Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Association of genotypes of the CYP3A cluster with midazolam disposition in vivo

A Corrigendum to this article was published on 26 March 2012

Abstract

The genes that encode for CYP3A4 and CYP3A5 are located in the same region (CYP3A cluster) on chromosome 7. Midazolam (MDZ) is a substrate for both CYP3A4 and CYP3A5. We hypothesize that MDZ disposition in vivo is associated with genotypes of the CYP3A cluster. A meta-analysis of the pharmacokinetic (PK) parameters from seven clinical trials was carried out, in which MDZ was administered both intravenously and orally. DNA samples were available from 116 patients. There were significant ethnic differences in the allelic frequencies of these four common single-nucleotide polymorphisms (SNPs) in the CYP3A cluster. Significant linkage disequilibrium was found between CYP3A5*3 and CYP3A4*1A in Caucasians, and between CYP3A5*1 and CYP3A4*1B in African Americans. There were no differences in MDZ disposition in vivo between different genotypes, haplotypes and diplotypes in the CYP3A cluster (P>0.05). No significant differences in MDZ PK parameters were observed between Caucasians and African Americans. Women had higher weight-corrected systemic and oral clearance than men, but dose-adjusted AUC and bioavailability differences were not observed between sexes. The clinical importance of elevated CYP3A activity in women remains to be determined. The rGC's of MDZ PK parameters were between 0.3 and 13.6%. In conclusion, the meta-analysis of seven studies suggests that environmental factors explain the majority of CYP3A activity variation. Further studies are necessary to define the functional significance of SNPs in the CYP3A cluster and the effects of CYP3A genotypes on MDZ disposition in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Guengerich FP . Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17.

    Article  CAS  PubMed  Google Scholar 

  2. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  PubMed  Google Scholar 

  3. Chen M, Nafziger AN, Bertino Jr JS . Drug-metabolizing enzyme inhibition by ketoconazole does not reduce interindividual variability of CYP3A activity as measured by oral midazolam. Drug Metab Dispos 2006; 34: 2079–2082.

    Article  CAS  PubMed  Google Scholar 

  4. Wojnowski L, Kamdem LK . Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006; 2: 171–182.

    Article  CAS  PubMed  Google Scholar 

  5. Ball SE, Scatina J, Kao J, Ferron GM, Fruncillo R, Mayer P et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 1999; 66: 288–294.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A . CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75: 1059–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burk O, Tegude H, Koch I, Hustert E, Wolbold R, Glaeser H et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277: 24280–24288.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson EE, Kuttab-Boulos H, Yang L, Roe BA, Di Rienzo A . Sequence diversity and haplotype structure at the human CYP3A cluster. Pharmacogenomics J 2006; 6: 105–114.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Martin E, Martinez C, Pizarro RM, Garcia-Gamito FJ, Gullsten H, Raunio H et al. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002; 71: 196–204.

    Article  CAS  PubMed  Google Scholar 

  10. Wandel C, Witte JS, Hall JM, Stein CM, Wood AJ, Wilkinson GR . CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68: 82–91.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Antona C, Sayi JG, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M . Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem Biophys Res Commun 2005; 338: 299–305.

    Article  CAS  PubMed  Google Scholar 

  12. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  13. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  Google Scholar 

  14. Jin Y, Wang YH, Miao J, Li L, Kovacs RJ, Marunde R et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther 2007; 82: 579–585.

    Article  CAS  PubMed  Google Scholar 

  15. Dally H, Edler L, Jager B, Schmezer P, Spiegelhalder B, Dienemann H et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 13 2003: 607–618.

    Article  CAS  PubMed  Google Scholar 

  16. Wojnowski L, Hustert E, Klein K, Goldammer M, Haberl M, Kirchheiner J et al. Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 2002; 94: 630–631; author reply 1–2.

    Article  PubMed  Google Scholar 

  17. Kim RB . Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 2002; 34: 47–54.

    Article  CAS  PubMed  Google Scholar 

  18. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–414.

    Article  CAS  PubMed  Google Scholar 

  19. Masica AL, Mayo G, Wilkinson GR . In vivo comparisons of constitutive cytochrome P450 3A activity assessed by alprazolam, triazolam, and midazolam. Clin Pharmacol Ther 2004; 76: 341–349.

    Article  CAS  PubMed  Google Scholar 

  20. Krupka E, Venisse N, Lafay C, Gendre D, Diquet B, Bouquet S et al. Probe of CYP3A by a single-point blood measurement after oral administration of midazolam in healthy elderly volunteers. Eur J Clin Pharmacol 2006; 62: 653–659.

    Article  CAS  PubMed  Google Scholar 

  21. Lee J-I, Chaves-Gnecco D, Amico JA, Kroboth PD, Wilson JW, Frye RF . Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping. Clin Pharmacol Ther 2002; 72: 718–728.

    Article  CAS  PubMed  Google Scholar 

  22. Lown KS, Kolars JC, Thummel KE, Barnett JL, Kunze KL, Wrighton SA et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. [erratum appears in Drug Metab Dispos 1995 Mar;23(3):followi]. Drug Metab Dispos 1994; 22: 947–955.

    CAS  PubMed  Google Scholar 

  23. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG . Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007; 39: 699–721.

    Article  CAS  PubMed  Google Scholar 

  24. Lee LS, Bertino Jr JS, Nafziger AN . Limited sampling models for oral midazolam: midazolam plasma concentrations, not the ratio of 1-hydroxymidazolam to midazolam plasma concentrations, accurately predicts AUC as a biomarker of CYP3A activity. J Clin Pharmacol 2006; 46: 229–234.

