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Genome-wide expression and response to exposure-based
psychological therapy for anxiety disorders
S Roberts1, CCY Wong1, G Breen1,2, JRI Coleman1, S De Jong1, P Jöhren3, R Keers1,4, C Curtis1,2, SH Lee1, J Margraf5, S Schneider5,
T Teismann5, A Wannemüller5, KJ Lester1,6,7 and TC Eley1,7

Exposure-based psychological treatments for anxiety have high efficacy. However, a substantial proportion of patients do not
respond to therapy. Research examining the potential biological underpinnings of therapy response is still in its infancy, and most
studies have focussed on candidate genes. To our knowledge, this study represents the first investigation of genome-wide
expression profiles with respect to treatment outcome. Participants (n= 102) with panic disorder or specific phobia received
exposure-based cognitive behavioural therapy. Treatment outcome was defined as percentage reduction from baseline in clinician-
rated severity of their primary anxiety diagnosis at post treatment and 6 month follow-up. Gene expression was determined from
whole blood samples at three time points using the Illumina HT-12v4 BeadChip microarray. Linear regression models tested the
association between treatment outcome and changes in gene expression from pre-treatment to post treatment, and pre-treatment
to follow-up. Network analysis was conducted using weighted gene co-expression network analysis, and change in the detected
modules from pre-treatment to post treatment and follow-up was tested for association with treatment outcome. No changes in
gene expression were significantly associated with treatment outcomes when correcting for multiple testing (qo0.05), although a
small number of genes showed a suggestive association with treatment outcome (qo0.5, n= 20). Network analysis showed no
association between treatment outcome and change in gene expression for any module. We report suggestive evidence for the
role of a small number of genes in treatment outcome. Although preliminary, these findings contribute to a growing body of
research suggesting that response to psychological therapies may be associated with changes at a biological level.
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INTRODUCTION
Anxiety disorders are some of the most common mental health
disorders, affecting a sizable proportion of the population.1 It is
estimated that over 25% of people will be diagnosed with an
anxiety disorder at some point during their lifetime, reflecting a
considerable economic cost to society.1,2 In addition to the
emotional discomfort and distress central to the diagnosis, anxiety
disorders are associated with numerous negative consequences
for many areas of everyday functioning.3 Psychological therapies
such as cognitive behavioural therapy (CBT) and exposure therapy
in particular have a relatively high efficacy for treating anxiety.4–6

Meta-analyses have demonstrated large effect sizes for a range of
anxiety diagnoses, and treatment response shows substantial
continuity across long-term outcomes.7,8

Therapygenetics is a relatively new area of research that
investigates genetic predictors of response to psychological
therapies.9 Most studies have focussed on candidate gene
predictors of treatment response, although results have been
inconsistent.10 In addition, recent preliminary research has
identified epigenetic changes in genes of interest during
psychological therapies that may be associated with outcome.
Studies thus far have focussed on BDNF in adults with borderline

personality disorder,11 SERT in children with anxiety disorders,12

MAOA in adults with panic disorder13 and the HPA-axis-related
genes FKBP5 and GR in children with anxiety disorders14 and in
veterans with posttraumatic stress disorder.15 Interestingly, in the
latter study, changes in FKBP5 methylation during exposure
therapy were found to be associated with FKBP5 expression at
follow-up.
A small number of further studies have examined the role of

gene expression and response to a psychological therapy. Gene
expression levels are a useful indicator of gene activity and
function as they are known to be highly dynamic. They are also
susceptible to genetic, epigenetic and environmental influences,
and therefore may provide insight into the potential mechanisms
of therapy response. Two studies have demonstrated that FKBP5
expression may be associated with outcome following CBT in
participants with posttraumatic stress disorder, with both finding
that increases in gene expression during therapy were associated
with symptom improvement.16,17 Another two studies have taken
a broader approach, assessing gene expression levels of panels of
genes in major depressive disorder before and after CBT.18,19 In
the first of these studies, 10 genes were assayed before and after
treatment using the BioM-10 panel, which consists of five genes
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associated with high mood states and five genes associated with
low mood states.18 Clinical improvement after CBT was associated
with an increase in the high mood markers relative to the low
mood markers. The second study identified gene expression
networks predictive of remission, whereby significant co-
expression networks of genes before treatment were identified
in remitters but not in patients who remained depressed.19

