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Transcriptome sequencing study implicates immune-related
genes differentially expressed in schizophrenia: new data
and a meta-analysis
AR Sanders1,2, EI Drigalenko3, J Duan1,2, W Moy1, J Freda1, HHH Göring4, PV Gejman1,2 on behalf of MGS5

We undertook an RNA sequencing (RNAseq)-based transcriptomic profiling study on lymphoblastoid cell lines of a European
ancestry sample of 529 schizophrenia cases and 660 controls, and found 1058 genes to be differentially expressed by affection
status. These differentially expressed genes were enriched for involvement in immunity, especially the 697 genes with higher
expression in cases. Comparing the current RNAseq transcriptomic profiling to our previous findings in an array-based study of 268
schizophrenia cases and 446 controls showed a highly significant positive correlation over all genes. Fifteen (18%) of the 84 genes
with significant (false discovery rateo0.05) expression differences between cases and controls in the previous study and analyzed
here again were differentially expressed by affection status here at a genome-wide significance level (Bonferroni Po0.05 adjusted
for 8141 analyzed genes in total, or Po ~ 6.1 × 10− 6), all with the same direction of effect, thus providing corroborative evidence
despite each sample of fully independent subjects being studied by different technological approaches. Meta-analysis of the
RNAseq and array data sets (797 cases and 1106 controls) showed 169 additional genes (besides those found in the primary
RNAseq-based analysis) to be differentially expressed, and provided further evidence of immune gene enrichment. In addition to
strengthening our previous array-based gene expression differences in schizophrenia cases versus controls and providing
transcriptomic support for some genes implicated by other approaches for schizophrenia, our study detected new genes
differentially expressed in schizophrenia. We highlight RNAseq-based differential expression of various genes involved in
neurodevelopment and/or neuronal function, and discuss caveats of the approach.

Translational Psychiatry (2017) 7, e1093; doi:10.1038/tp.2017.47; published online 18 April 2017

INTRODUCTION
Schizophrenia, a common (~1%) and often severe psychiatric
disorder, typically has a late adolescent or early adult onset of
overt psychotic symptoms.1 A number of etiological contributions
have been proposed,2 in particular genetic predisposition,3 but
there is also some evidence for immunological and inflammatory
mechanisms.4,5 Genome-wide association studies (GWASs) of
schizophrenia and their meta- and mega-analyses with increasing
sample sizes have yielded over 100 genome-wide significant
loci.6–10 Most common single-nucleotide polymorphism (SNP)
GWAS variants lie outside of genes and/or are not in linkage
disequilibrium with polymorphisms affecting amino-acid
sequence,9,10 and functional consequences of candidate variants
remain largely unclear. Disease-associated copy-number variants
(CNVs) and trait-associated SNPs from GWAS on disorders
with complex genetics (including schizophrenia) have been
found to be enriched for regulatory sequences (DNase I
hypersensitive sites, ENCODE11) and for expression quantitative
trait nucleotides,12–15 which suggests a likely importance of gene
regulation for such variants. Therefore, we have conducted an
RNAseq-based genome-wide gene expression study to investigate
genetic mechanisms involved in schizophrenia.

Our previous effort consisted of a transcriptional analysis of
lymphoblastoid cell lines (LCLs) from 268 schizophrenia cases and
446 controls from the Molecular Genetics of Schizophrenia (MGS)
European ancestry GWAS sample.16 In that first study, instead of
RNAseq, we used the Illumina HT12-v4 microarray16 and found
differential expression by affection status for 95 transcripts from
89 genes, among which we noticed immune-related gene
enrichment.16 Interestingly, the results from a later large GWAS
meta-analysis strongly supported immunological activation in
schizophrenia, especially in B-lymphocyte lineages involved in
acquired immunity.10 We present here the transcriptomic profiles
of a larger, non-overlapping set of 529 schizophrenia cases and
660 controls, using RNAseq technology. Here we report our
primary RNAseq gene expression findings and the results of a
combined analysis of both cross-platform data sets (totaling 797
cases and 1106 controls) by the use of a sample size-weighted
meta-analysis of P-values.

MATERIALS AND METHODS
Subjects
The Institutional Review Board from NorthShore University HealthSystem
reviewed and approved the protocol, and informed consent was
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previously been obtained for all subjects. The MGS sample ascertainment,
assessment, composition and characteristics have been previously
described.6,16,17 Briefly, the MGS case–control collection is a large data
set previously collected at 10 locations to study the genetic etiology of
schizophrenia. As with our previous study,16 we included only MGS
European ancestry GWAS-studied samples. The selected individuals did not
overlap with the previously array-studied expression sample,16 that is,
consisted of entirely non-overlapping subjects. We chose approximately
equal proportions of males and females in each group, and roughly
matched cases and controls based on 5-year age brackets, to reduce
potential confounder effects. Our studied sample is described in Table 1,
and the case and control components matched quite well on the
measured covariates. Subject (sample) quality control for identity
verification included ensuring concordance between known sex (that is,
dosages of X and Y chromosomes) and RNAseq expression levels of sex-
dimorphic expressed genes on chromosomes X (XIST) and Y (RPS4Y1, ZFY,
USP9Y, DDX3Y, UTY, KDM5D and EIF1AY). We also compared RNAseq-called
genotypes (using SAMtools mpileup function,18 requiring 48 reads at a
called SNP site) with previously determined SNP genotypes (Affymetrix 6.0,
Santa Clara, CA, USA) from the MGS GWAS6 for informative SNPs (mean 76
per sample), requiring at least 95% concordance (mean 99.5%
concordance).

