Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gender-stratified gene and gene–treatment interactions in smoking cessation

Abstract

We conducted gender-stratified analyses on a systems-based candidate gene study of 53 regions involved in nicotinic response and the brain—reward pathway in two randomized clinical trials of smoking cessation treatments (placebo, bupropion, transdermal and nasal spray nicotine replacement therapy). We adjusted P-values for multiple correlated tests, and used a Bonferroni-corrected α-level of 5 × 10−4 to determine system-wide significance. Four single-nucleotide polymorphisms (rs12021667, rs12027267, rs6702335, rs12039988; r2>0.98) in erythrocyte membrane protein band 4.1 (EPB41) had a significant male-specific marginal association with smoking abstinence (odds ratio (OR)=0.5; 95% confidence interval (CI): 0.3–0.6) at end of treatment (adjusted P<6 × 10−5). rs806365 in cannabinoid receptor 1 (CNR1) had a significant male-specific gene–treatment interaction at 6-month follow-up (adjusted P=3.9 × 10−5); within males using nasal spray, rs806365 was associated with a decrease in odds of abstinence (OR=0.04; 95% CI: 0.01–0.2). While the role of CNR1 in substance abuse has been well studied, we report EPB41 for the first time in the nicotine literature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Benowitz NL . Nicotine addiction. N Engl J Med 2010; 362: 2295–2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hogg RC, Bertrand D . Neuroscience. What genes tell us about nicotine addiction. Science 2004; 306: 983–985.

    Article  CAS  PubMed  Google Scholar 

  3. Zbikowski SM, Swan GE, McClure JB . Cigarette smoking and nicotine dependence. Med Clin North Am 2004; 88: 1453–1465, x.

    Article  PubMed  Google Scholar 

  4. Berrettini WH, Lerman CE . Pharmacotherapy and pharmacogenetics of nicotine dependence. Am J Psychiatry 2005; 162: 1441–1451.

    Article  PubMed  Google Scholar 

  5. Ray R, Schnoll RA, Lerman C . Nicotine dependence: biology, behavior, and treatment. Annu Rev Med 2009; 60: 247–260.

    Article  CAS  PubMed  Google Scholar 

  6. Russell MA, Feyerabend C, Cole PV . Plasma nicotine levels after cigarette smoking and chewing nicotine gum. Br Med J 1976; 1: 1043–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell MA, Wilson C, Taylor C, Baker CD . Smoking habits of men and women. Br Med J 1980; 281: 17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Russell MA, Jarvis M, Iyer R, Feyerabend C . Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J 1980; 280: 972–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hogle JM, Curtin JJ . Sex differences in negative affective response during nicotine withdrawal. Psychophysiology 2006; 43: 344–356.

    Article  PubMed  Google Scholar 

  10. Schnoll RA, Patterson F . Sex heterogeneity in pharmacogenetic smoking cessation clinical trials. Drug Alcohol Depend 2009; 104 (Suppl 1): S94–S99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burgess DJ, Fu SS, Noorbaloochi S, Clothier BA, Ricards J, Widome R et al. Employment, gender, and smoking cessation outcomes in low-income smokers using nicotine replacement therapy. Nicotine Tob Res 2009; 11: 1439–1447.

    Article  PubMed  Google Scholar 

  12. Perkins KA, Jacobs L, Sanders M, Caggiula AR . Sex differences in the subjective and reinforcing effects of cigarette nicotine dose. Psychopharmacology (Berl) 2002; 163: 194–201.

    Article  CAS  Google Scholar 

  13. Pogun S, Yararbas G . Sex differences in nicotine action. Handb Exp Pharmacol 2009; 192): 261–291.

    Article  Google Scholar 

  14. Munafo MR, Shields AE, Berrettini WH, Patterson F, Lerman C . Pharmacogenetics and nicotine addiction treatment. Pharmacogenomics 2005; 6: 211–223.