Although preliminary, these studies suggest that gene expression
levels may be indicative of response to treatment.
To date, no studies have utilised a genome-wide approach to

study whether gene expression changes are associated with
response to a psychological therapy. Such hypothesis-free analysis
allows for the testing of a wider range of novel genomic targets,
including rare variants, as well as the opportunity to identify
networks of genes with similar activity. Here we assess gene
expression levels across the genome to examine transcriptomic
changes that may be associated with response to psychological
therapy. We examined the association between clinical sympto-
matology and change in probe-level gene expression from pre-
treatment to post treatment and follow-up. Biological pathway
enrichment analysis was performed using the ranked gene list, in
order to identify known pathways and functions represented in
the top results. Further data-driven clustering techniques were
used to identify networks of co-expressed genes in the data set,
and the trajectory of these modules across the course of
treatment was examined. Co-expression network analysis using
weighted gene co-expression network analysis (WGCNA) is a
powerful approach, even in relatively small data sets, as it
describes the correlation patterns among genes and therefore
reduces the multiple testing burden associated with genome-wide
data. This is the largest study of gene expression and treatment
response, and, to our knowledge, the first to include transcrip-
tomic data at follow-up as well as pre- and post treatment.

MATERIALS AND METHODS
Participants
Participants (n=102) were recruited at the Mental Health Research and
Treatment Center, Ruhr-Universität Bochum, Germany (n=56) or the
Dental Clinical Bochum, Germany (n= 46). Age at baseline ranged from 19
to 68 years (mean= 39.8), and 66.7% of the sample were female. At
baseline, 27.5% were smokers, 5.9% were using a form of psychoactive
medication, and 32.4% took other regular medications. All participants
were treated for panic disorder with agoraphobia, or agoraphobia alone
(28.4%) or specific phobia (71.6%; including dental fear—45.1% of total).
Diagnoses were made according to DSM-IV criteria by trained clinicians
using the Diagnostisches Interview bei Psychischen Störungen (DIPS) and
Mini-DIPS,20–22 structured interviews with well-established reliability,
validity and patient acceptance.23–26 At least one comorbid diagnosis
was present in 38.2% of participants. All participants completed one of four
exposure therapy or exposure-based CBT treatment programmes as
detailed below. A diagram of treatment protocols can be found in
Supplementary Figure S1. All treatments were regularly supervised by
experienced senior clinicians using audiovisual recordings in order to
ensure treatment protocol integrity.
Treatment was administered at the Mental Health Research and

Treatment Centre in three groups. All participants received five preliminary
sessions covering diagnosis and psychoeducation before starting therapy.
Participants with a primary diagnosis of panic disorder/agoraphobia were
randomized either to exposure-based CBT (akin to the specific phobia
group above) or to an exposure-alone condition without any element of
cognitive restructuring (Clinical Trials: NCT01680327). Participants with
specific phobia (not primarily associated with dental fear) were treated in a
long-term programme of up to 25 sessions of in vivo exposure. Participants
in these groups were excluded if they were using anxiolytic medication.
Individuals with high levels of dental fear were treated in a dental

anxiety-specific programme.27 Treatment was given in five sessions,
including an initial diagnostic and psychoeducation session, and a session
developing relaxation techniques and focussing on helpful thoughts.
These coping strategies were then encouraged in three sessions consisting
of exposure scenarios such as video exposure, noise exposure and in sensu

exposure (virtual reality or visualisation). Concurrent psychoactive medica-
tion was not an exclusion criterion.

Outcome measures
Severity—clinical global impression. Treatment response was defined as
percentage improvement in clinician-rated severity of the treated
diagnosis, as determined using the Clinical Global Impression—Severity
(CGI-S) scale.28 The CGI-S consists of a scale of 1–7, with a score of 1
indicating that the patient is healthy, and 7 indicating that the patient is
extremely ill. Mean CGI-S score at baseline was 4.46 (s.d. = 1.14), signifying
that the sample was moderate to markedly ill. Scores were rescaled from
1–7 to 0–6 and percentage improvement from pre-treatment to post
treatment and pre-treatment to follow-up was calculated for all
participants.