LCLs
The standardized careful methods for obtaining, reviving, growing,
assaying (growth rate and energy status) and harvesting the LCLs for
RNA, as well as the use of appropriate (culture/biological and RNA/
technical) replicates, RNA isolation and processing are the same as
described for the previous microarray-based expression study.16 In the
current study, all LCLs were transformed at Rutgers University Cell and
DNA Repository. As with our previous array-based study, we collected LCL
characteristics data that may confound the relationship between schizo-
phrenia status and gene expression levels,19 namely, Epstein–Barr virus
(EBV) load (copy number), cell count at harvest (LCL growth rate) and LCL
energy status (indexed by ATP levels adjusted by cell count).

Transcriptome sequencing
We shipped samples, always intercalating cases and controls (as was done
in the LCL-growing protocol, to minimize any cryptic case–control
differences that might still exist besides affection status), in five large
batches to the University of Minnesota Genomics Center, which performed
next-generation sequencing (RNAseq), using Illumina TruSeq SBS v3 (San
Diego, CA, USA) reagents and Illumina HiSeq instruments, and obtaining
50 bp single-end reads, obtaining average read quality (Q-score 430)
across the entire read length, and achieving 48 million read depth for the
analyzed samples. (If more than one run was required, we combined the
reads across RNAseq runs, including all runs with 42 million reads. In all
such instances, the RNAseq runs were done in the same sequencing batch

on the same RNA harvest, that is, we did not regrow LCLs from a study
participant multiple times, harvest RNA multiple times and then run
RNAseq on these multiple RNA harvests. Similarly, we did not combine
RNAseq results across different RNAseq runs.)

RNAseq data processing
We used TopHat20 (v2.0.12, based on Bowtie2,21 v2.2.3) for read alignment,
and CuffLinks22 (v2.2.1) for counting the number of mapped alignments
and calculating the measure of gene expression, FPKM (fragments per
kilobase of exon per million reads mapped). We normalized the data by
square root transformation as a variance-stabilizing transformation, as
FPKM may be viewed as following a Poisson distribution, that is, of ‘rare
events’. For human genome annotation, we used GenCode v.20 based on
human genome assembly GRCh38 (hg38), and program parameters had
default values. The total number of reads per sample averaged 14 040 233
(range 9 003 327–64 218 868), excepting 32 LCLs from carriers (23 cases
and 9 controls) of known risk CNVs for schizophrenia. These samples were
batched together and sequenced at a higher depth (mean= 71 758 557,
range 11 921 205–107 065 076). Excluding these 32 high-depth CNV carrier
samples, there was no difference between the RNAseq coverage between
cases and controls (see footnote to Table 1).

Differential expression analyses
For the primary analysis (RNAseq, full sample), we focused on the 21 146
genes with detectable (that is, non-zero) expression in at least 80% of the
samples. The average correlation of square root transformed gene
expression levels across these 21 146 genes between 46 technical
replicates, 63 culture replicates and all unrelated samples was in the
expected order (r= 0.99, r= 0.98 and r= 0.97, respectively). As in the array
study before,16 we used the same measured covariates (sex, age, age2,
genotypic principal components, batch (four dummy variables for five
RNAseq batches), EBV load, growth rate and ATP) jointly applied (to
account for their possible confounding) to a multivariate linear regression
model with affection status. For the comparison to the previous array
results, we limited the study to genes detected well with both array and
RNAseq (detectable expression in ⩾ 80% of samples for both platforms).
The RNAseq sample is a fully independent sample with no overlap of
subjects with the array-studied sample. To combine results across the two
studies (array and RNAseq), we used extension of Stouffer’s Zmethod,23 for
which we (1) selected the 8141 genes expressed in 480% of samples by
both methods, (2) used the P-values and beta-coefficients for differential
expression by schizophrenia status to generate Z-scores, (3) weighted the
Z-scores by sample sizes (array 714 consisting of 268 cases and 446
controls; RNAseq 1189 consisting of 529 cases and 660 controls), (4)
combined the Z-scores for the meta-analytic result, and then (5) reverted
the combined Z-scores back to P-values corresponding to the combined
P-values of RNAseq and array, using an R package.24

Table 1. Sample characteristics

Samples Cases Controls

Sample size (N) 529 660
Sex (% male) 50% 54%
Age (years) 46.5 (45.5–47.5) 43.6 (42.7–44.5)
EBV load (copy number) 1.605 (1.555–1.655) 1.504 (1.465–1.543)
Clonality (% heterozygosity) 80% 78%
Cell count at harvest (growth rate) 0.475 (0.467–0.483) 0.474 (0.468–0.481)
Energy (mean ATP per cell count) 203 741 (198 756–208 726) 203 759 (199 447–208 071)
Aligned reads 15 647 543 (14 575 889–16 719 196) 13 464 505 (12 925 130–14 003 880)
Proportion reads mapped 93.00% 93.10%

Abbreviation: CNV, copy-number variants; EBV, Epstein–Barr virus; LCL, lymphoblastoid cell lines. Note: unless otherwise indicated, values are means, with 95%
confidence intervals (CIs). Cell count at harvest reflects growth rate directly, as all samples were adjusted to 250 000 cells per ml at 24 h prior to harvest. EBV load
is calculated by log10(2

