Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic predictors of response to antidepressants in the GENDEP project


The objective of the Genome-based Therapeutic Drugs for Depression study is to investigate the function of variations in genes encoding key proteins in serotonin, norepinephrine, neurotrophic and glucocorticoid signaling in determining the response to serotonin-reuptake-inhibiting and norepinephrine-reuptake-inhibiting antidepressants. A total of 116 single nucleotide polymorphisms in 10 candidate genes were genotyped in 760 adult patients with moderate-to-severe depression, treated with escitalopram (a serotonin reuptake inhibitor) or nortriptyline (a norepinephrine reuptake inhibitor) for 12 weeks in an open-label part-randomized multicenter study. The effect of genetic variants on change in depressive symptoms was evaluated using mixed linear models. Several variants in a serotonin receptor gene (HTR2A) predicted response to escitalopram with one marker (rs9316233) explaining 1.1% of variance (P=0.0016). Variants in the norepinephrine transporter gene (SLC6A2) predicted response to nortriptyline, and variants in the glucocorticoid receptor gene (NR3C1) predicted response to both antidepressants. Two HTR2A markers remained significant after hypothesis-wide correction for multiple testing. A false discovery rate of 0.106 for the three strongest associations indicated that the multiple findings are unlikely to be false positives. The pattern of associations indicated a degree of specificity with variants in genes encoding proteins in serotonin signaling influencing response to the serotonin-reuptake-inhibiting escitalopram, genes encoding proteins in norepinephrine signaling influencing response to the norepinephrine-reuptake-inhibiting nortriptyline and a common pathway gene influencing response to both antidepressants. The single marker associations explained only a small proportion of variance in response to antidepressants, indicating a need for a multivariate approach to prediction.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1


  1. Franchini L, Serretti A, Gasperini M, Smeraldi E . Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 1998; 32: 255–259.

    Article  CAS  PubMed  Google Scholar 

  2. Serretti A, Kato M, De Ronchi D, Kinoshita T . Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 2007; 12: 247–257.

    Article  CAS  PubMed  Google Scholar 

  3. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 2006; 296: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  4. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78: 804–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato M, Serretti A . Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 2008; published ahead of print 4 November 2008; doi:10.1038/mp.2008.116.

    Article  PubMed  Google Scholar 

  6. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 2006; 59: 681–688.

    Article  CAS  PubMed  Google Scholar 

  7. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  8. Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci USA 2006; 103: 15124–15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression. Br J Psychiatry 2009; 194: 252–259.

    Article  PubMed  Google Scholar 

  10. Huezo-Diaz P, Uher R, Smith R, Rietschel M, Henigsberg N, Marusic A et al. Moderation of antidepressant response by the serotonin transporter gene. Br J Psychiatry 2009; 195.

    Article  Google Scholar 

  11. Landen M, Thase ME . A model to explain the therapeutic effects of serotonin reuptake inhibitors: the role of 5-HT2 receptors. Psychopharmacol Bull 2006; 39: 147–166.

    PubMed  Google Scholar 

  12. Goring HH, Terwilliger JD, Blangero J . Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69: 1357–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pariante CM, Miller AH . Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001; 49: 391–404.

    Article  CAS  PubMed  Google Scholar 

  14. Uher R, Farmer A, Maier W, Rietschel M, Hauser J, Marusic A et al. Measuring depression: comparison and integration of three scales in the GENDEP study. Psychol Med 2008; 38: 289–300.

    Article  CAS  PubMed  Google Scholar 

  15. Mulder RT, Joyce PR, Frampton C . Relationships among measures of treatment outcome in depressed patients. J Affect Disord 2003; 76: 127–135.

    Article  PubMed  Google Scholar 

  16. Mathew CG . New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet 2008; 9: 9–14.

    Article  CAS  PubMed  Google Scholar 

  17. Dadd T, Weale ME, Lewis CM . A critical evaluation of genomic control methods for genetic association studies. Genet Epidemiol 2008; published ahead of print 1 December 2008; doi: 10.1002/gepi.20379.

    Article  PubMed  Google Scholar 

  18. Wing JK, Sartorius N, Ustin TB . Diagnosis and Clinical Measurement in Psychiatry. A Reference Manual for SCAN. World Health Organization, Geneva, Switzerland, 1998.

