Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia

Abstract

We implemented a two-step approach to detect potential predictor gene variants for neuroleptic-induced tardive dyskinesia (TD) in schizophrenic subjects. First, we screened associations by using a genome-wide (Illumina HumanHapCNV370) SNP array in 61 Japanese schizophrenia patients with treatment-resistant TD and 61 Japanese schizophrenia patients without TD. Next, we performed a replication analysis in 36 treatment-resistant TD and 138 non-TD subjects. An association of an SNP in the DPP6 (dipeptidyl peptidase-like protein-6) gene, rs6977820, the most promising association identified by the screen, was significant in the replication sample (allelic P=0.008 in the replication sample, allelic P=4.6 × 10−6, odds ratio 2.32 in the combined sample). The SNP is located in intron-1 of the DPP6 gene and the risk allele was associated with decreased DPP6 gene expression in the human postmortem prefrontal cortex. Chronic administration of haloperidol increased Dpp6 expression in mouse brains. DPP6 is an auxiliary subunit of Kv4 and regulates the properties of Kv4, which regulates the activity of dopaminergic neurons. The findings of this study indicate that an altered response of Kv4/DPP6 to long-term neuroleptic administration is involved in neuroleptic-induced TD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Browne S, Roe M, Lane A, Gervin M, Morris M, Kinsella A et al. Quality of life in schizophrenia: relationship to sociodemographic factors, symptomatology and tardive dyskinesia. Acta Psychiatr Scand 1996; 94: 118–124.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenheck RA . Evaluating the cost-effectiveness of reduced tardive dyskinesia with second-generation antipsychotics. Br J Psychiatry 2007; 191: 238–245.

    Article  CAS  PubMed  Google Scholar 

  3. Tenback DE, van Harten PN, Slooff CJ, van Os J . Evidence that early extrapyramidal symptoms predict later tardive dyskinesia: a prospective analysis of 10,000 patients in the European Schizophrenia Outpatient Health Outcomes (SOHO) study. Am J Psychiatry 2006; 163: 1438–1440.

    Article  PubMed  Google Scholar 

  4. de Leon J . The effect of atypical versus typical antipsychotics on tardive dyskinesia: a naturalistic study. Eur Arch Psychiatry Clin Neurosci 2007; 257: 169–172.

    Article  PubMed  Google Scholar 

  5. Remington G . Tardive dyskinesia: eliminated, forgotten, or overshadowed? Curr Opin Psychiatry 2007; 20: 131–137.

    Article  PubMed  Google Scholar 

  6. Correll CU, Schenk EM . Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry 2008; 21: 151–156.

    Article  PubMed  Google Scholar 

  7. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T et al. Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet Genomics 2008; 18: 317–323.

    Article  CAS  PubMed  Google Scholar 

  8. Menza MA, Grossman N, Van Horn M, Cody R, Forman N . Smoking and movement disorders in psychiatric patients. Biol Psychiatry 1991; 30: 109–115.

    Article  CAS  PubMed  Google Scholar 

  9. Muller DJ, Shinkai T, De Luca V, Kennedy JL . Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J 2004; 4: 77–87.

    Article  CAS  PubMed  Google Scholar 

  10. Malhotra AK, Murphy Jr GM, Kennedy JL . Pharmacogenetics of psychotropic drug response. Am J Psychiatry 2004; 161: 780–796.

    Article  PubMed  Google Scholar 

  11. Klawans HL, Goetz CG, Perlik S . Tardive dyskinesia: review and update. Am J Psychiatry 1980; 137: 900–908.

    Article  CAS  PubMed  Google Scholar 

  12. Gerlach J, Casey DE . Tardive dyskinesia. Acta Psychiatr Scand 1988; 77: 369–378.

    Article  CAS  PubMed  Google Scholar 

  13. Saito T, Ishizawa H, Tsuchiya F, Ozawa H, Takahata N . Neurochemical findings in the cerebrospinal fluid of schizophrenic patients with tardive dyskinesia and neuroleptic-induced parkinsonism. Jpn J Psychiatry Neurol 1986; 40: 189–194.

    CAS  PubMed  Google Scholar 

  14. Haleem DJ . Serotonergic modulation of dopamine neurotransmission: a mechanism for enhancing therapeutics in schizophrenia. J Coll Physicians Surg Pak 2006; 16: 556–562.

    PubMed  Google Scholar 

  15. Tammenmaa IA, McGrath JJ, Sailas E, Soares-Weiser K . Cholinergic medication for neuroleptic-induced tardive dyskinesia. Cochrane Database Syst Rev 2002: CD000207.

  16. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  17. Aberg K, Adkins DE, Bukszar J, Webb BT, Caroff SN, Miller del D et al. Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 2010; 67: 279–282.

    Article  PubMed  Google Scholar 

  18. Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B . Evidence for association of the GLI2 gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 2010; 25: 2809–2817.

    Article  PubMed  Google Scholar 

  19. Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M et al. Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 2010; 35: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Association AP . Diagnostic and Statistical Manual of Mental Disorders, 4th revision. American Psychiatric Association: Washington, DC 1994.

    Google Scholar 

  21. Itoh H, Yagi G, Ogita K, Ohtsuka N, Sakurai S, Tashiro I et al. Study on the efficacy and safety of treatment with anti-psychotic drugs: an international comparative examination. Annu Rep Pharmacopsychiatry Res Found 1977; 9: 218–225.

    Google Scholar 

  22. Schooler NR, Kane JM . Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 1982; 39: 486–487.

    CAS  PubMed  Google Scholar 

  23. Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y et al. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull 2008; 36: 756–765.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koga M, Ishiguro H, Yazaki S, Horiuchi Y, Arai M, Niizato K et al. Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet 2009; 18: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  25. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Es MA, van Vught PW, Blauw HM, Franke L, Saris CG, Van den Bosch L et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet 2008; 40: 29–31.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai HT, Caroff SN, Miller del D, McEvoy J, Lieberman JA, North KE et al. A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 336–340.

    CAS  PubMed  Google Scholar 

  28. Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ et al. DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 2005; 280: 18853–18861.

    Article  CAS  PubMed  Google Scholar 

  29. Clark BD, Kwon E, Maffie J, Jeong HY, Nadal M, Strop P et al. DPP6 localization in brain supports function as a Kv4 channel associated protein. Front Mol Neurosci 2008; 1: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Nadal MS, Clemens AM, Baron M, Jung SC, Misumi Y et al. Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 2008; 100: 1835–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 2003; 37: 449–461.

    Article  CAS  PubMed  Google Scholar 

  32. Maffie J, Rudy B . Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J Physiol 2008; 586 (Part 23): 5609–5623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Rodgers EW, Krenz WD, Clark MC, Baro DJ . Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical D1 receptor signal transduction cascade. J Neurophysiol 2010; 104: 873–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hahn J, Tse TE, Levitan ES . Long-term K+ channel-mediated dampening of dopamine neuron excitability by the antipsychotic drug haloperidol. J Neurosci 2003; 23: 10859–10866.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Mitsubishi Pharma Research Foundation, Kakenhi 23390285, and the Collaborative Research Project (2011-2201) of the Brain Research Institute, Niigata University. Australian human brain tissues were provided by the NSW Tissue Resource Centre, which is supported by The University of Sydney, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and the NSW Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Arinami.

Ethics declarations

Competing interests

The authors declare that no financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional service, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S., Syu, A., Ishiguro, H. et al. DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J 13, 27–34 (2013). https://doi.org/10.1038/tpj.2011.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.36

Keywords

This article is cited by

Search

Quick links