Ethics statements
This study was conducted in accordance with the principles outlined by
the Declaration of Helsinki. Site-specific trials and the collection of samples
were approved by local Human Ethics and Biosafety Committees, and all
participants provided informed consent. The receipt, storage and analyses
of samples were approved by the London-Bentham NRES Committee and
the King’s College London Psychiatry, Nursing and Midwifery Research
Ethics Sub-Committee.

Genome-wide expression data
Sample collection. Whole blood samples were drawn at pre-treatment
(before exposure), immediately post treatment and follow-up (~6 months
following the conclusion of treatment) using PAXgene blood RNA tubes.
Blood RNA was isolated and purified using the PAXgene Blood miRNA Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol using
the Qiagen Qiacube. RNA quality and integrity were measured using both
the Nanodrop 1000 spectrophotometer (Nanodrop 1000, Nanodrop,
Wilmington, DE, USA) and the Agilent 2100 Bioanalyzer (Agilent, Santa
Clara, CA, USA). Genome-wide expression levels were measured from
750 ng total RNA using the Illumina HumanHT-12v4 Expression BeadChip
(Illumina, San Diego, CA, USA).

Quality control. Initial processing of data was performed using Geno-
meStudio to identify samples with detection rates dissimilar to the rest of
the project (GenomeStudio, Illumina). Stringent quality control processing
of the data was conducted using the standardised procedures from
internal pipelines (available at https://github.com/snewhouse/BRC_MH_
Bioinformatics). Expression data were background-corrected using
module-based background correction for Beadarray.29 Probes were then
filtered by selecting probes with expression levels 42 s.d. greater than the
mean intensity of the negative control (background) beads. Reported
gender was compared to XIST gene expression (female specific) and Y
chromosome gene expression (male specific). Each probe was then
transformed and normalised using log2 transformation and robust-spline
normalisation.30,31 Sample relationships within the co-expression network
were assessed and outliers were removed.32 Following sample outlier
removal, 95 samples at pre-treatment, 99 samples at post treatment and
97 samples at follow-up remained. Probes detected in o80% of the
sample were removed. Following quality control procedures, 4381 probes
with high-quality data were available for analysis. All quality control was
performed in R33 making use of the lumi package.31

Batch effects. In order to minimise potential batch effects, all three time
points per participant were extracted in the same batch and run on the
same array. Technical batch variables (hybridisation, sample position on
microarray, RNA integrity number (RIN), overall processing batch, date of
RNA extraction, date of amplification, date of microarray processing and
cRNA concentration) were assessed for association with the first principal
component of the expression data using stepwide linear regression
bootstrapped 100 times (with covariate order randomised). The data were
then adjusted for the associated batch variables. ComBat (from the sva
package) was used to control for hybridisation (expression microarray, 27
chips), with fixed effects of RIN and cRNA concentration.34 The data were
then adjusted for RIN and cRNA concentration using multivariate linear
regressions (RcppArmadillo).35 Nine technical replicates (three participant
sample sets) were included as quality checks. Duplicate samples showed
very high consistency, with an average concordance of r= 0.986.
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Cell-type composition. Cell-type proportions (lymphocyte, neutrophils and
monocytes) were estimated using deconvolution methods implemented in
CellMix36 based on previously reported whole blood cell composition
values.37 Change in lymphocyte, neutrophil and monocyte proportions
were calculated for pre- to post treatment, and pre-treatment to follow-up.

Analyses
Probe level analyses. Change in expression from pre- to post treatment
and pre-treatment to follow-up were calculated for all probes (total
n= 4381) after quality control.

Confounding factors. Age, body mass index, gender, comorbidities,
smoking status, psychoactive medication, other medications and cell-
type composition changes were tested for association with outcome.
Population stratification was tested for association with outcome using the
first two principal components from genome-wide genotyping data (‘PC1’,
‘PC2’).38 Treated diagnosis was not associated with outcome at post
treatment (F= 0.44, P= 0.644) or at follow-up (F=0.74, P=0.480).

