Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SNP discovery, expression and cis-regulatory variation in the UGT2B genes

Abstract

UGT2B enzymes metabolize multiple endogenous and exogenous molecules, including steroid hormones and clinical drugs. However, little is known about the inter-individual variation in gene expression and its determinants. We re-sequenced candidate regulatory regions and the partial coding regions (41.1 kb) of UGT2B genes and identified 332 genetic variants. We measured gene expression in normal breast and liver samples and observed different patterns. The expression levels varied greatly across individuals in both tissues and were significantly correlated with each other in liver. Genotyping of tagging single-nucleotide polymorphisms (SNPs) in the same samples and association tests between genotype and transcript levels identified 62 variants that were associated with at least one UGT2B mRNA levels in either tissue. Most of these cis-regulatory SNPs were not shared between tissues, suggesting that this gene family is regulated in a tissue-specific manner. Our results provide insight into studying the role of UGT2B variation in hormone-dependent cancers and drug response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rockman MV, Kruglyak L . Genetics of global gene expression. Nat Rev Genet 2006; 7: 862–872.

    Article  CAS  PubMed  Google Scholar 

  2. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006; 314: 1930–1933.

    Article  CAS  PubMed  Google Scholar 

  3. Wang GS, Cooper TA . Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007; 8: 749–761.

    Article  CAS  PubMed  Google Scholar 

  4. Georges M, Coppieters W, Charlier C . Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease. Curr Opin Genet Dev 2007; 17: 166–176.

    Article  CAS  PubMed  Google Scholar 

  5. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315: 525–528.

    Article  CAS  PubMed  Google Scholar 

  6. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 2003; 33: 422–425.

    Article  CAS  PubMed  Google Scholar 

  7. Duan S, Huang RS, Zhang W, Bleibel WK, Roe CA, Clark TA et al. Genetic architecture of transcript-level variation in humans. Am J Hum Genet 2008; 82: 1101–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kristensen VN, Edvardsen H, Tsalenko A, Nordgard SH, Sorlie T, Sharan R et al. Genetic variation in putative regulatory loci controlling gene expression in breast cancer. Proc Natl Acad Sci USA 2006; 103: 7735–7740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008; 6: e107.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C et al. Population genomics of human gene expression. Nat Genet 2007; 39: 1217–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tukey RH, Strassburg CP . Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40: 581–616.

    Article  CAS  PubMed  Google Scholar 

  12. Belanger A, Pelletier G, Labrie F, Barbier O, Chouinard S . Inactivation of androgens by UDP-glucuronosyltransferase enzymes in humans. Trends Endocrinol Metab 2003; 14: 473–479.

    Article  CAS  PubMed  Google Scholar 

  13. Guillemette C . Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 2003; 3: 136–158.

    Article  CAS  PubMed  Google Scholar 

  14. King CD, Rios GR, Green MD, Tephly TR . UDP-glucuronosyltransferases. Curr Drug Metab 2000; 1: 143–161.

    Article  CAS  PubMed  Google Scholar 

  15. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 2005; 15: 677–685.

    Article  CAS  PubMed  Google Scholar 

  16. Gardner-Stephen DA, Mackenzie PI . Liver-enriched transcription factors and their role in regulating UDP glucuronosyltransferase gene expression. Curr Drug Metab 2008; 9: 439–452.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T . Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos 2008; 36: 1461–1464.

    Article  CAS  PubMed  Google Scholar 

  18. Ohno S, Nakajin S . Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos 2009; 37: 32–40.

    Article  CAS  PubMed  Google Scholar 

  19. McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC et al. Common deletion polymorphisms in the human genome. Nat Genet 2006; 38: 86–92.

    Article  CAS  PubMed  Google Scholar 

  20. Sparks R, Ulrich CM, Bigler J, Tworoger SS, Yasui Y, Rajan KB et al. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res 2004; 6: R488–R498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hajdinjak T, Zagradisnik B . Prostate cancer and polymorphism D85Y in gene for dihydrotestosterone degrading enzyme UGT2B15: frequency of DD homozygotes increases with Gleason Score. Prostate 2004; 59: 436–439.