−mfdCt). RNA quality indices (A260/A280, A260/A230, RNA integrity number, 28s/18s rRNA ratio) were all indicative of high quality, and matched
well by affection. Although cases and controls are fairly well matched for these parameters, there are some minor differences: the cases were slightly older
(Student’s t-test P= 1.8 × 10−5). The case LCLs had slightly higher EBV load (Student’s t-test P= 1.6 × 10−3) and percent heterozygosity (Student’s t-test
P= 1.4 × 10−5). The number of aligned reads is from the Tophat statistic ‘mapped’ for single-end reads, and was higher for cases than controls (Student’s t-test
P= 1.7 × 10−4) due to targeted deeper sequencing of a small number (32) of carriers (23 cases and 9 controls) of known schizophrenia-associated CNVs excluding
these 32 deeply sequenced CNV carriers, the mean number of aligned reads is not significantly different between cases and controls (13 154 720 vs 12 901 625).
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Pathway and network analyses
We performed gene ontology-term and Kyoto Encyclopedia of Genes and
Genomes pathway enrichment analyses using the Database for Annota-
tion, Visualization and Integrated Discovery tool25 for our list 1058
differentially expressed (Bonferroni Po0.05) genes, using all of the
analyzed genes (21 146 genes with detectable expression in at least 80%
of the samples) for the background. We also submitted the same gene list
to Disease Association Protein-Protein Link Evaluator26 to evaluate their
network connectivity, using 5000 permutations to estimate significance.
For the 459 input genes (of the 1058) in the same direct network identified
by Disease Association Protein-Protein Link Evaluator, we also performed
directed gene ontology-term enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes pathway analysis using the Database for
Annotation, Visualization and Integrated Discovery tool.

Data sharing
For the results of primary RNAseq expression analyses, we are sharing the
data by depositing it into the database of Genotypes and Phenotypes
(dbGaP, dbgap.ncbi.nlm.nih.gov). The array expression data have already
been deposited into dbGaP (phs000775). GWAS and phenotypic data for
all subjects have already been deposited into dbGaP (phs000021 and
phs000167), and LCLs (and phenotypic data) are available through the
National Institute of Mental Health repository (www.nimhgenetics.org)
contractors (rucdr.rutgers.edu and zork.wustl.edu, respectively), with MGS
drawing from National Institute of Mental Health repository schizophrenia
studies 0 (sites 30–32), 6 (sites 40–49) and 29 (sites 139–150).

RESULTS
Sample
We present an outline of the overall study design and data
processing steps in Supplementary Figure S1 and present the
basic characteristics of the study participants by affection status in
Table 1. Cases had chronic, usually unremitting schizophrenia
(88%) or schizoaffective disorder (12%) with an average age of
onset of 21.6 years old. Controls were screened for psychosis, and
both cases and controls were collected under the unified MGS
GWAS protocol.6 The current RNAseq-studied sample of 529
schizophrenia cases and 660 controls were fully independent of
the previous array-studied sample.16 Case and control study
participants matched well for most primary epidemiological
characteristics of study subjects and their LCLs (Table 1). RNA
quality was high throughout, and RNAseq quantity and quality
scores were comparable between cases and controls (Table 1).

RNAseq preparative analyses
We aligned RNAseq data to hg38 using TopHat, with 93% of reads
being aligned on average, with no significant differences observed
between cases and controls (Table 1). We estimated gene-based
expression levels as FPKM. We observed positive (non-zero) FPKM
expression for 26 337 genes on average (median: 25 920) per
sample (range: 22 660–36 325). The number of expressed genes
detected increased with the number of reads per sample
(Supplementary Figure S2). There is a near-linear relationship
between the number of genes with detectable expression and the
read count on a logarithmic scale, suggesting that non-detection
of expression of genes with low average expression level was
primarily due to limited read depth rather than truly absent
expression. As expected, the expression levels varied widely
between different genes. A histogram of the expression levels
(after square root transformation, and averaged across samples)
across genes is shown in Supplementary Figure S3. Not all genes
were detectably expressed (non-zero FPKM) in all samples.
Supplementary Figure S4 is a scatter plot of gene expression
levels plotted against the proportion of samples yielding
detectable expression. These two quantities are highly positively
correlated (r= 0.72), which indicates again that non-detection of a
given gene in a given sample likely is caused by limited read

depth rather than actual non-expression. To focus on the genes
with reliably estimated expression (that is, moderately to highly
expressed), and reduce the multiple testing burden, we retained
for analysis genes (N= 21 146) that had detectable expression in
⩾ 80% of the 1189 samples. Supplementary Figure S5 shows an
overview of the numbers of genes expressed at different FPKM
thresholds and the mean correlation of a given sample with all
other samples, and shows a lack of any apparent sample outliers.

Differential expression analyses
We performed multiple linear regression analysis to identify genes
whose average expression level varied significantly between cases
and controls. Although many of the examined characteristics of
cases and controls were comparable to one another (Table 1), we
nonetheless included as nuisance parameters in our regression
model those 16 covariates that we considered to be potential
confounders or noise contributors, namely, subject characteristics
(sex, age, age2 and genotypic principal components 1–5 to index
sample ancestry), LCL characteristics (EBV load, growth rate and
energy status) and RNAseq main batch (five batches, that is, four
dummy variables). A total of 1058 genes (5.0%) were differentially
expressed by affection status after Bonferroni Po0.05 adjustment
for 21 146 separately analyzed genes, or Po ~ 2.36 × 10− 6

(Figure 1). Among these genes, 361 were downregulated and
697 were upregulated in cases compared to controls
(Supplementary Tables S1 and S2).