Gene expression and treatment outcome. The association between change
in expression values and percentage reduction in CGI-S was tested using
linear regression models for post treatment and follow-up. Time (number
of days since pre-treatment) and number of sessions were included as
covariates to account for variability in treatment length as well as baseline
CGI-S and psychoactive medication status. Robust standard errors and
clustering by treatment group were used to account for differences
between treatment conditions. In these analyses, a negative β-value
indicates that a greater percentage reduction in severity is associated with
a decrease in gene expression over time. Linear regression analyses were
conducted in Stata.39

Functional annotation and enrichment analysis. Illumina microarray
probes were annotated using the Bioconductor package lumiHumanID-
mapping. Probes were ranked according to linear regression analysis
uncorrected P-value, and assessed for enrichment of biological pathways
using GOrilla.40 Where probes mapped to the same gene, the highest-
ranked was retained. This method performs Gene Ontology (GO)
enrichment analyses on ranked probe lists to identify known pathways
more strongly associated with the outcome of interest. Further information
on this analysis is provided in the Supplementary Information.

Multiple testing correction. The P-values for probe-wise analyses were
corrected for multiple testing using the method defined by Benjamini and
Hochberg41 to give a test q-value. False discovery rate statistics (FDR; q-
values) were calculated using the qvalue package in R. Probes associated
with treatment outcome with a FDR-corrected qo0.05 were considered
significant. Probes associated with treatment outcome with a FDR-
corrected qo0.5 are reported as suggestive.

Network-based analyses
Data-driven clustering was performed using weighted gene co-expression
network analysis on pre-treatment samples to create signed co-expression
networks (WGCNA).42 Modules detected at pre-treatment were forced onto
the data at the post treatment and follow-up time points using the module
preservation function43 in order to examine changes across the course of
treatment.
Module eigengenes, equivalent to the first principal component of each

module, were used as a proxy for module expression. The association
between change in CGI-S and change in module expression was tested
using linear regression models for post treatment and follow-up as
previously described. The grey module was not included in any analyses as
it consisted of genes that were unable to be assigned to a module.

Code and data availability
Code used for data QC can be accessed at https://github.com/snewhouse/
BRC_MH_Bioinformatics. All analysis scripts are available on request. The
data discussed in this publication have been deposited in NCBI’s Gene
Expression Omnibus44 and are accessible through GEO Series accession
number GSE94119 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =
GSE94119).

RESULTS
Clinical characteristics
As expected, there was a significant change in CGI-S from pre-
treatment to post treatment (pre-treatment = 4.46, post treat-
ment = 2.04; t= 17.831, df = 99, Po0.001) with a mean percentage
change in severity of 53.14%. There was also a significant change
in CGI-S from pre-treatment to follow-up (follow-up= 2.36;
t= 12.140, df = 93, Po0.001) where the mean percentage change
in severity was 45.80%.

Confounding factors
There was no association between treatment outcome and
baseline severity, age, body mass index, gender, comorbidities,
smoking status, other (non-psychoactive) medications, cell-type
proportion changes and population stratification values. However,
a significant association was reported between psychoactive
medication and percentage reduction in CGI-S from pre- to post
treatment and follow-up (Table 1—participants on psychoactive
medications showed a poorer response to treatment), and was
therefore included as a covariate in linear regression analyses.

Probe level analyses
Post treatment. Of the 4381 probes tested, 171 showed a
nominally significant association between changes in expression
and percentage improvement in symptoms from pre-treatment to
the post-treatment time point (Po0.05). Table 2 shows the top 10
probes ranked by uncorrected P-value including standardised test
statistics. No probes showed a significant association with
treatment outcome when corrected for multiple testing
(qo0.05). One probe reached a suggestive threshold (qo0.5);
ILMN_1653599 (Figure 1, q= 0.38, P= 8.90 × 10− 5). Annotation
showed that this probe mapped to the gene ATP5D. Further top-
ranked probes are detailed in Supplementary Table S1.

Enrichment analyses. Enrichment analysis of the ranked probes
from the post-treatment analyses using GOrilla yielded nine
significant GO terms at qo0.05, with some terms depicting
related functions. The top reported pathway was ‘establishment of
protein localisation to endoplasmic reticulum’ (P= 3.51 × 10− 6,
q= 0.03). A full list of pathways can be found in Supplementary
Table S2.

