Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactions

Abstract

Little has been reported on the factors, genetic or other, that underlie the variability in individual response, particularly for autism. In this study we simultaneously explored the effects of multiple candidate genes on clinical improvement and occurrence of adverse drug reactions, in 45 autistic patients who received monotherapy with risperidone up to 1 year. Candidate genes involved in the pharmacokinetics (CYP2D6 and ABCB1) and pharmacodynamics (HTR2A, HTR2C, DRD2, DRD3, HTR6) of the drug, and the brain-derived neurotrophic factor (BDNF) gene, were analysed. Using the generalized estimating equation method these genes were tested for association with drug efficacy, assessed with the Autism Treatment Evaluation Checklist, and with safety and tolerability measures, such as prolactin levels, body mass index (BMI), waist circumference and neurological adverse effects, including extrapyramidal movements. Our results confirm that risperidone therapy was very effective in reducing some autism symptoms and caused few serious adverse effects. After adjusting for confounding factors, the HTR2A c.-1438G>A, DRD3 Ser9Gly, HTR2C c.995G>A and ABCB1 1236C>T polymorphisms were predictors for clinical improvement with risperidone therapy. The HTR2A c.-1438G>A, HTR2C c.68G>C (p.C33S), HTR6 c.7154–2542C>T and BDNF c.196G>A (p.V66M) polymorphisms influenced prolactin elevation. HTR2C c.68G>C and CYP2D6 polymorphisms were associated with risperidone-induced increase in BMI or waist circumference. We thus identified for the first time several genes implicated in risperidone efficacy and safety in autism patients. Although association results require replication, given the small sample size, the study makes a preliminary contribution to the personalized therapy of risperidone in autism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Francis K . Autism interventions: a critical update. Dev Med Child Neurol 2005; 47: 493–499.

    Article  CAS  PubMed  Google Scholar 

  2. Mandell DS, Morales KH, Marcus SC, Stahmer AC, Doshi J, Polsky DE . Psychotropic medication use among Medicaid-enrolled children with autism spectrum disorders. Pediatrics 2008; 121: 441–448.

    Article  Google Scholar 

  3. Barnard L, Young AH, Pearson J, Geddes J, O’Brien G . A systematic review of the use of atypical antipsychotics in autism. J Psychopharmacol 2002; 16: 93–101.

    Article  CAS  PubMed  Google Scholar 

  4. West L, Waldrop J . Risperidone use in the treatment of behavioral symptoms in children with autism. Pediatr Nurs 2006; 32: 545–549.

    PubMed  Google Scholar 

  5. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med 2002; 347: 314–321.

    Article  CAS  PubMed  Google Scholar 

  6. McDougle CJ, Holmes JP, Carlson DC, Pelton GH, Cohen DJ, Price LH . A double-blind, placebo-controlled study of risperidone in adults with autistic disorder and other pervasive developmental disorders. Arch Gen Psychiatry 1998; 55: 633–641.

    Article  CAS  PubMed  Google Scholar 

  7. Shea S, Turgay A, Carroll A, Schulz M, Orlik H, Smith I et al. Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics 2004; 114: e634–e641.

    Article  PubMed  Google Scholar 

  8. Jesner OS, Aref-Adib M, Coren E . Risperidone for autism spectrum disorder. Cochrane Database Syst Rev 2007; January 24: CD005040.

    Google Scholar 

  9. Correia C, Vicente A . Pharmacogenetics of risperidone response and induced side effects. Per Med 2007; 4: 271–293.

    Article  CAS  PubMed  Google Scholar 

  10. Boulton DW, DeVane CL, Liston HL, Markowitz JS . In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci 2002; 71: 163–169.

    Article  CAS  PubMed  Google Scholar 

  11. Scordo MG, Spina E, Facciola G, Avenoso A, Johansson I, Dahl ML . Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 1999; 147: 300–305.

    Article  CAS  Google Scholar 

  12. Zanger UM, Raimundo S, Eichelbaum M . Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 23–37.

    Article  CAS  PubMed  Google Scholar 

  13. Arnt J, Skarsfeldt T . Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 1998; 18: 63–101.

    Article  CAS  PubMed  Google Scholar 

  14. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995; 374: 542–546.

    Article  CAS  PubMed  Google Scholar 

  15. Ribases M, Gratacos M, Fernandez-Aranda F, Bellodi L, Boni C, Anderluh M et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet 2004; 13: 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  16. Kernie SG, Liebl DJ, Parada LF . BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000; 19: 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Angelucci F, Mathe AA, Aloe L . Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–794.

    Article  CAS  PubMed  Google Scholar 

  18. Lane HY, Liu YC, Huang CL, Chang YC, Wu PL, Lu CT et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 2006; 26: 128–134.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang XY, Zhou DF, Wu GY, Cao LY, Tan YL, Haile CN et al. BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropsychopharmacology 2008; 33: 2200–2205.