Gene set enrichment analyses
We conducted gene set enrichment analysis (GSEA) to investigate
the overall characteristics of the differentially expressed genes
from our RNAseq study. These 1058 differentially expressed genes
were enriched (Supplementary Table S1) for genes involved in
immunity (as a percentage of analyzed genes: 31% vs 13%, Fisher
P= 5× 10− 50). The immune enrichment was more pronounced in
the upregulated (697) vs downregulated (361) genes (34% vs 25%,
Fisher P= 1.7 × 10− 3). As most of the lines of evidence suggest
immune contributions to schizophrenia point towards immune
activation (see discussions, Schizophrenia Working Group of the
Psychiatric Genomics Consortium,10 Eaton et al.,27 Eaton et al.,28

Brown and Derkits,29 and Brown30), we performed GSEA on the
genes upregulated and downregulated in the schizophrenia cases
separately, similar to the directional GSEA approaches used by
others, (for example, Lin et al.31 and Huan et al.32). GSEA of the 697
upregulated genes using the Database for Annotation, Visualiza-
tion and Integrated Discovery tool25 showed gene ontology-term
enrichment (false discovery rateo0.05) for categories including
multiple immune categories (response, activation and regulation),
apoptosis regulation and cellular components (cell surface and
cytosol; Table 2). Pathway analyses of the 361 downregulated
genes showed gene ontology-term enrichment for different (not
immune or apoptosis categories) and many more categories,
including those related to transport/localization (intracellular,
vesicular and membrane), multiple protein and glycosylation
categories, and cellular components and molecular func-
tions related to the aforementioned biological processes
(Supplementary Table S3). In addition, the downregulated genes
were enriched for the Kyoto Encyclopedia of Genes and Genomes
pathway term of N-glycan biosynthesis (hsa00510; major consti-
tuents of glycoproteins, which often are involved in cell–cell
interactions; Supplementary Table S3). We note that an increasing
number of studies are finding alterations in glycan biosynthesis,
glycan levels and glycosylation in schizophrenia, both in the brain
and blood, suggesting dysregulation of glycosylation in schizo-
phrenia (see review in Kippe et al.33). Recently, protein levels of
important glycosylation enzymes, B3GNT8 and MGAT4A, were
found decreased in the prefrontal cortex in schizophrenia (12
case–control pairs),33 whereas in our study B3GNT1, B3GNT3 and
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MGAT1 transcripts were downregulated in schizophrenia cases
(Supplementary Table S1). Protein–protein interaction network
analyses using Disease Association Protein-Protein Link Evaluator26 of
the 697 upregulated genes showed significantly higher network
connectivity than expected, both direct (P= 2.2 × 10− 4) and
indirect (P= 2.2 × 10− 4), as it did for the 361 downregulated
genes (direct P= 2.0 × 10− 4, indirect P= 2.0 × 10− 4).
We have performed a number of additional analyses on all 1058

differentially expressed genes (that is, the combination of
upregulated and downregulated genes), as follows. As cases were
50% male and controls were 54% male, and as males are affected
with schizophrenia more often and more severely than females,
we checked for enrichment of sex chromosome genes. We

observed no enrichment for chromosome X (3.0% vs 2.9%, Fisher
P= 0.44) or chromosome Y (0% vs 0.09%, Fisher P= 1.00). Similarly,
as cases had a slightly higher average EBV load, we checked
results for enrichment of genes known to be associated with EBV
copy number,34 and found modestly significant statistical
evidence for enrichment (1.2% vs 0.6%, P= 0.01). Genes expressed
in the adult brain were not enriched (91% vs 90%, Fisher P= 0.14),
although 84% of differentially expressed immune-related genes
are expressed in the brain. More specifically, for the analyzed
genes (21 146 genes with detectable expression in at least 80% of
the samples), 10 774 (90%) were expressed in the brain and 1156
(10%) were not (via hbatlas.org as for Supplementary Table S1),
whereas for the 1058 differentially expressed by affection status

Table 2. Pathway analysis findings for 697 upregulated genes differentially expressed by affection status

Category GO ID GO term Fold enrichment FDR

Biological process GO:0006955 Immune response 2.38 2.00E− 06
Biological process GO:0009615 Response to virus 4.59 5.71E− 04
Biological process GO:0006916 Anti-apoptosis 3.24 2.50E− 03
Biological process GO:0050670 Regulation of lymphocyte proliferation 4.69 1.33E− 02
Biological process GO:0070663 Regulation of leukocyte proliferation 4.63 1.52E− 02
Biological process GO:0032944 Regulation of mononuclear cell proliferation 4.63 1.52E− 02
Biological process GO:0050867 Positive regulation of cell activation 4.00 1.74E− 02
Biological process GO:0042129 Regulation of T-cell proliferation 5.38 1.97E− 02
Biological process GO:0042110 T-cell activation 3.75 1.99E− 02
Biological process GO:0042981 Regulation of apoptosis 1.87 2.28E− 02
Biological process GO:0042127 Regulation of cell proliferation 1.87 2.56E− 02
Biological process GO:0002684 Positive regulation of immune system process 2.80 2.86E− 02
Biological process GO:0043067 Regulation of programmed cell death 1.85 2.97E− 02
Biological process GO:0010941 Regulation of cell death 1.84 3.34E− 02
Biological process GO:0050671 Positive regulation of lymphocyte proliferation 5.56 3.95E− 02
Biological process GO:0032946 Positive regulation of mononuclear cell proliferation 5.46 4.66E− 02
Biological process GO:0070665 Positive regulation of leukocyte proliferation 5.46 4.66E− 02
Cellular component GO:0009986 Cell surface 2.43 3.30E− 02
Cellular component GO:0005829 Cytosol 1.62 3.79E− 02

Abbreviations: DAVID, Database for Annotation, Visualization and Integrated Discovery; FDR, false discovery rate; GO, gene ontology. Note: GO terms are
tabulated only for those showing FDRo0.05 for fold enrichment. The input into the DAVID tools analysis was the list of 697 genes differentially expressed by
affection status (Bonferroni Po0.05) that were expressed at higher levels in the schizophrenia cases.