Follow-up. In total, 225 probes showed a nominally significant
association between changes in expression and percentage
improvement in symptoms from pre-treatment to the follow-up
time point. Table 2 shows the top 20 probes ranked by
uncorrected P-value including standardised test statistics. Similarly
to the findings for the post-treatment analyses, no probes showed
a significant association when correcting for multiple testing.
However, 19 probes reached a suggestive threshold (Table 2).
Figure 2 shows the top five gene-labelled probes; ILMN_2333319
(q=0.49, P=2.01×10−4), ILMN_1658885 (q=0.49, P=4.33×10−4),
ILMN_2123743 (q= 0.49, P= 5.73 × 10− 4), ILMN_1807277 (q= 0.49,
P= 1.12 × 10− 3) and ILMN_1796712 (q= 0.49, P= 1.24 × 10− 3).
These probes corresponded with the genes PTBP1, DAGLB,
FCER1G, IFI30 and S100A10. Further top-ranked probes are detailed
in Supplementary Table S3.

Enrichment analyses. Enrichment analysis of the ranked probes
from the follow-up analyses using GOrilla yielded a number of
significant GO terms at qo0.05, with many terms depicting
processes related to regulation of cell cycle pathways. The top-
reported pathway was ‘negative regulation of apoptotic process’
(P= 5.07 × 10− 6, q= 0.043). A full list of identified pathways can be
found in Supplementary Table S4.
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Network-based analyses
Six co-expression modules were detected at pre-treatment
(excluding the grey module). Modules were well preserved at
post treatment and follow-up, indicating little change in the
composition of modules across the treatment time points (module
details can be found in the Supplementary Information). No
significant association was found between percentage reduction
in CGI-S and change in module eigengene for any module at post
treatment or follow-up (result tables provided in Supplementary
Information).

DISCUSSION
To our knowledge, this is the first study to examine genome-wide
gene expression profiles and psychological treatment response.
We examined the relationship between transcriptomic changes
across the full course of treatment (pre-treatment, post treatment
and follow-up) and treatment outcome in 102 adults receiving
exposure-based CBT. Although no probes reached significance
when correcting for multiple testing (qo0.05), expression changes
in a small number of probes were associated with changes in
symptom severity from pre-treatment to post treatment and pre-
treatment to follow-up at a suggestive level (qo0.5).
In the post-treatment analyses, the top nominally significant

probe was in a gene related to mitochondrial ATP synthase
(ATP5D). A further related gene (ATP5H) was also within the top
probes. The function of these genes is moderately well
characterised. Recently, it has been suggested that mitochondrial

dysfunction may play a role in disorders such as schizophrenia45

although the importance of these processes for mental health
outcomes such as anxiety and depression is not clear.
A small number of interesting probes reached a suggestive

threshold in the follow-up analyses. The top nominally significant
probe was related to the gene PTBP1, which plays a functional role
in pre-mRNA processing and the regulation of splicing events.
Recent research has suggested that downregulation of the gene
may be a risk factor for Parkinson’s disease,46 however there is little
evidence as yet for the role of the gene in psychiatric outcomes.
A key probe of interest at follow-up was part of the

diacylglycerol lipase beta gene (DAGLB). DAGLB is known to be
involved in the biosynthesis of 2-arachidonoyl-glycerol (2-AG), a
key endogenous endocannabinoid in the endocannabinoid
signalling system.47,48 Interestingly, the role of the endocannabi-
noid system in anxiety and anxious behaviours is supported by a
considerable body of research in both human and animal
studies.49–51 In this study, we found an increase in DAGLB
expression with greater treatment response. Previous research has
demonstrated that reduced 2-AG levels are associated with
increased risk of outcomes such as post-traumatic stress disorder
and major depression,52–54 while animal studies have demon-
strated that increases in 2-AG through pharmacological interven-
tion may reduce anxiety-like behaviours.55,56 Given the role of
DAGLB in the synthesis of 2-AG, it is therefore of great interest that
increases in DAGLB expression corresponded with greater reduc-
tions in severity, while decreases in DAGLB expression corre-
sponded with lower reductions in severity. Genetic variation in the