    Article  CAS  PubMed  Google Scholar 

  20. Rimland B, Edelson SM (2000). Autism Treatment Evaluation Checklist (ATEC), Autism Research Institute, San Diego, USA.

    Google Scholar 

  21. Rojahn J, Matson JL, Lott D, Esbensen AJ, Smalls Y . The Behavior Problem Inventory: an instrument for the assessment of self-injury, stereotyped behavior, and agression/destruction in individuals with developmental disabilities. J Autism Dev Disord 2001; 31: 577–588.

    Article  CAS  PubMed  Google Scholar 

  22. Tassé MJ, Aman MG, Hammer D, Rojahn J . The nisonger child behavior rating form: age and gender effects and norms. Res Dev Disabil 1996; 17: 59–75.

    Article  PubMed  Google Scholar 

  23. Lonsdale D, Shamberger RJ, Audhya T . Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuro Endocrinol Lett 2002; 23: 303–308.

    CAS  PubMed  Google Scholar 

  24. Ratliff-Schaub K, Carey T, Reeves GD, Rogers MA . Randomized controlled trial of transdermal secretin on behavior of children with autism. Autism 2005; 9: 256–265.

    Article  PubMed  Google Scholar 

  25. Correia C, Santos P, Coutinho AM, Vicente AM . Characterization of pharmacogenetically relevant CYP2D6 and ABCB1 gene polymorphisms in a Portuguese population sample. Cell Biochem Funct 2009; 27: 251–255.

    Article  CAS  PubMed  Google Scholar 

  26. Hinney A, Ziegler A, Nothen MM, Remschmidt H, Hebebrand J . 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. Lancet 1997; 350: 1324–1325.

    Article  CAS  PubMed  Google Scholar 

  27. Zeger SL, Liang KY, Albert PS . Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44: 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  28. de Leon J, Susce MT, Pan RM, Wedlund PJ, Orrego ML, Diaz FJ . A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 2007; 40: 93–102.

    Article  CAS  PubMed  Google Scholar 

  29. Pandina GJ, Aman MG, Findling RL . Risperidone in the management of disruptive behavior disorders. J Child Adolesc Psychopharmacol 2006; 16: 379–392.

    Article  PubMed  Google Scholar 

  30. Malone RP, Maislin G, Choudhury MS, Gifford C, Delaney MA . Risperidone treatment in children and adolescents with autism: short- and long-term safety and effectiveness. J Am Acad Child Adolesc Psychiatry 2002; 41: 140–147.

    Article  PubMed  Google Scholar 

  31. Martin A, Scahill L, Anderson GM, Aman M, Arnold LE, McCracken J et al. Weight and leptin changes among risperidone-treated youths with autism: 6-month prospective data. Am J Psychiatry 2004; 161: 1125–1127.

    Article  PubMed  Google Scholar 

  32. Turgay A, Binder C, Snyder R, Fisman S . Long-term safety and efficacy of risperidone for the treatment of disruptive behavior disorders in children with subaverage IQs. Pediatrics 2002; 111: 34.

    Article  Google Scholar 

  33. Anderson GM, Scahill L, McCracken JT, McDougle CJ, Aman MG, Tierney E et al. Effects of short- and long-term risperidone treatment on prolactin levels in children with autism. Biol Psychiatry 2007; 61: 545–550.

    Article  CAS  PubMed  Google Scholar 

  34. Findling RL, Kusumakar V, Daneman D, Moshang T, De Smedt G, Binder C . Prolactin levels during long-term risperidone treatment in children and adolescents. J Clin Psychiatry 2003; 64: 1362–1369.

    Article  CAS  PubMed  Google Scholar 

  35. Ellingrod VL, Lund BC, Miller D, Fleming F, Perry P, Holman TL et al. 5-HT2A receptor promoter polymorphism, -1438G/A and negative symptom response to olanzapine in schizophrenia. Psychopharmacol Bull 2003; 37: 109–112.

    PubMed  Google Scholar 

  36. Herken H, Erdal ME, Esgi K, Virit O, Aynacioglu AS . The relationship between the response to risperidone treatment and 5-HT2A receptor gene (T102C and 1438G/A) polymorphism in schizophrenia. Bull Clin Psychopharmacol 2003; 13: 161–166.

    CAS  Google Scholar 

  37. Myers RL, Airey DC, Manier DH, Shelton RC, Sanders-Bush E . Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol Psychiatry 2007; 61: 167–173.

    Article  CAS  PubMed  Google Scholar 

  38. Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ . The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 2004; 56: 406–410.

    Article  CAS  PubMed  Google Scholar 

  39. Arranz MJ, Munro J, Sham P, Kirov G, Murray RM, Collier DA et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 1998; 32: 93–99.

    Article  CAS  PubMed  Google Scholar 

  40. Cascorbi I . Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006; 112: 457–473.

    Article  CAS  PubMed  Google Scholar 

  41. Xing Q, Gao R, Li H, Feng G, Xu M, Duan S et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics 2006; 7: 987–993.

