18. Viguier J, Boige V, Miquel C, Pocard M, Giraudeau B, Sabourin JC et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res 2005; 11: 6212–6217.

    Article  CAS  PubMed  Google Scholar 

  19. Liu D, O'Day SJ, Yang D, Boasberg P, Milford R, Kristedja T et al. Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study. Clin Cancer Res 2005; 11: 1237–1246.

    CAS  PubMed  Google Scholar 

  20. Zhou W, Gurubhagavatula S, Liu G, Park S, Neuberg DS, Wain JC et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 2004; 10: 4939–4943.

    Article  CAS  PubMed  Google Scholar 

  21. Kang S, Ju W, Kim JW, Park NH, Song YS, Kim SC et al. Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 2006; 38: 320–324.

    Article  CAS  PubMed  Google Scholar 

  22. Chen P, Wiencke J, Aldape K, Kesler-Diaz A, Miike R, Kelsey K et al. Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol Biomarkers Prev 2000; 9: 843–847.

    CAS  PubMed  Google Scholar 

  23. Quintela-Fandino M, Hitt R, Medina PP, Gamarra S, Manso L, Cortes-Funes H et al. DNA-repair gene polymorphisms predict favorable clinical outcome among patients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy. J Clin Oncol 2006; 24: 4333–4339.

    Article  CAS  PubMed  Google Scholar 

  24. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 1995; 80: 859–868.

    Article  CAS  PubMed  Google Scholar 

  25. Wakasugi M, Reardon JT, Sancar A . The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 1997; 272: 16030–16034.

    Article  CAS  PubMed  Google Scholar 

  26. Wakasugi M, Sancar A . Order of assembly of human DNA repair excision nuclease. J Biol Chem 1999; 274: 18759–18768.

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Li F, Sun N, Shukui Q, Baoan C, Jifeng F et al. Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell lung cancer patients. Lung Cancer 2009; 65: 230–236.

    Article  PubMed  Google Scholar 

  28. Freedman DA, Wu L, Levine AJ . Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999; 55: 96–107.

    Article  CAS  PubMed  Google Scholar 

  29. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    CAS  PubMed  Google Scholar 

  30. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    Article  CAS  PubMed  Google Scholar 

  31. Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 2003; 300: 342–344.

    Article  CAS  PubMed  Google Scholar 

  32. Landers JE, Haines DS, Strauss III JF, George DL . Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 1994; 9: 2745–2750.

    CAS  PubMed  Google Scholar 

  33. Momand J, Jung D, Wilczynski S, Niland J . The MDM2 gene amplification database. Nucleic Acids Res 1998; 26: 3453–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591–602.

    Article  CAS  PubMed  Google Scholar 

  35. Bond GL, Hu W, Levine A . A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 2005; 65: 5481–5484.

    Article  CAS  PubMed  Google Scholar 

  36. Ueda M, Yamamoto M, Nunobiki O, Toji E, Sato N, Izuma S et al. Murine double-minute 2 homolog single nucleotide polymorphism 309 and the risk of gynecologic cancer. Hum Cell 2009; 22: 49–54.

    Article  PubMed  Google Scholar 

  37. Wang L, McLeod HL, Weinshilboum RM . Genomics and drug response. N Engl J Med 2011; 364: 1144–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Damia G, Imperatori L, Stefanini M, D'Incalci M . Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int J Cancer 1996; 66: 779–783.

    Article  CAS  PubMed  Google Scholar 

  39. Vilpo JA, Vilpo LM, Szymkowski DE, O'Donovan A, Wood RD . An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Mol Cell Biol 1995; 15: 290–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welsh C, Day R, McGurk C, Masters JR, Wood RD, Koberle B . Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer 2004; 110: 352–361.

    Article  CAS  PubMed  Google Scholar 

  41. Steffensen KD, Waldstrom M, Jakobsen A . The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 2009; 19: 820–825.

    Article  PubMed  Google Scholar 

  42. Smith S, Su D, Rigault de la Longrais IA, Schwartz P, Puopolo M, Rutherford TJ et al. ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinum-based therapy. J Clin Oncol 2007; 25: 5172–5179.