Table 1. Associations between percentage change in CGI-S and clinical factors

Clinical factor Percentage change in CGI-S

Post treatment Follow-up

r P r P

Baseline severity − 0.051 0.616 0.148 0.157
Age − 0.120 0.234 − 0.015 0.887
BMI 0.010 0.921 − 0.003 0.976

t(df ) P t(df ) P

Gender − 0.913 (98) 0.364 − 0.104 (91) 0.917
Smoking status 0.390 (98) 0.698 0.500 (91) 0.618
Comorbidities 1.126 (98) 0.263 1.120 (91) 0.235
Psychoactive medication 3.498 (98) 7E− 04* 2.287 (91) 0.025*
Other medications 1.266 (98) 0.209 0.823 (91) 0.413

Population stratification r P r P

PC1 − 0.178 0.082 − 0.003 0.981
PC2 − 0.078 0.451 0.033 0.758

Cell proportion changes r P r P

Lymphocytes
Pre- to post treatment 0.047 0.657 — —

Pre-treatment to follow-up — — 0.079 0.481

Neutrophils
Pre- to post treatment 0.040 0.710 — —

Pre-treatment to follow-up — — 0.040 0.720

Monocytes
Pre- to post treatment 0.030 0.780 — —

Pre-treatment to follow-up — — − 0.097 0.399

Abbreviation: BMI, body mass index; CGI-S, Clinical Global Impression—Severity. NB: factors that were nominally significant (*) at either time point were
included as covariates in linear-mixed models.
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endocannabinoid system has also been investigated with respect
to psychological therapy response, whereby several polymorph-
isms demonstrated a nominally significant association with
outcome, although findings did not reach significance after
correcting for multiple testing.57

The suggestive probe with the largest effect size at follow-up
was part of the high-affinity IgE receptor FCER1G gene, which is
known to be a key unit in allergic reactions and regulates several
aspects of the immune response. Interestingly, this was not the
only immune-related gene implicated in the top probes, with IFI30
(associated with immune regulation and previously implicated in

posttraumatic stress disorder; Neylan et al.58) and STAT1 (regula-
tion of immune related signalling; Hu and Ivashkiv59) both
showing suggestive results. Previous research has implicated
immune pathways as an important biological system involved in
many mental health outcomes60–62 and as such this represents a
plausible candidate for psychological therapy response.
Another interesting probe detected at follow-up was part of the

S100A10 gene, which encodes for the p11 protein. The gene is
thought to play a role in serotonergic signalling through
interaction with serotonin receptors, and has also been linked to
response to stress via regulation by glucocorticoids (Svenningsson
et al.63). Downregulation of p11 mRNA and protein levels
has been implicated in depressive behaviours and risk of suicide,
and several categories of antidepressants have been shown to
increase p11 expression in brain tissues (Svenningsson et al.63).
Conversely, in the sample presented here, a decrease in S100A10
expression was observed corresponding with a better response to
treatment. Also, it should be noted that gene expression in the
current study was determined from peripheral blood samples (not
brain regions). Nevertheless, while the role of this gene in
response to psychological therapies is unclear, expression of the
S100A10 gene represents an interesting potential target for further
research.
Previous studies examining candidate gene expression and

response to a psychological therapy have predominantly focussed
on the HPA-axis-related gene FKBP5.16,17 Notably, gene expression
changes in FKBP5 were not associated with treatment outcome at
post treatment in our sample, and were only nominally associated
with outcome at follow-up. In fact, contrary to previous reports,
participants with a better treatment outcome at follow-up
displayed a reduction in FKBP5 expression. However, there were
some differences between these studies and the current report.

Table 2. Top genes ranked by association with treatment outcome (percentage improvement in CGI-S)

Time Gene symbol Probe ID Test β P-value q-value

Post treatment ATP5D ILMN_1653599 −0.373 8.90E−05 0.353
HBA2 ILMN_2127842 0.670 3.87E− 04 0.767
ATP5H ILMN_1794912 − 0.795 8.12E− 04 0.890
LOC646630 ILMN_1691449 − 0.588 1.06E− 03 0.890
HSP90AB1 ILMN_1673711 − 0.543 1.90E− 03 0.890
TMEM160 ILMN_1704024 − 0.609 2.37E− 03 0.890
NT5C3 ILMN_2352121 − 0.204 2.57E− 03 0.890
RPL23A ILMN_1788607 − 0.960 2.84E− 03 0.890
F2R ILMN_2221507 0.496 4.06E− 03 0.890
NDUFA12 ILMN_1737738 − 0.885 4.77E− 03 0.890