    Article  CAS  PubMed  Google Scholar 

  42. Salama NN, Yang Z, Bui T, Ho RJ . MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 2006; 95: 2293–2308.

    Article  CAS  PubMed  Google Scholar 

  43. Aarnoudse AJ, Dieleman JP, Visser LE, Arp PP, van der Heiden IP, van Schaik RH et al. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics 2008; 18: 299–305.

    Article  CAS  PubMed  Google Scholar 

  44. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 3246–3253.

    CAS  PubMed  Google Scholar 

  45. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L . Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res 2008; 42: 89–97.

    Article  PubMed  Google Scholar 

  46. Lin YC, Ellingrod VL, Bishop JR, Miller del D . The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit 2006; 28: 668–672.

    Article  CAS  PubMed  Google Scholar 

  47. Alenius M, Wadelius M, Dahl ML, Hartvig P, Lindstrom L, Hammarlund-Udenaes M . Gene polymorphism influencing treatment response in psychotic patients in a naturalistic setting. J Psychiatr Res 2008; 42: 884–893.

    Article  PubMed  Google Scholar 

  48. Lane HY, Hsu SK, Liu YC, Chang YC, Huang CH, Chang WH . Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol 2005; 25: 6–11.

    Article  CAS  PubMed  Google Scholar 

  49. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z . Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol 2005; 15: 143–151.

    Article  CAS  PubMed  Google Scholar 

  50. Szekeres G, Keri S, Juhasz A, Rimanoczy A, Szendi I, Czimmer C et al. Role of dopamine D3 receptor (DRD3) and dopamine transporter (DAT) polymorphism in cognitive dysfunctions and therapeutic response to atypical antipsychotics in patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 124B: 1–5.

    Article  PubMed  Google Scholar 

  51. Buckland PR, Hoogendoorn B, Guy CA, Smith SK, Coleman SL, O’Donovan MC . Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. Am J Psychiatry 2005; 162: 613–615.

    Article  PubMed  Google Scholar 

  52. Richelson E, Souder T . Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 2000; 68: 29–39.

    Article  CAS  PubMed  Google Scholar 

  53. Reynolds GP, Zhang ZJ, Zhang XB . Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002; 359: 2086–2087.

    Article  CAS  PubMed  Google Scholar 

  54. Ryu S, Cho EY, Park T, Oh S, Jang WS, Kim SK et al. 759 C/T polymorphism of 5-HT2C receptor gene and early phase weight gain associated with antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 673–677.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Zhang X, Yao Z, Chen J, Sun J, Yao H et al. Association of antipsychotic agent-induced weight gain with a polymorphism of the promotor region of the 5-HT2C receptor gene]. Zhonghua Yi Xue Za Zhi 2002; 82: 1097–1101.

    CAS  PubMed  Google Scholar 

  56. Torre DL, Falorni A . Pharmacological causes of hyperprolactinemia. Ther Clin Risk Manag 2007; 3: 929–951.

    PubMed  PubMed Central  Google Scholar 

  57. Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, Gray TS . 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 2001; 21: 3572–3579.

    Article  CAS  PubMed  Google Scholar 

  58. Lacau-Mengido IM, Libertun C, Becu-Villalobos D . Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat. Neuroendocrinology 1996; 63: 415–421.

    Article  CAS  PubMed  Google Scholar 

  59. Young RM, Lawford BR, Barnes M, Burton SC, Ritchie T, Ward WK et al. Prolactin levels in antipsychotic treatment of patients with schizophrenia carrying the DRD2*A1 allele. Br J Psychiatry 2004; 185: 147–151.

    Article  PubMed  Google Scholar 

  60. Yasui-Furukori N, Saito M, Tsuchimine S, Nakagami T, Sato Y, Sugawara N et al. Association between dopamine-related polymorphisms and plasma concentrations of prolactin during risperidone treatment in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  61. Mattson MP, Maudsley S, Martin B . BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27: 589–594.

    Article  CAS  PubMed  Google Scholar 

  62. Tarazi FI, Zhang K, Baldessarini RJ . Long-term effects of olanzapine, risperidone, and quetiapine on serotonin 1A, 2A and 2C receptors in rat forebrain regions. Psychopharmacology (Berl) 2002; 161: 263–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the autism patients and their families for their collaboration in this study. We thank Paulo Nogueira and Dr Valeska Andreozzi for their help and collaboration in the statistical analysis. This work was supported by grants from Fundação para a Ciência e a Tecnologia (FCT) (POCTI/FCB/44706/2002). C Correia is supported by a fellowship from the Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Vicente.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia, C., Almeida, J., Santos, P. et al. Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactions. Pharmacogenomics J 10, 418–430 (2010). https://doi.org/10.1038/tpj.2009.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.63

Keywords

This article is cited by

Search

Quick links