    Book  Google Scholar 

  19. Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, Larsen A et al. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 2003; 167: 353–362.

    Article  CAS  Google Scholar 

  20. Sanchez C, Hyttel J . Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 1999; 19: 467–489.

    Article  CAS  PubMed  Google Scholar 

  21. Montgomery SA, Asberg M . A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–389.

    Article  CAS  PubMed  Google Scholar 

  22. Hamilton M . Development of a rating scale for primary depressive illness. Brit J Clin Psychol 1967; 6: 278–296.

    Article  CAS  Google Scholar 

  23. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J . An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–571.

    Article  CAS  PubMed  Google Scholar 

  24. Freeman B, Smith N, Curtis C, Huckett L, Mill J, Craig IW . DNA from buccal swabs recruited by mail: evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav Genet 2003; 33: 67–72.

    Article  CAS  PubMed  Google Scholar 

  25. De Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  26. Solovyev VV, Shahmuradov IA . PromH: promoters identification using orthologous genomic sequences. Nucleic Acids Res 2003; 31: 3540–3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  28. Wittke-Thompson JK, Pluzhnikov A, Cox NJ . Rational inferences about departures from Hardy–Weinberg equilibrium. Am J Hum Genet 2005; 76: 967–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lane P . Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches. Pharm Stat 2008; 7: 93–106.

    Article  PubMed  Google Scholar 

  30. Mallinckrodt CH, Clark WS, David SR . Accounting for dropout bias using mixed-effects models. J Biopharm Stat 2001; 11: 9–21.

    Article  CAS  PubMed  Google Scholar 

  31. StataCorp. Stata Statistical Software: Release 10. StataCorp LP, College Station, Texas, 2007.

  32. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  PubMed  Google Scholar 

  33. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  35. Sabatti C, Service S, Freimer N . False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164: 829–833.

    PubMed  PubMed Central  Google Scholar 

  36. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kall L, Storey JD, MacCoss MJ, Noble WS . Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res 2008; 7: 40–44.

    Article  PubMed  Google Scholar 

  38. Gauderman WJ, Morrison JM . Quanto 1.1: a computer program for power and sample size calculations for genetic-epigemiology studies. http://hydrauscedu/gxe, 2006.

  39. Seldin MF, Shigeta R, Villoslada P, Selmi C, Tuomilehto J, Silva G et al. European population substructure: clustering of northern and southern populations. PLoS Genet 2006; 2: e143.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Falush D, Stephens M, Pritchard JK . Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003; 164: 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    Article  CAS  PubMed  Google Scholar 

Download references


The GENDEP study was funded by the European Commission Framework 6 grant, EC Contract Ref. LSHB-CT-2003-503428. Lundbeck provided both nortriptyline and escitalopram free of charge for the GENDEP study. The Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and South London and Maudsley NHS Foundation Trust (funded by the National Institute for Health Research, Department of Health, UK) and GlaxoSmithKline contributed by funding add-on projects in the London center. The funders had no role in the design and conduct of the study, in data collection, analysis, interpretation or writing the report. We acknowledge the contributions of Andrej Marusic and Jorge Perez, who were the lead investigators at Ljubljana, Slovenia and at Brescia, Italy, and who passed away during the conduct of the study. We also acknowledge the contribution of the following collaborators: Helen Dean, Amanda Elkin, Bhanu Gupta, Cerisse Gunasinghe, Desmond Campbell, Richard J Williamson, David Dempster, Julien Mendlewicz, Maja Bajs, Jana Strohmaier, Christine Schmäl, Susanne Höfels, Anna Schuhmacher, Ute Pfeiffer, Sandra Weber, Anne Schinkel Stamp, Alenka Tancic, Jerneja Sveticic, Zrnka Kovacic, Paweł Kapelski, Maria Skibiñska, Aleksandra Rajewska, Anna Leszczynska, Aleksandra Szczepankiewicz, Elzbieta Cegielska, Laura Pedrini, Cristian Bonvicini, Luciana Rillosi, Sylvie Linotte, Borut Jerman, Tina Žagar and Metka Paragi.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rudolf Uher.

Additional information

Supplementary Information accompanies the paper on The Pharmacogenomics Journal website (

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uher, R., Huezo-Diaz, P., Perroud, N. et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J 9, 225–233 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links