    Article  CAS  PubMed  Google Scholar 

  22. MacLeod SL, Nowell S, Plaxco J, Lang NP . An allele-specific polymerase chain reaction method for the determination of the D85Y polymorphism in the human UDP-glucuronosyltransferase 2B15 gene in a case-control study of prostate cancer. Ann Surg Oncol 2000; 7: 777–782.

    Article  CAS  PubMed  Google Scholar 

  23. Park J, Chen L, Shade K, Lazarus P, Seigne J, Patterson S et al. Asp85tyr polymorphism in the udp-glucuronosyltransferase (UGT) 2B15 gene and the risk of prostate cancer. J Urol 2004; 171: 2484–2488.

    Article  CAS  PubMed  Google Scholar 

  24. Park J, Chen L, Ratnashinge L, Sellers TA, Tanner JP, Lee JH et al. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. Cancer Epidemiol Biomarkers Prev 2006; 15: 1473–1478.

    Article  CAS  PubMed  Google Scholar 

  25. Karypidis AH, Olsson M, Andersson SO, Rane A, Ekstrom L . Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. Pharmacogenomics J 2008; 8: 147–151.

    Article  CAS  PubMed  Google Scholar 

  26. Nagar S, Remmel RP . Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene 2006; 25: 1659–1672.

    Article  CAS  PubMed  Google Scholar 

  27. Desai AA, Innocenti F, Ratain MJ . UGT pharmacogenomics: implications for cancer risk and cancer therapeutics. Pharmacogenetics 2003; 13: 517–523.

    Article  CAS  PubMed  Google Scholar 

  28. Sun C, Southard C, Witonsky DB, Olopade O, Di Rienzo A . Allelic imbalance (AI) identifies novel tissue specific cis-regulatory variation for human UGT2B15. Hum Mutat 2010; 31: 99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–861.

    Article  PubMed Central  Google Scholar 

  30. Frith MC, Li MC, Weng Z . Cluster-buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res 2003; 31: 3666–3668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun C, Di Rienzo A . UGT2B7 is not expressed in normal breast. Breast Cancer Res Treat 2009; 117: 225–226.

    Article  PubMed  Google Scholar 

  32. Stephens M, Sloan JS, Robertson PD, Scheet P, Nickerson DA . Automating sequence-based detection and genotyping of SNPs from diploid samples. Nat Genet 2006; 38: 375–381.

    Article  CAS  PubMed  Google Scholar 

  33. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA . Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–120.

    Article  CAS  PubMed  Google Scholar 

  34. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55: 611–622.

    Article  CAS  PubMed  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M et al. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos 2009; 37: 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez J, Mirkov S, Zhang W, Chen P, Das S, Liu W et al. Hepatocyte nuclear factor-1 alpha is associated with UGT1A1, UGT1A9 and UGT2B7 mRNA expression in human liver. Pharmacogenomics J 2008; 8: 152–161.

    Article  CAS  PubMed  Google Scholar 

  38. Harrington WR, Sengupta S, Katzenellenbogen BS . Estrogen regulation of the glucuronidation enzyme UGT2B15 in estrogen receptor-positive breast cancer cells. Endocrinology 2006; 147: 3843–3850.

    Article  CAS  PubMed  Google Scholar 

  39. Bao BY, Chuang BF, Wang Q, Sartor O, Balk SP, Brown M et al. Androgen receptor mediates the expression of UDP-glucuronosyltransferase 2 B15 and B17 genes. Prostate 2008; 68: 839–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Belanger A, Hum DW, Beaulieu M, Levesque E, Guillemette C, Tchernof A et al. Characterization and regulation of UDP-glucuronosyltransferases in steroid target tissues. J Steroid Biochem Mol Biol 1998; 65: 301–310.

    Article  CAS  PubMed  Google Scholar 

  41. Guillemette C, Levesque E, Beaulieu M, Turgeon D, Hum DW, Belanger A . Differential regulation of two uridine diphospho-glucuronosyltransferases, UGT2B15 and UGT2B17, in human prostate LNCaP cells. Endocrinology 1997; 138: 2998–3005.