Follow-up PTBP1 ILMN_2333319 0.715 4.11E−04 0.499
DAGLB ILMN_1658885 0.713 6.02E−04 0.499
FCER1G ILMN_2123743 −1.176 6.33E−04 0.499
LOC647506 ILMN_3240375 0.228 6.65E−04 0.499
LOC652493 ILMN_1739508 0.184 1.18E−03 0.499
IFI30 ILMN_1807277 −0.677 1.12E−03 0.499
S100A10 ILMN_1796712 −0.428 1.24E−03 0.499
LOC642113 ILMN_1652199 0.198 1.25E−03 0.499
ACP1 ILMN_2344956 −0.633 1.59E−03 0.499
SPCS2 ILMN_1809488 −0.547 1.69E−03 0.499
SRRM1 ILMN_1697670 0.705 1.74E−03 0.499
PIK3R1 ILMN_1760303 0.808 1.90E−03 0.499
HNRPA1P4 ILMN_1690586 0.562 2.10E−03 0.499
STUB1 ILMN_1756126 −0.429 2.10E−03 0.499
PCM1 ILMN_1690487 0.869 2.34E−03 0.499
OCIAD1 ILMN_1799604 0.462 2.36E−03 0.499
PSMB10 ILMN_1683026 −0.685 2.38E−03 0.499
STAT1 ILMN_1691364 −0.230 2.48E−03 0.499

Abbreviation: CGI-S, Clinical Global Impression—Severity. NB: probe ID= Illumina HumanHT12 v4 expression BeadChip array ID, ‘Test β’= test statistic for
association with treatment outcome, values in bold indicates probes significant at a suggestive level.

Figure 1. Change in gene expression and percentage reduction in
Clinical Global Impression—Severity (CGI-S) at post treatment.
ATP5D; β=− 0.373, P= 8.90E− 05.
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Namely, previous research used a candidate gene approach,
compared to the genome-wide approach utilised in the current
study. Sample sizes were also smaller (n= 39, n= 20), and both
studies focussed on adults with posttraumatic stress disorder
rather than the range of anxiety diagnoses reported here.
As discussed in the Introduction, the majority of studies

examining genetic and epigenetic correlates of response to
psychological therapy currently also focus on candidate genes.
The first genome-wide association study of therapy response (in
children with anxiety disorders64) found no genetic variants
significantly associated with psychological treatment outcome. In
addition, previously implicated candidate genes (where available
in the array data) were not replicated, suggesting that the effect of
individual genes on treatment response is likely to be small.
Studies of DNA methylation predictors of treatment response and
changes during treatment have yielded moderate effect sizes,
though to date few samples have more than 100 participants, and
as yet no study has used epigenome-wide data in the context of
psychological treatment response.
As well as the known mechanistic relationship between

epigenetic patterns and gene expression, research has demon-
strated that underlying genetic variation has the potential to
influence both DNA methylation (for example, allele-specific
methylation65) and gene expression (for example, eQTL66). Recent
work examining factors associated with response to negative
environmental influences (such as abuse) has suggested that
epigenetic changes associated with psychological outcomes may
be influenced by genotype.67 To this end, a study from our team
showed genotype-dependent changes in FKBP5 DNA methylation
associated with treatment outcome.14 However, in a companion
paper to this article combining genome-wide genetic and
transcriptomic data (including an extended sample from this
cohort38), a number of eQTLs (DNA sequence variation associated
with gene expression) were identified, but interactions
between genetic variants and treatment response were not
significantly associated with expression levels. Nonetheless, future
therapygenetics research would benefit from the continued use of
genome-wide protocols, and the integration of genetic, epigenetic

and transcriptomic information in order to elucidate the potential
biological mechanisms underlying psychological treatment
response.
In this study, we also performed data-driven clustering using