    Article  CAS  PubMed  Google Scholar 

  25. Streetman DS, Bertino Jr JS, Nafziger AN . Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; 10: 187–216.

    Article  CAS  PubMed  Google Scholar 

  26. Thummel KE, O'Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502.

    Article  CAS  PubMed  Google Scholar 

  27. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O'Mara Jr EM, Hall SD . The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64: 133–143.

    Article  CAS  PubMed  Google Scholar 

  28. Eap CB, Buclin T, Hustert E, Bleiber G, Golay KP, Aubert A-C et al. Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 2004; 60: 231–236.

    CAS  PubMed  Google Scholar 

  29. Floyd MD, Gervasini G, Masica AL, Mayo G, George Jr AL, Bhat K et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.[see comment]. Pharmacogenetics 2003; 13: 595–606.

    Article  CAS  PubMed  Google Scholar 

  30. Shih P-S, Huang J-D . Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos 2002; 30: 1491–1496.

    Article  CAS  PubMed  Google Scholar 

  31. Chen M, Ma L, Drusano GL, Bertino Jr JS, Nafziger AN . Sex differences in CYP3A activity using intravenous and oral midazolam. Clin Pharmacol Ther 2006; 80: 531–538.

    Article  CAS  PubMed  Google Scholar 

  32. Greenblatt DJ, Harmatz JS, von Moltke LL, Wright CE, Shader RI . Age and gender effects on the pharmacokinetics and pharmacodynamics of triazolam, a cytochrome P450 3A substrate. Clin Pharmacol Ther 2004; 76: 467–479.

    Article  CAS  PubMed  Google Scholar 

  33. Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M et al. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 2003; 38: 978–988.

    Article  CAS  PubMed  Google Scholar 

  34. Gorski JC, Wang Z, Haehner-Daniels BD, Wrighton SA, Hall SD . The effect of hormone replacement therapy on CYP3A activity. Clin Pharmacol Ther 2000; 68: 412–417.

    Article  CAS  PubMed  Google Scholar 

  35. Carrillo JA, Ramos SI, Agundez JA, Martinez C, Benitez J . Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 1998; 20: 319–324.

    Article  CAS  PubMed  Google Scholar 

  36. Tateishi T, Watanabe M, Nakura H, Asoh M, Shirai H, Mizorogi Y et al. CYP3A activity in European American and Japanese men using midazolam as an in vivo probe. Clin Pharmacol Ther 2001; 69: 333–339.

    Article  CAS  PubMed  Google Scholar 

  37. Kalow W, Ozdemir V, Tang BK, Tothfalusi L, Endrenyi L . The science of pharmacological variability: An essay. Clin Pharmacol Ther 1999; 66: 445–447.

    Article  CAS  PubMed  Google Scholar 

  38. Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000; 10: 373–388.

    Article  CAS  PubMed  Google Scholar 

  39. Xie H-G, Wood AJJ, Kim RB, Stein CM, Wilkinson GR . Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5: 243–272.

    Article  CAS  PubMed  Google Scholar 

  40. Lee S-J, Goldstein JA . Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics 2005; 6: 357–371.

    Article  CAS  PubMed  Google Scholar 

  41. Mirghani RA, Sayi J, Aklillu E, Allqvist A, Jande M, Wennerholm A et al. CYP3A5 genotype has significant effect on quinine 3-hydroxylation in Tanzanians, who have lower total CYP3A activity than a Swedish population. Pharmacogenet Genomics 2006; 16: 637–645.

    Article  CAS  PubMed  Google Scholar 

  42. Pinto AG, Wang Y-H, Chalasani N, Skaar T, Kolwankar D, Gorski JC et al. Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther 2005; 77: 178–188.

    Article  CAS  PubMed  Google Scholar 

  43. He P, Court MH, Greenblatt DJ, Von Moltke LL . Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo.[see comment]. Clin Pharmacol Ther 2005; 77: 373–387.

    Article  CAS  PubMed  Google Scholar 

  44. Kharasch ED, Walker A, Isoherranen N, Hoffer C, Sheffels P, Thummel K et al. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther 2007; 82: 410–426.

    Article  CAS  PubMed  Google Scholar 

  45. Kashuba AD, Bertino Jr JS, Rocci Jr ML, Kulawy RW, Beck DJ, Nafziger AN . Quantification of 3-month intraindividual variability and the influence of sex and menstrual cycle phase on CYP3A activity as measured by phenotyping with intravenous midazolam. Clin Pharmacol Ther 1998; 64: 269–277.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu B, Liu Z-Q, Chen G-L, Chen X-P, Ou-Yang D-S, Wang L-S et al. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol 2003; 55: 264–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI . Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984; 61: 27–35.

    Article  CAS  PubMed  Google Scholar 

  48. Quinney SK, Haehner BD, Rhoades MB, Lin Z, Gorski JC, Hall SD . Interaction between midazolam and clarithromycin in the elderly. Br J Clin Pharmacol 2008; 65: 98–109.

    Article  CAS  PubMed  Google Scholar 

  49. Gorski JC, Vannaprasaht S, Hamman MA, Ambrosius WT, Bruce MA, Haehner-Daniels B et al. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther 2003; 74: 275–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Drs Lang Li, Sara K Quinney, Seongho Kim and Stephen Hall's researches are supported by NIH grant GM74217 (to LL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, J., Jin, Y., Marunde, R. et al. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics J 9, 319–326 (2009). https://doi.org/10.1038/tpj.2009.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.21

Keywords

This article is cited by

Search

Quick links