    Article  CAS  PubMed  Google Scholar 

  42. Hum DW, Belanger A, Levesque E, Barbier O, Beaulieu M, Albert C et al. Characterization of UDP-glucuronosyltransferases active on steroid hormones. J Steroid Biochem Mol Biol 1999; 69: 413–423.

    Article  CAS  PubMed  Google Scholar 

  43. Straub RH, Miller LE, Scholmerich J, Zietz B . Cytokines and hormones as possible links between endocrinosenescence and immunosenescence. J Neuroimmunol 2000; 109: 10–15.

    Article  CAS  PubMed  Google Scholar 

  44. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG . Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007; 39: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315: 848–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320–323.

    Article  CAS  PubMed  Google Scholar 

  47. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 2007; 39: 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  48. Harismendy O, Frazer KA . Elucidating the role of 8q24 in colorectal cancer. Nat Genet 2009; 41: 868–869.

    Article  CAS  PubMed  Google Scholar 

  49. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP et al. A map of open chromatin in human pancreatic islets. Nat Genet 2010; 42: 255–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wasserman NF, Aneas I, Nobrega MA . An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res 2010; 20: 1191–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T et al. The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 2009; 19: 987–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  PubMed Central  Google Scholar 

  53. Innocenti F, Liu W, Fackenthal D, Ramirez J, Chen P, Ye X et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 2008; 18: 683–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maitland ML, Grimsley C, Kuttab-Boulos H, Witonsky D, Kasza KE, Yang L et al. Comparative genomics analysis of human sequence variation in the UGT1A gene cluster. Pharmacogenomics J 2006; 6: 52–62.

    Article  CAS  PubMed  Google Scholar 

  55. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A . CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75: 1059–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frazer KA, Tao H, Osoegawa K, de Jong PJ, Chen X, Doherty MF et al. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res 2004; 14: 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 2000; 288: 136–140.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC et al. Human-mouse alignments with BLASTZ. Genome Res 2003; 13: 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature 2003; 424: 788–793.

    Article  CAS  PubMed  Google Scholar 

  60. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447: 799–816.

    Article  CAS  PubMed  Google Scholar 

  61. Key TJ . Serum oestradiol and breast cancer risk. Endocr Relat Cancer 1999; 6: 175–180.

    Article  CAS  PubMed  Google Scholar 

  62. Thomas HV, Reeves GK, Key TJ . Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Causes Control 1997; 8: 922–928.

    Article  CAS  PubMed  Google Scholar 

  63. Cauley JA, Lucas FL, Kuller LH, Stone K, Browner W, Cummings SR . Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Study of Osteoporotic Fractures Research Group. Ann Intern Med 1999; 130: 270–277.

    Article  CAS  PubMed  Google Scholar 

  64. Guillemette C, Belanger A, Lepine J . Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview. Breast Cancer Res 2004; 6: 246–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thijssen JH, Blankenstein MA . Endogenous oestrogens and androgens in normal and malignant endometrial and mammary tissues. Eur J Cancer Clin Oncol 1989; 25: 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  66. Mady EA, Ramadan EE, Ossman AA . Sex steroid hormones in serum and tissue of benign and malignant breast tumor patients. Dis Markers 2000; 16: 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA . Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 2007; 3: e42.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Turgeon D, Carrier JS, Levesque E, Hum DW, Belanger A . Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology 2001; 142: 778–787.

    Article  CAS  PubMed  Google Scholar 

  69. Yong M, Schwartz SM, Atkinson C, Makar KW, Thomas SS, Newton KM et al. Associations between polymorphisms in glucuronidation and sulfation enzymes and mammographic breast density in premenopausal women in the United States. Cancer Epidemiol Biomarkers Prev 2010; 19: 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Maria Tretiakova and Ying Sun for technical assistance. We also thank three anonymous reviewers for their helpful comments. This research was supported by the University of Chicago Breast SPORE NCI Grant CA125183 and by grant U01 GM61393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Di Rienzo.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Southard, C., Huo, D. et al. SNP discovery, expression and cis-regulatory variation in the UGT2B genes. Pharmacogenomics J 12, 287–296 (2012). https://doi.org/10.1038/tpj.2011.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.2

Keywords

This article is cited by

Search

Quick links