    Article  CAS  PubMed  Google Scholar 

  43. Steffensen KD, Waldstrom M, Jeppesen U, Brandslund I, Jakobsen A . Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer. Int J Gynecol Cancer 2008; 18: 702–710.

    Article  CAS  PubMed  Google Scholar 

  44. Walsh CS, Ogawa S, Karahashi H, Scoles DR, Pavelka JC, Tran H et al. ERCC5 is a novel biomarker of ovarian cancer prognosis. J Clin Oncol 2008; 26: 2952–2958.

    Article  CAS  PubMed  Google Scholar 

  45. Ganzinelli M, Mariani P, Cattaneo D, Fossati R, Fruscio R, Corso S et al. Expression of DNA repair genes in ovarian cancer samples: biological and clinical considerations. Eur J Cancer 2011; 47: 1086–1094.

    Article  CAS  PubMed  Google Scholar 

  46. Simon R, Altman DG . Statistical aspects of prognostic factor studies in oncology. Br J Cancer 1994; 69: 979–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siddik ZH . Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22: 7265–7279.

    Article  CAS  PubMed  Google Scholar 

  48. Dharel N, Kato N, Muroyama R, Moriyama M, Shao RX, Kawabe T et al. MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res 2006; 12: 4867–4871.

    Article  CAS  PubMed  Google Scholar 

  49. Campbell IG, Eccles DM, Choong DY . No association of the MDM2 SNP309 polymorphism with risk of breast or ovarian cancer. Cancer Lett 2006; 240: 195–197.

    Article  CAS  PubMed  Google Scholar 

  50. Chien WP, Wong RH, Cheng YW, Chen CY, Lee H . Associations of MDM2 SNP309, transcriptional activity, mRNA expression, and survival in stage I non-small-cell lung cancer patients with wild-type p53 tumors. Ann Surg Oncol 2009; 17: 1194–1202.

    Article  PubMed  Google Scholar 

  51. Weberpals J, Garbuio K, O'Brien A, Clark-Knowles K, Doucette S, Antoniouk O et al. The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer 2009; 124: 806–815.

    Article  CAS  PubMed  Google Scholar 

  52. Isla D, Sarries C, Rosell R, Alonso G, Domine M, Taron M et al. Single nucleotide polymorphisms and outcome in docetaxel–cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol 2004; 15: 1194–1203.

    Article  CAS  PubMed  Google Scholar 

  53. Kalikaki A, Kanaki M, Vassalou H, Souglakos J, Voutsina A, Georgoulias V et al. DNA repair gene polymorphisms predict favorable clinical outcome in advanced non-small-cell lung cancer. Clin Lung Cancer 2009; 10: 118–123.

    Article  CAS  PubMed  Google Scholar 

  54. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R . Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol 2007; 25: 4528–4535.

    Article  CAS  PubMed  Google Scholar 

  55. Kurman RJ, Shih Ie M . The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 2011; 34: 433–443.

    Article  Google Scholar 

  56. Ferry KV, Hamilton TC, Johnson SW . Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol 2000; 60: 1305–1313.

    Article  CAS  PubMed  Google Scholar 

  57. Mukai M, Kanzaki A, Chen ZS, Miyashita H, Sumizawa T, Furukawa T et al. Enhanced nucleotide excision repair in cisplatin resistant human KB carcinoma cells. Oncol Rep 2002; 9: 839–844.

    CAS  PubMed  Google Scholar 

  58. Sabatino MA, Marabese M, Ganzinelli M, Caiola E, Geroni C, Broggini M . Downregulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol Cancer 2010; 9: 259.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the generous contributions of the Nerina and Mario Mattioli Foundation. Dr S Piva revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Marabese.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caiola, E., Porcu, L., Fruscio, R. et al. DNA-damage response gene polymorphisms and therapeutic outcomes in ovarian cancer. Pharmacogenomics J 13, 159–172 (2013). https://doi.org/10.1038/tpj.2011.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.50

Keywords

This article is cited by

Search

Quick links