    Article  CAS  PubMed  Google Scholar 

  15. Perkins KA, Scott J . Sex differences in long-term smoking cessation rates due to nicotine patch. Nicotine Tob Res 2008; 10: 1245–1250.

    Article  CAS  PubMed  Google Scholar 

  16. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob 3rd P . Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 2006; 79: 480–488.

    Article  CAS  PubMed  Google Scholar 

  17. Higashi E, Fukami T, Itoh M, Kyo S, Inoue M, Yokoi T et al. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos 2007; 35: 1935–1941.

    Article  CAS  PubMed  Google Scholar 

  18. Harrington WR, Sengupta S, Katzenellenbogen BS . Estrogen regulation of the glucuronidation enzyme UGT2B15 in estrogen receptor-positive breast cancer cells. Endocrinology 2006; 147: 3843–3850.

    Article  CAS  PubMed  Google Scholar 

  19. Benowitz NL, Hukkanen J, Jacob 3rd P . Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 2009; 192): 29–60.

    Article  Google Scholar 

  20. Hatchell PC, Collins AC . Influences of genotype and sex on behavioral tolerance to nicotine in mice. Pharmacol Biochem Behav 1977; 6: 25–30.

    Article  CAS  PubMed  Google Scholar 

  21. Isiegas C, Mague SD, Blendy JA . Sex differences in response to nicotine in C57Bl/6:129SvEv mice. Nicotine Tob Res 2009; 11: 851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lajtha A, Sershen H . Nicotine: alcohol reward interactions. Neurochem Res 2010; 35: 1248–1258.

    Article  CAS  PubMed  Google Scholar 

  23. Damaj MI . Influence of gender and sex hormones on nicotine acute pharmacological effects in mice. J Pharmacol Exp Ther 2001; 296: 132–140.

    CAS  PubMed  Google Scholar 

  24. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD et al. Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet 2008; 17: 2834–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lerman C, Jepson C, Wileyto EP, Epstein LH, Rukstalis M, Patterson F et al. Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacology 2006; 31: 231–242.

    Article  CAS  PubMed  Google Scholar 

  26. Lee AM, Jepson C, Hoffmann E, Epstein L, Hawk LW, Lerman C et al. CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry 2007; 62: 635–641.

    Article  CAS  PubMed  Google Scholar 

  27. Strasser AA, Malaiyandi V, Hoffmann E, Tyndale RF, Lerman C . An association of CYP2A6 genotype and smoking topography. Nicotine Tob Res 2007; 9: 511–518.

    Article  CAS  PubMed  Google Scholar 

  28. Malaiyandi V, Goodz SD, Sellers EM, Tyndale RF . CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking. Cancer Epidemiol Biomarkers Prev 2006; 15: 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  29. Yamanaka H, Nakajima M, Fukami T, Sakai H, Nakamura A, Katoh M et al. CYP2A6 AND CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions. Drug Metab Dispos 2005; 33: 1811–1818.

    CAS  PubMed  Google Scholar 

  30. Lerman C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther 2006; 79: 600–608.

    Article  CAS  PubMed  Google Scholar 

  31. Patterson F, Schnoll RA, Wileyto EP, Pinto A, Epstein LH, Shields PG et al. Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion. Clin Pharmacol Ther 2008; 84: 320–325.

    Article  CAS  PubMed  Google Scholar 

  32. Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk Jr LH, Pinto A et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol 2003; 22: 541–548.

    Article  PubMed  Google Scholar 

  33. Bergen AW, Conti DV, Van Den Berg D, Lee W, Liu J, Li D et al. Dopamine genes and nicotine dependence in treatment-seeking and community smokers. Neuropsychopharmacology 2009; 34: 2252–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feyerabend C, Russell MA . A rapid gas-liquid chromatographic method for the determination of cotinine and nicotine in biological fluids. J Pharm Pharmacol 1990; 42: 450–452.