WGCNA methods (detailed in the Supplementary Information42)
but results from these analyses were not informative. Six network
modules were identified within the pre-treatment data, but did
not show any substantial changes in composition across the
treatment period, indicating a largely similar molecular landscape
across the treatment period. Changes in the expression profiles of
these modules were not found to be associated with treatment
outcome at post treatment or at follow-up. We also examined
potential biological pathways by conducting enrichment analysis
of the probe-level results. The results implicated that a number of
functional processes such as cell cycle regulation were over-
represented in the top-ranked genes.
To our knowledge, this is the first study to examine gene

expression profiles at a genome-wide level with respect to
treatment outcome following a psychological therapy. However,
the top results discussed here do not reach statistical significance,
and should be considered preliminary. In addition, there are a
number of caveats in the design that should be considered. Firstly,
while the work presented here represents the largest study of
gene expression with respect to psychological therapy outcomes,
the sample size is still relatively small. Effect sizes for changes in
symptoms are likely to be larger than for the corresponding
changes in gene expression. Using the gene with the largest effect
size in the suggestive results reported here as an example
(FCER1G), statistical power analyses suggest that a sample size
greater than 230 would be required to accurately detect an effect
of the same size with 80% power (conducted using powerreg in
Stata). Using a threshold of α= 1.4 × 10-5 (reflecting the 4381 gene
probes considered), the current sample was large enough to
detect a variant explaining 23% of the variance in change in
symptoms with 80% power (conducted using the pwr package in
R). Statistical power is enhanced by the use of network-based
approaches such as WGCNA. However, our sample was still only
large enough to detect a module explaining 11% of the variance

Figure 2. Change in gene expression and percentage reduction in Clinical Global Impression—Severity (CGI-S) at follow-up for five gene-
labelled probes significant at a suggestive level. (a) PTBP1; β= 0.715, P= 4.11E− 05. (b) DAGLB; β= 0.713, P= 6.02E− 04. (c) FCER1G; β=− 1.176,
P= 6.33E− 04. (d) S100A10; β=− 0.428, P= 1.24E− 03. (e) IFI30; β= − 0.677, P= 1.12E− 03.
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in change in symptoms with 80% power. Given that treatment
response is thought to be influenced by a number of factors of
small effect, it is likely that the current study is underpowered, and
much greater sample sizes are needed. Linked to this issue, this
sample had a moderate level of heterogeneity, with variability in
treatment specifics (such as length) and diagnoses that may have
affected the results. In addition, no control group (who had not
received treatment) was available for this study. Therefore, it is
possible that any changes detected in our sample may be
explained by other factors. Future studies in this growing area
would benefit from a focus on collecting much larger samples,
preferably with control groups for comparison. The expansion of
internet-based CBT trials and large CBT services, enabling
therapists and treatment centres to reach a wider number of
participants, are likely to be a useful resource for research
examining predictors of treatment response. Greater sample sizes
may also be achieved through large-scale collaborations, combin-
ing data from multiple treatment sites, treatment protocols and
diagnoses. Although these approaches will likely lead to greater
heterogeneity in the sample, for a predictor or biological correlate
of treatment response to have a potential clinical utility it must be
able to rise above this noise robustly in a range of treatment
settings.
Secondly, in this study we have used clinician-rated severity of

the treated diagnosis as the primary treatment outcome. Although
the CGI is a well recognised and validated measure, it only
concerns the severity of disorder. Another important aspect of
treatment outcome in mental disorders, particularly in fear-related
disorders such as anxiety, is reduction in impairment. Further work
in this area should consider changes in levels of impairment as
well as diagnosis severity. Finally, this study was conducted in a
clinical setting with live participants, and therefore required the
use of peripheral samples. However, whilst peripheral samples
may not be wholly representative of brain expression patterns,
transcriptomic comparisons in previous research have indicated
that the expression of over 80% of genes is shared between
peripheral blood and other tissues (including brain).68 In addition,
the use of peripheral tissue is a necessity of biomarker and
treatment response studies.

CONCLUSION
In summary, this study represents the first report of genome-wide
expression profiles with respect to response to a psychological
therapy. We find suggestive evidence for the role of gene
expression changes in a small number of biologically plausible
candidate genes, although none reach a corrected level of
significance. If replicated, these findings have the potential to
further our understanding of the biological changes underlying
response to psychological therapies.
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