Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design

Abstract

The risk of venous thromboembolism (VTE) is higher after the total hip or knee replacement surgery than after almost any other surgical procedure; warfarin sodium is commonly prescribed to reduce this peri-operative risk. Warfarin has a narrow therapeutic window with high inter-individual dose variability and can cause hemorrhage. The genetics-informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT) is a 2 × 2 factorial-design, randomized controlled trial designed to compare the safety and effectiveness of warfarin-dosing strategies. GIFT will answer two questions: (1) does pharmacogenetic (PGx) dosing reduce the rate of adverse events in orthopedic patients; and (2) is a lower target international normalized ratio (INR) non-inferior to a higher target INR in orthopedic participants? The composite primary endpoint of the trial is symptomatic and asymptomatic VTE (identified on screening ultrasonography), major hemorrhage, INR4, and death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. White RH, Beyth RJ, Zhou H, Romano PS . Major bleeding after hospitalization for deep-venous thrombosis. Am J Med 1999; 107: 414–424.

    Article  CAS  PubMed  Google Scholar 

  2. Landefeld SC, Beyth R . Anticoagulant-related bleeding: clinical epidemiology, prediction and prevention. Am J Med 1993; 95: 315–328.

    Article  CAS  PubMed  Google Scholar 

  3. Fihn SD, McDonell M, Martin D, Henikoff J, Vermes D, Kent D et al. Risk factors for complications of chronic anticoagulation. A multicenter study. Ann Intern Med 1993; 118: 511–520.

    Article  CAS  PubMed  Google Scholar 

  4. Douketis JD, Foster GA, Crowther MA, Prins MH, Ginsberg JS . Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. Arch Intern Med 2000; 160: 3431–3436.

    Article  CAS  PubMed  Google Scholar 

  5. Linkins LA, Choi PT, Douketis JD . Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis. Ann Intern Med 2003; 139: 893–900.

    Article  PubMed  Google Scholar 

  6. Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S . Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation 2007; 115: 2689–2696.

    Article  CAS  PubMed  Google Scholar 

  7. Hirsh J, Fuster V, Ansell J, Halperin JL . American heart Association/American college of cardiology foundation guide to warfarin therapy. Circulation 2003; 107: 1692–1711.

    Article  PubMed  Google Scholar 

  8. Ezekowitz MD, James KE, Radford MJ, Rickles FR, Redmond N . Initiating and maintaining patients on warfarin anticoagulation: the importance of monitoring. J Cardiovasc Pharmacol Ther 1999; 4: 3–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ansell J, Hirsh J, Dalen J, Bussey H, Anderson D, Poller L et al. Managing oral anticoagulant therapy. Chest 2001; 119 (Suppl 1): 22S–38S.

    Article  CAS  PubMed  Google Scholar 

  10. Thacker S, Grice G, Milligan P, Gage B . Dosing anticoagulant therapy with coumarin drugs: is genotyping clinically useful? Yes. J Thromb Haemost 2008; 6: 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  11. Bussey HI, Wittkowsky AK, Hylek EM, Walker MB . Genetic testing for warfarin dosing? Not yet ready for prime time. Pharmacotherapy 2008; 28: 141–143.

    Article  CAS  PubMed  Google Scholar 

  12. van Schie RM, Wadelius MI, Kamali F, Daly AK, Manolopoulos VG, de Boer A et al. Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 2009; 10: 1687–1695.

    Article  CAS  PubMed  Google Scholar 

  13. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106–4112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007; 116: 2563–2570.

    Article  CAS  PubMed  Google Scholar 

  15. Caraco Y, Blotnick S, Muszkat M . CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 2008; 83: 460–470.

    Article  CAS  PubMed  Google Scholar 

  16. Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, Glurich I et al. A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 2005; 3: 137–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 2009; 19: 226–234.

    Article  CAS  PubMed  Google Scholar 

  18. McMillin GA, Melis R, Wilson A, Strong MB, Wanner NA, Vinik RG et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther Drug Monit 2010; 32: 338–345.

    Article  CAS  PubMed  Google Scholar 

  19. White RH, Zhou H, Gage BF . Effect of age on the incidence of venous thromboembolism after major surgery. J Thromb Haemost 2004; 2: 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  20. Davidson HC, Mazzu D, Gage BF, Jeffrey RB . Screening for deep venous thrombosis in asymptomatic postoperative orthopedic patients using color Doppler sonography: analysis of prevalence and risk factors. AJR Am J Roentgenol 1996; 166: 659–662.

    Article  CAS  PubMed  Google Scholar 

  21. American Academy of Orthopedic Surgeons. Clinical guidelines on prevention of pulmonary embolism in patients undergoing total hip or knee arthroplasty. AAOS: Rosemont, IL, 2007, pp 1–63. Available at http://www.aaos.org/Research/Guidelines/PE_Guideline.pdf.

  22. Ridker PM, Goldhaber SZ, Danielson E, Rosenberg Y, Eby CS, Deitcher SR et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 2003; 348: 1425–1434.

    Article  CAS  PubMed  Google Scholar 

  23. Kearon C, Ginsberg JS, Kovacs MJ, Anderson DR, Wells P, Julian JA et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med 2003; 349: 631–639.