    Article  CAS  PubMed  Google Scholar 

  35. Edlund CK, Lee WH, Li D, Van Den Berg DJ, Conti DV . Snagger: a user-friendly program for incorporating additional information for tagSNP selection. BMC Bioinform 2008; 9: 174.

    Article  Google Scholar 

  36. Thorisson GA, Smith AV, Krishnan L, Stein LD . The International HapMap Project Web site. Genome Res 2005; 15: 1592–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P . Association mapping in structured populations. Am J Hum Genet 2000; 67: 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  39. Howie BN, Donnelly P, Marchini J . A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009; 5: e1000529.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marchini J, Howie B, Myers S, McVean G, Donnelly P . A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007; 39: 906–913.

    Article  CAS  PubMed  Google Scholar 

  41. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010; 26: 2336–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 1991; 86: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  43. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2010.

  44. Conneely KN, Boehnke M . So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am J Hum Genet 2007; 81: 1158–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li D . Multiple degree of freedom P-value adjustment using correlation of score statistics, 2010. Personal communication.

  46. Perkins KA, Lerman C, Grottenthaler A, Ciccocioppo MM, Milanak M, Conklin CA et al. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharmacol 2008; 19: 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 2009; 18: 4007–4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amos CI, Gorlov IP, Dong Q, Wu X, Zhang H, Lu EY et al. Nicotinic acetylcholine receptor region on chromosome 15q25 and lung cancer risk among African Americans: a case-control study. J Natl Cancer Inst 2010; 102: 1199–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le Marchand L, Derby KS, Murphy SE, Hecht SS, Hatsukami D, Carmella SG et al. Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Res 2008; 68: 9137–9140.

    Article  CAS  PubMed  Google Scholar 

  50. Lee AM, Jepson C, Shields PG, Benowitz N, Lerman C, Tyndale RF . CYP2B6 genotype does not alter nicotine metabolism, plasma levels, or abstinence with nicotine replacement therapy. Cancer Epidemiol Biomarkers Prev 2007; 16: 1312–1314.

    Article  CAS  PubMed  Google Scholar 

  51. Han BG, Nunomura W, Takakuwa Y, Mohandas N, Jap BK . Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol 2000; 7: 871–875.

    Article  CAS  PubMed  Google Scholar 

  52. Shiffer KA, Goodman SR . Protein 4.1: its association with the human erythrocyte membrane. Proc Natl Acad Sci U S A 1984; 81: 4404–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF . A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res 1999; 59: 35–43.

    CAS  PubMed  Google Scholar 

  54. Scott C, Keating L, Bellamy M, Baines AJ . Protein 4.1 in forebrain postsynaptic density preparations: enrichment of 4.1 gene products and detection of 4.1R binding proteins. Eur J Biochem 2001; 268: 1084–1094.

    Article  CAS  PubMed  Google Scholar 

  55. Binda AV, Kabbani N, Lin R, Levenson R . D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 2002; 62: 507–513.

    Article  CAS  PubMed  Google Scholar 

  56. Gelernter J, Gueorguieva R, Kranzler HR, Zhang H, Cramer J, Rosenheck R et al. Opioid receptor gene (OPRM1, OPRK1, and OPRD1) variants and response to naltrexone treatment for alcohol dependence: results from the VA Cooperative Study. Alcohol Clin Exp Res 2007; 31: 555–563.

    CAS  PubMed  Google Scholar 

  57. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  58. Zhang PW, Ishiguro H, Ohtsuki T, Hess J, Carillo F, Walther D et al. Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol Psychiatry 2004; 9: 916–931.

    Article  CAS  PubMed  Google Scholar 

  59. De Vries TJ, Schoffelmeer AN . Cannabinoid CB1 receptors control conditioned drug seeking. Trends Pharmacol Sci 2005; 26: 420–426.