Figure 1. Manhattan plot of differential expression by schizophrenia status. The − log10 of the P-values for the differential expression by
schizophrenia status is plotted against the chromosomal location for the 21 146 genes with detectable expression in at least 80% of the
studied samples. The black bar corresponds to Bonferroni P⩽ 0.05.
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genes (Supplementary Table S1) for which there was adult brain
expression data, 779 (91%) were expressed in the brain and 73
(9%) were not (via hbatlas.org, the remainder being unlisted which
we designated as ‘NA’ in Supplementary Table S1).

Comparison to microarray results
We previously had conducted a gene expression study of LCLs
from European ancestry cases and controls from the same MGS
cohort, using non-overlapping samples.16 The previous microarray
study16 and the current RNAseq study used the same laboratory
methods for growing cells and harvesting RNA, and used
consistent criteria for which genes to include in the analysis
(expressed in ⩾ 80% of samples). We therefore wondered whether
the findings in both samples, which were studied by different
methods (microarray and RNAseq), were consistent with one
another overall. Supplementary Figure S6 shows a scatter plot of
the results from both studies for the 8141 genes investigated in
both studies (on the scale of the sign of the estimated beta
regression coefficient multiplied with the − log10 of the differential
expression P-value). We found a highly significant positive
correlation over all genes (r= 0.29, Po10− 16) between the array
and the RNAseq findings. The correlation grows stronger among
genes whose expression level is significantly associated with
schizophrenia. For the P-value tails of the array study (array
Po0.05, Po0.005, Po0.0005, Po0.00005), the correlation
increases (r= 0.47, r= 0.55, r= 0.57, r= 0.68, respectively). We
observe a similar pattern of increasing correlation of array and
RNAseq findings when moving into such tails of the RNAseq study
(RNAseq Po0.05: r= 0.38, Po0.005: r= 0.43, Po0.0005, r= 0.47,
Po0.00005, r= 0.50). Thus, despite fully independent samples and
different technologies (microarray and RNAseq), we found notable
consistency in the detected expression levels and direction over
all overlapping genes, which was more pronounced for those
genes differentially expressed in schizophrenia.
Of the 89 genes that we reported to be significantly

differentially expressed in our previous array study (false discovery
rateo0.05),16 84 were analyzed in this RNAseq study. Fifteen
(18%) of those 84 were differentially expressed by affection status
here at a genome-wide significance level (Bonferroni Po0.05
adjusted for 8141 analyzed genes in total, or Po ~ 6.1 × 10− 6), all
with the same direction of effect (Supplementary Table S4). At a
less stringent significance level applying a Bonferroni correction
only for the 84 examined array false discovery rateo0.05
significant genes (that is, Po ~ 6.0 × 10− 4), 29 (35%) were
significant in this RNAseq study, with 28 (97%) out of these 29
with the same direction of effect.

Meta-analysis of RNAseq and array data sets
As we have confirmed differential expression by affection across
two different technologies (microarray vs RNAseq) and two
different (independent) sample sets, we combined the results
across the two studies (array and RNAseq, for the 8141 genes
expressed in 480% of samples by both methods) using Stouffer’s
Z method.23 Briefly, we used the differential expression P-values
and beta-coefficients to generate Z-scores, which we weighted by
the respective sample sizes and combined and then reverted back
to differential expression P-values and beta-coefficients for the
combined result on these 8141 jointly expressed genes. Although
the primary RNAseq analysis on 21 146 genes yielded 1058 (5.0%)
genes differentially expressed by affection status (Bonferroni
Po0.05; Supplementary Tables S1 and S2), the meta-analysis of
8141 genes (expressed in 480% of samples by both methods)
yielded 647 (7.9%) such genes (Bonferroni Po0.05;
Supplementary Table S5). There was a great deal of overlap in
these two genes lists, with 478 (74%) of the 647 significant genes
from the meta-analysis having been in the list of 1058 significant
genes from the primary RNAseq analysis. We note that similarly to

the main RNAseq analysis, these 647 differentially expressed
genes were enriched for genes involved in immunity (as a
percentage of analyzed genes: 38% vs 22%, Fisher P= 1.4 × 10− 18).
Among the 169 new genes from the meta-analysis (that is, not
significant in the primary RNAseq analysis), are several previously
discussed in our array paper16 and several others discussed below.

DISCUSSION
Using RNAseq to quantify gene expression in LCLs, we have
detected 1058 genes differentially expressed by affection status in
529 schizophrenia cases and 660 controls. We have provided
further support for some genes detected by other methods (for
example, the Psychiatric Genomics Consortium for schizophrenia
and GWAS10) and platforms (for example, our previous microarray
expression study16), and we have detected novel genes
(Supplementary Tables S1 and S2). These 1058 differentially
expressed genes were markedly enriched for genes involved in
immunity (Supplementary Table S1). GSEA showed enrichment for
categories related to immunity, apoptosis, messenger RNA and
protein processing and cell growth (Table 2; Supplementary Table
S3). We also provide substantial corroborative evidence for our
previous array-based gene profiling study16 (Supplementary Table
S4; Supplementary Figures S6A and B).