    Article  CAS  PubMed  Google Scholar 

  24. Enyart JJ, Jones RJ . Low-dose warfarin for prevention of symptomatic thromboembolism after orthopedic surgery. Ann Pharmacother 2005; 39: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  25. Pendleton RC, Wheeler M, Wanner N, Strong MB, Vinik R, Peters CL . A safe, effective, and easy to use warfarin initiation dosing nomogram for post-joint arthroplasty patients. J arthroplasty 2010; 25: 121–127.

    Article  PubMed  Google Scholar 

  26. Anderson FA, Ayers DC, Colwell C, Cushner F, Friedman R, Huo M et al. Bleeding concerns drive practices of orthopedic surgeons in prevention of venous thromboembolism in primary hip and knee arthroplasty. J Thromb Haemost 2007; 5 (Suppl 2): PP-MO-247 ISTH abstract.

  27. Linder MW, Bon Homme M, Reynolds KK, Gage BF, Eby C, Silvestrov N et al. Interactive modeling for ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin Chem 2009; 55: 1861–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008; 84: 326–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voora D, Eby C, Linder MW, Milligan PE, Bukaveckas BL, McLeod HL et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Hemost 2005; 93: 700–705.

    Article  CAS  Google Scholar 

  30. Lenzini P, Grice G, Milligan P, Gatchel S, Deych E, Eby C et al. Optimal dose adjustment in orthopedic patients beginning warfarin therapy. Ann Pharmacother 2007; 41: 1798–1804.

    Article  CAS  PubMed  Google Scholar 

  31. Lenzini PA, Grice GR, Milligan PE, Dowd MB, Subherwal S, Deych E et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J Thromb Haemost 2008; 6: 1655–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. King CR, Deych E, Milligan P, Eby C, Lenzini P, Grice G et al. Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Hemost 2010; 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benjamin D, Horne BD, Lenzini PA, Mia W, Jorgensen AL, Kimmel SE et al. Pharmacogenetic dose refinements remain significantly influenced by genetic factors after INR measurements through one week of warfarin therapy. J Am Coll Cardiol 2010; 55: A130.E1218. doi: 10.1016/S0735-1097(10)61219-3.

    Article  Google Scholar 

  34. Geerts W, Bergqvist D, Pineo G, Heit J, Samama C, Lassen M et al. Prevention of venous thromboembolism. CHEST 2008; 133: 381–453.

    Article  Google Scholar 

  35. Francis CW, Davidson BL, Berkowitz SD, Lotke PA, Ginsberg JS, Lieberman JR et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. A randomized, double-blind trial. Ann Intern Med 2002; 137: 648–655.

    Article  CAS  PubMed  Google Scholar 

  36. Francis CW, Berkowitz SD, Comp PC, Lieberman JR, Ginsberg JS, Paiement G et al. Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. N Engl J Med 2003; 349: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  37. Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM . Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy. Blood Cells Mol Dis 2009; 43: 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eckman MH, Rosand J, Greenberg SM, Gage BF . Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 2009; 150: 73–83.

    Article  PubMed  Google Scholar 

  39. Epstein RS, Moyer TP, Aubert RE, O’Kane DJ, Xia F, Verbrugge RR et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness Study). J Am Coll Cardiol 2010; 55: 2804–2812.

    Article  CAS  PubMed  Google Scholar 

  40. Joo J, Geller NL, French B, Kimmel SE, Rosenberg Y, Ellenberg JH . Prospective alpha allocation in the Clarification of Optimal Anticoagulation through Genetics (COAG) trial. Clin Trials 2010; 7: 597–604.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E . A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Hemost 1993; 69: 236–239.

    Article  CAS  Google Scholar 

  42. Millican E, Lenzini P, Milligan P, Grosso L, Eby C, Deych E et al. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 2007; 110: 1511–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schelleman H, Chen Z, Kealey C, Whitehead AS, Christie J, Price M et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 2007; 81: 742–747.

    Article  CAS  PubMed  Google Scholar 

  44. Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 2008; 83: 312–321.

    Article  CAS  PubMed  Google Scholar 

  45. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL . Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Hemost 2004; 91: 87–94.

    Article  CAS  Google Scholar 

  46. Linder MW, Looney S, Adams III JE, Johnson N, Antonino-Green D, Lacefield N et al. Warfarin dose adjustments based on CYP2C9 genetic polymorphisms. J Thromb Thrombolysis 2002; 14: 227–232.

    Article  CAS  PubMed  Google Scholar 

  47. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690–1698.

    Article  CAS  PubMed  Google Scholar 

  48. Margaglione M, Colaizzo D, D’Andrea G, Brancaccio V, Ciampa A, Grandone E et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Hemost 2000; 84: 775–778.

    Article  CAS  Google Scholar 

  49. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285–2293.

    Article  CAS  PubMed  Google Scholar 

  50. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262–270.

    Article  CAS  PubMed  Google Scholar 

  51. D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005; 105: 645–649.

    Article  PubMed  Google Scholar 

  52. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005; 14: 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  53. Wood S . New warfarin labeling reminds physicians about genetic tests to help guide initial warfarin dosing, 2007. http://www.theheart.org/article/807123.

Download references

Acknowledgements

This research is funded by the NIH (R01 HL097036). We thank the NIH, FDA and CMS whose constructive criticism improved the trial design. We appreciate the comments of Gerald Moskowitz, PhD, on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B F Gage.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, E., Lenzini, P., Eby, C. et al. Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharmacogenomics J 12, 417–424 (2012). https://doi.org/10.1038/tpj.2011.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.18

Keywords

This article is cited by

Search

Quick links