    Article  CAS  PubMed  Google Scholar 

  60. Forget B, Hamon M, Thiebot MH . Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology (Berl) 2005; 181: 722–734.

    Article  CAS  Google Scholar 

  61. Tanda G, Goldberg SR . Cannabinoids: reward, dependence, and underlying neurochemical mechanisms-a review of recent preclinical data. Psychopharmacology (Berl) 2003; 169: 115–134.

    Article  CAS  Google Scholar 

  62. Mascia MS, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A et al. Lack of morphine-induced dopamine release in the nucleus accumbens of cannabinoid CB(1) receptor knockout mice. Eur J Pharmacol 1999; 383: R1–R2.

    Article  CAS  PubMed  Google Scholar 

  63. Chen X, Williamson VS, An SS, Hettema JM, Aggen SH, Neale MC et al. Cannabinoid receptor 1 gene association with nicotine dependence. Arch Gen Psychiatry 2008; 65: 816–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lerman C, Kaufmann V, Rukstalis M, Patterson F, Perkins K, Audrain-McGovern J et al. Individualizing nicotine replacement therapy for the treatment of tobacco dependence: a randomized trial. Ann Intern Med 2004; 140: 426–433.

    Article  CAS  PubMed  Google Scholar 

  65. Robinson JD, Cinciripini PM, Tiffany ST, Carter BL, Lam CY, Wetter DW . Gender differences in affective response to acute nicotine administration and deprivation. Addict Behav 2007; 32: 543–561.

    Article  PubMed  Google Scholar 

  66. Baker TB, Weiss RB, Bolt D, von Niederhausern A, Fiore MC, Dunn DM et al. Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tob Res 2009; 11: 785–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM et al. Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 2003; 17: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  68. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–177.

    Article  CAS  PubMed  Google Scholar 

  69. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007; 16: 36–49.

    Article  CAS  PubMed  Google Scholar 

  70. Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T . Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology 2007; 148: 790–799.

    Article  CAS  PubMed  Google Scholar 

  71. Chen RJ, Ho YS, Guo HR, Wang YJ . Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci 2010; 115: 118–130.

    Article  CAS  PubMed  Google Scholar 

  72. Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B XNeuropsychiatr Genet 2009; 150B: 453–466.

    Article  CAS  Google Scholar 

  73. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40: 616–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gago-Dominguez M, Jiang X, Conti DV, Castelao JE, Stern MC, Cortessis VK et al. Genetic variations on chromosomes 5p15 and 15q25 and bladder cancer risk: findings from the Los Angeles-Shanghai bladder case-control study. Carcinogenesis 2011; 32: 197–202.

    Article  CAS  PubMed  Google Scholar 

  75. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the two randomized clinical trials for their contributions to research. We acknowledge the contributions of Faith Allen, Ruth Krasnow, Huaiyu Mi, and Chris Edlund for data curation and management. This research was supported by a grant from NIDA, NCI, NIGMS and NHGRI U01 DA020830, NIDA R01 DA002277 and NCI P50 CA084735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D V Conti.

Ethics declarations

Competing interests

Drs. Swan and Conti have served as consultants for Pfizer. Dr. Lerman has served as a consultant for and/or received research support from Pfizer, AstraZeneca, Novartis, Targacept and Glaxo SmithKline. Dr. Tyndale owns shares and participates in Nicogen Research, a company focused on novel smoking cessation treatment approaches. No Nicogen funds were used in this work and no other Nicogen participants reviewed the manuscript. Dr. Tyndale has also consulted for Novartis. Dr. Benowitz is a paid consultant for several pharmaceutical companies that market smoking cessation medications and has been a paid expert witness against tobacco companies in litigation related to nicotine addiction. This research was not supported by industry funds.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Bergen, A., Swan, G. et al. Gender-stratified gene and gene–treatment interactions in smoking cessation. Pharmacogenomics J 12, 521–532 (2012). https://doi.org/10.1038/tpj.2011.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.30

Keywords

This article is cited by

Search

Quick links