Genes differentially expressed in RNAseq data set
All 1058 differentially expressed genes are listed in Supplementary
Table S1, and ~ 10% of those genes are highlighted in
Supplementary Table S2. We selected to further discuss here four
genes involved in immune function (CR1, C3, TGFB1 and TGM2)
with various additional support from the literature (expression,
genetic association, human post-mortem brain, pharmacological
and so on), and four genes (PIK3CD, PDE4B, SHANK2 and NDE1)
involved in neurodevelopment and/or neuronal function, also
with various types of additional support from the literature
(expression, genetic association, human post-mortem brain,
rodent modeling, pharmacological and so on). Some of the genes
discussed below and in Supplementary Tables S1 and S2 (and
even Supplementary Table S5 below) have both neuronal and
immunological roles and/or expression (for example, C3, TGFB1,
PIK3CD, PDE4B, FAM69A, IFITM1 and PPP3CC). Although we discuss
the immune aspects below, these examples also serve here as
reminders of various bridges between the two systems (neural
and immune) relevant for schizophrenia, such as the general area
of neuroinflammation,35 immune dysfunction and/interventions
sometimes affecting psychotic symptoms (for example, co-
administration of antipsychotic and anti-inflammatory drugs
augmenting the former’s antipsychotic effects36,37), various
schizophrenia treatments also having immune effects (for
example, clozapine, risperidone and so on, reviewed in Muller and
Schwarz38 and O'Sullivan et al.39), and many brain disorders also
having immune or inflammatory aspects (for example, schizo-
phrenia as below, but also depression, Alzheimer disease, multiple
sclerosis and so on40–42).

Immune-related differentially expressed gene examples
We found differential expression in components of the comple-
ment system, though not for C4A, which was recently reported to
associate with schizophrenia in proportion to each allele’s
tendency to generate greater expression of C4A43 and also resides
in the most strongly associated region of the genome (the major
histocompatibility complex (MHC) region).10 Of the ~ 50 comple-
ment system genes,44 23 were well expressed (in ⩾ 80% of
samples), 4 of which were upregulated in their expression in
schizophrenia cases, which was a modest enrichment of
differential expression in the complement system genes (0.4%
vs 0.1%, P= 0.026). The four complement components for which
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we found evidence of upregulation in schizophrenia cases were:
CR1, CR2, CD55, and C3. CR1 is expressed on most blood cells and
has a high affinity for complement components (C1q, C3 and
C4).45 CR1 expression on the surface of lymphocytes, monocytes
and neutrophils was found to be higher in schizophrenia cases
than in controls,46 as its messenger RNA was in the current study.
In addition, CR1 has achieved genome-wide significance in GWAS
for Alzheimer’s disorder.47,48 C3 plays a central role in the
activation of complement system, which is required for both
classical and alternative complement activation pathways. C3 and
other complement components have been suggested to influence
risk for schizophrenia (see review Mayilyan et al.49). C3 also plays
roles in neurodevelopment (synaptic remodeling).50,51 C3 has
been reported as being upregulated in blood from schizophrenia
cases versus controls,52 consistent with our findings of C3
messenger RNA upregulation. However, a recent study found no
significant difference in C3 expression in blood for drug-naive
schizophrenia cases versus controls.53

TGFB1 is a cytokine that regulates proliferation, differentiation,
adhesion, migration and other functions in many cell types.54,55

Besides its importance in the maintenance of immune home-
ostasis (strongly inhibiting the production of pro-inflammatory
cytokines),54,55 TGFB1 also has relevant neurodevelopmental
effects (for example, trophic effects on midbrain dopaminergic
neurons).56,57 TGFB1 protein has been reported to be elevated in
blood from unmedicated schizophrenic cases compared to
controls in Korea, with normalization after antipsychotic
treatment.58 A small Polish case–control study showed nominal
significance (P= 0.03) for a functional SNP (T29C; Leu10Pro59)
being associated with schizophrenia.60 In the Polish study, TGFB1
protein was also upregulated in schizophrenia cases versus
controls,60 consistent with our findings of increased messenger
RNA expression in schizophrenia cases.
TGM2 catalyzes the crosslinking of proteins by epsilon-gamma

glutamyl lysine isopeptide bonds, appears to be involved in
apoptosis and is the autoantigen implicated in celiac disease
(gluten-sensitive enteropathy).61 TGM2 SNPs and a haplotype
showed nominal association (P~ 0.0004) to schizophrenia in a
family-based study of 131 British family trios,62 though no
association was found in a Chinese case–control study.63 TGM2
has been reported (in a patent, US20070015152) to be upregu-
lated in the brain (anterior cingulate cortex) of schizophrenia cases
versus controls. Celiac disease has an epidemiological association
with schizophrenia; gluten-free diets occasionally reduce psycho-
tic symptoms; and circulating gliadin antibodies are elevated in
schizophrenia cases versus controls (reviewed in Wang et al.63).

Neuronal-related differentially expressed gene examples
PIK3CD has been shown to be involved in axonal outgrowth
during neurodevelopment.64 The catalytic subunit of phosphati-
dylinositol-4,5-bisphosphate 3-kinase (that is, PIK3CD)65 was
previously reported to have higher expression in human LCLs
(β= 0.41),66 consistent with our finding (β= 0.28). Administration
of haloperidol to rats led to specific reductions of PIK3CD brain
expression; and furthermore, specific blocking of PIK3CD blocked
amphetamine-induced hyperlocomotion (a rodent model of
psychosis-like behavior, related to a hyperdopaminergic state) in
mice.66 PIK3CD has also been shown to be important for the
biochemical function of the NRG1–ERBB4–PI3K signaling pathway,
that is, involving two leading candidate genes for schizo-
phrenia (NRG1 and ERBB4).66 Dysregulation of PI3K activity has
been implicated in both autism spectrum disorders and
schizophrenia.67–69

PDE4B plays a role in signal transduction by regulating cellular
concentrations of cyclic nucleotides (for example, cyclic AMP), and
also has a central role in inflammation.70–72 Studies of Pde4b
knockout mice demonstrated decreased striatal dopamine and

serotonin activity associated with decreased prepulse inhibition,
decreased baseline motor activity and an exaggerated locomotor
response to amphetamine.73 There is also a case report of this
gene being disrupted by a balanced t(1:16) translocation in a
subject diagnosed with schizophrenia and a cousin with chronic
psychiatric illness.72 Post-mortem cerebellum showed decreased
PDE4B expression in schizophrenics versus controls,74 though
other studies have not found differential brain expression.75

Increased expression in peripheral blood has been seen for
depression versus controls.76 Several studies have reported nominal
association of variants at this gene with schizophrenia,74 with a
meta-analysis (Psychiatric Genomics Consortium for schizophre-
nia) reporting P=~ 2× 10− 7.10

SHANK2 is a component of molecular scaffolds in the
postsynaptic density of excitatory glutamatergic synapses, which
have important roles in neurodevelopment and the adult
brain.77,78 A recent sequencing study of SHANK2 in 481 schizo-
phrenia cases and 659 controls found an over-representation of
rare (minor allele frequencyo0.01) missense SNPs in schizo-
phrenia cases.79 In addition, variants (CNVs and SNPs) in SHANK2
have been associated with autism and mental retardation.78,80,81

Mouse mutant lines for SHANK2 (as well as SHANK1 and
SHANK3) have shown behavioral changes and dysfunction of
glutamatergic synapses.82 SHANK2 is upregulated in brains of
Alzheimer’s disorder cases (whereas SHANK1 and SHANK3 are
downregulated).81

NDE1 is a member of the nuclear distribution E family of
proteins, and plays an essential role in neuronal migration.83

Mutations in NDE1 cause lissencephaly 4, (lissencephaly, severe
brain atrophy, microcephaly and severe intellectual deficiency).84

NDE1 interacts with schizophrenia risk genes, most notably,
DISC1.85,86 NDE1 is also within a chromosome 16p13.11 CNV
reported as associated with schizophrenia (also for autism,
attention deficit hyperactivity disorder, seizures and intellectual
deficiency).87–89 A rare variant in NDE1 has also been implicated by
re-sequencing for rare coding variants (finding S214F), association
testing (nominal P= 0.04), and functional analyses (finding the
mutation affected axonal outgrowth and the interaction between
NDE1 and the neurodevelopmental regulator, YWHAE).90 In a
Finnish schizophrenia family cohort, interaction was reported
between NDE1 genotypes and high birth weight increasing
schizophrenia susceptibility.91

Support for differentially expressed genes detected by array
There were 15 genes differentially expressed by affection status in
both our previous array study (false discovery rateo0.05)16 and
the current RNAseq study (Bonferroni Po0.05, all with the same
direction of effect, Supplementary Table S4). Notable genes
among these repeated findings were: FAM69A, a member of the
FAM69A-EVI-RPL5 gene cluster implicated in the autoimmune
disorder multiple sclerosis by GWAS92–94 and which also had some
association support in the MGS European ancestry GWAS;6 XBP1,
which is a transcription factor known to be a key regulator of MHC
class II genes95 and has a functional promoter variant reported as
nominally associated with schizophrenia in some studies on Asian
samples but not in other studies;96–100 and SYT11, which is
genome-wide significantly associated with Parkinson’s disease.101

We note that the extended MHC region histones found
differentially expressed in schizophrenia previously in our array-
based study16 were not differentially expressed in our current
RNAseq-based transcriptional profiling. This increases the like-
lihood that the array-based finding for histones was a technical
artifact that RNAseq may be better able to avoid, for example, as
the sequence similarity within the histone gene family may reduce
specificity more for short microarray sequences than on a gene-
wide basis as with RNAseq (see discussion in Sanders et al.16).
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Meta-analysis of RNAseq and array data sets
As is common with a large data set being studied by rapidly
developing technologies, different parts of the MGS data set have
been studied for gene expression by different technologies, that
is, array and RNAseq. Although array expression studies were more
prevalent prior to reductions in RNAseq costs, the advantages of
RNAseq over array measurements are many,102,103 including that
RNAseq: (1) detects transcription of unknown transcripts, exons
and transcript isoforms (alternatively spliced variants); (2) mea-
sures both gene-wide and exon-specific expression levels; (3)
assays allele-specific expression; (4) provides sequence informa-
tion; (5) provides gene expression levels that are highly correlated
with measures of absolute expression level (as assayed by
quantitative PCR) across a wide dynamic range; and (6) processing
of the obtained read counts is less critical and complicated than
with array data. Although a number of methods for meta-analysis
of array data sets have been developed (reviewed in Xia et al.104),
due to the technology differences, direct data merging of array vs
RNAseq data sets is impractical, leaving approaches such as
combination of P-values, rank orders or votes as meta-analytic
options.104 We used an extension of Stouffer’s Z method23 for our
meta-analytic approach to combine the RNAseq and array data
sets, allowing us to study the 8141 genes expressed in 480% of
samples by both methods, and found 647 genes to be
differentially expressed by affection status (Supplementary Table
S5). Among the 169 new genes from the meta-analysis (but not
significant in the primary RNAseq analysis) are several previously
discussed in our array paper (B3GNT2, MOXD1, DBNDD2 and
S100A10),16 and we also chose to further highlight three additional
genes here: VAMP4, PPP3CC and IFITM3.
VAMP4 is a main component of a protein complex involved in

the docking and/or fusion of synaptic vesicles with the
presynaptic membrane,105 and is critical for neuron outgrowth.
A Swedish family-based candidate gene association study found
the cSNP rs15655 in the 3′-untranslated region of VAMP4 to be
nominally associated in both their discovery (77 trios, two-tailed
P= 0.004) and replication (190 trios, two-tailed P= 0.019 for same
allele) samples of suicide attempters.106

PPP3CC is one of the regulatory subunits for calcineurin, which
is a calcium-dependent, calmodulin-stimulated protein phospha-
tase involved in the downstream regulation of dopaminergic
signal transduction. PPP3CC is localized to presynaptic terminals in
hippocampal neurons, and RNA interference-mediated knock-
down disrupts synaptic vesicle cycling.107 PPP3CC has been
reported as associated with schizophrenia in families,108 but a
number of other studies (for example, Sanders et al.109) have not
detected association. Decreased hippocampal expression has
been found in 13 schizophrenia cases versus 12 controls.110 In
two European ancestry samples, variants in PPP3CC were found to
be nominally associated with treatment-resistant depression,
antidepressant treatment response and remission (P-values
ranging from 0.04 to 0.0002), and some of these effects were
suggested to be through the B-cell receptor signaling pathway via
pathway analysis (permutated P= 0.03).111

Like IFITM1 (Supplementary Table S2), IFITM3 was also found to
be upregulated in post-mortem brain (hippocampus and dorso-
lateral prefrontal cortex) from schizophrenic cases versus
controls.112,113 In a larger study (55 cases and 55 controls),
prefrontal cortex showed increased IFITM3 expression via array in
schizophrenia (Po0.01).114 Of relevance for some immunological
hypotheses of schizophrenia risk, mouse studies have suggested
that IFITM3 expression is a critical mediator of maternal immune
activation.115,116

Immune-related genes
We continue to study LCLs due to their sample size and quality,
tractability and substantial overlap with brain expression, coupled

with the enhanced possibility of detecting peripheral biomarkers
for schizophrenia and their relevance as a model to study immune
contributions to schizophrenia, which has been noted
previously.16 Briefly, several lines of evidence support a substantial
immunological contribution to schizophrenia risk: (1) family
history of autoimmune disease is associated with increased
schizophrenia risk, and autoimmune disorders modify schizophre-
nia risk.27,28 (2) Prospective birth cohort studies with serologically
documented gestational infection and immune biomarkers show
that specific infections increase the risk of schizophrenia in the
offspring.29,30 (3) GWAS have shown the strongest association at
the extended MHC region,10 which is associated with many
immune, inflammatory and infectious disorders.117 (4) The
Psychiatric Genomics Consortium for schizophrenia recently
mapped 108 genome-wide significantly associated loci onto
sequences with epigenetic markers characteristic of active
enhancers and found strong enrichment at enhancers active in
tissues with important immune functions, particularly B-lympho-
cyte lineages involved in acquired immunity (CD19 and CD20
lines), which remained significant even after excluding the
extended MHC region and regions containing brain enhancers.10

Our GSEA showed an enrichment of immune-related genes in the
differentially expressed genes (as a % of analyzed genes: 31% vs
13%), and this enrichment was more pronounced in the
upregulated vs downregulated genes (34% vs 25%). Our direc-
tional GSEA finding that multiple immune categories (response,
activation and regulation) were enriched in the 697 upregulated
genes (Table 2), but not the 361 downregulated genes
(Supplementary Table S3), is consistent with most of the lines of
evidence pointing towards immune activation contributing to
schizophrenia (see discussions, Schizophrenia Working Group of
the Psychiatric Genomics Consortium,10 Eaton et al.,27 Eaton
et al.,28 Brown and Derkits,29 and Brown30 ).

Caveats and limitations
The tissue to study is always a challenge for psychiatric disorders
due to limited access to brain or neural tissue; we chose to study
LCLs, that is, B-cells transformed by EBV. The EBV transformation
itself may influence gene expression, although we attempted to
minimize some (for example, by using LCLs only transformed at
one site by a unified protocol) and to adjust for other aspects
(such as including EBV load as a nuisance parameter in our
regression models). Some genes are regulated differently in LCLs
than in brain, and other brain expressed genes are not detectably
expressed in LCLs and hence not assayed here. However, many
genes expressed in the brain are expressed also in LCLs, and LCLs
present other advantages including: availability of large numbers
(MGS European ancestry sample, a widely shared repository
sample, with GWAS genotypes available), ease of experimental
manipulation, living tissue, high-quality RNA, far removed from
environmental ‘state’ influences (for example, diet, diurnal
rhythms, exercise and medications), and arguably a particular
suitability for the study of immune/infection hypotheses of
schizophrenia. Other limitations of the current study include the
exclusive focus on European ancestry samples (though that made
it more comparable to the previous array-based study), lack of
stronger correlation between array- and RNAseq-based results,
analysis limited to gene expression, and focus on the full
distribution (means) of expression (though please refer to our
separate study focusing on extreme upper and lower tails of the
expression distribution, that is, outliers118).
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