
OPEN

ORIGINAL ARTICLE

HPA-axis function and grey matter volume reductions:
imaging the diathesis-stress model in individuals at
ultra-high risk of psychosis
I Valli1, NA Crossley1,2,3, F Day4, J Stone1,5, S Tognin1, V Mondelli6,7, O Howes1,8, L Valmaggia4, C Pariante6,7 and P McGuire1

The onset of psychosis is thought to involve interactions between environmental stressors and the brain, with cortisol as a putative
mediator. We examined the relationship between the cortisol stress response and brain structure in subjects at ultra-high risk (UHR)
for psychosis. Waking salivary cortisol was measured in 22 individuals at UHR for psychosis and 17 healthy controls. Grey matter
volume was assessed using magnetic resonance imaging at 3 T. The relationship between the stress response and grey matter
volume was investigated using voxel-based analyses. Our predictions of the topography of cortisol action as a structural brain
modulator were informed by measures of brain glucocorticoid and mineralcorticoid receptor distribution obtained from the
multimodal neuroanatomical and genetic Allen Brain Atlas. Across all subjects, reduced responsivity of the hypothalamus–pituitary–
adrenal (HPA) axis was correlated with smaller grey matter volumes in the frontal, parietal and temporal cortex and in the
hippocampus. This relationship was particularly marked in the UHR subjects in the right prefrontal, left parahippocampal/fusiform
and parietal cortices. The subgroup that subsequently developed psychosis showed a significant blunting of HPA stress response,
observed at trend level also in the whole UHR sample. Altered responses to stress in people at high risk of psychosis are related to
reductions in grey matter volume in areas implicated in the vulnerability to psychotic disorders. These areas may represent the
neural components of a stress vulnerability model.
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INTRODUCTION
The onset of psychosis is thought to involve interactions between
psychosocial stressors in the environment and genetic factors that
alter the brain such that there is an increased vulnerability to
psychosis. The effects of environmental stressors on the brain are
thought to be mediated by the hypothalamus–pituitary–adrenal
(HPA) axis, which responds to stress by releasing cortisol into the
bloodstream.1 Cortisol interacts with glucocorticoid (GRs) and
mineralcorticoid (MRs) receptors which function as transcriptional
regulators, but also modulate the responsiveness of the HPA axis
via feedback inhibition of corticotropin-releasing hormone and
adrenocorticotropic hormone release, such that homeostasis is
re-established once stressors abate.2 The repeated or chronic
exposure to stress leads to hyperactivity of the HPA axis, resulting
in elevated basal cortisol levels and impaired responsiveness to
further stress.
According to the neural diathesis-stress model of psychosis, the

HPA axis mediates the relationship between exposure to stressors
and the emergence of psychotic symptoms, with the suggestion
that elevated cortisol levels augment dopamine synthesis.3 This
model is supported by evidence that patients with a psychotic
disorder have increased circulating levels of cortisol4 and a
blunted cortisol response to stress,5 either in the form of

experimental psychosocial stressors or the minor physiological
stressor of awakening.6 The blunted cortisol response to stress is
thought to reflect the impaired responsiveness of a desensitized
system.7 Similar findings have recently been reported in
individuals at ultra-high risk (UHR) of developing psychosis.8–11

GRs and MRs are both expressed in the brain where
corticosteroid hormones act as transcription factors and regulate
gene expression.1 Data from animals and humans suggest that the
HPA-axis stress-induced dysregulation and the consequent
increased release of corticosteroids is associated with an enduring
effect on brain structure, with the highest impact on areas
undergoing developmental changes at the time of the insult.2

Thus, chronic corticosteroid exposure in rodents, both due to
experimental administration or chronic stress, is associated with a
reduction in dendritic branching in hippocampal and prefrontal
regions.12,13 Similarly, studies in humans exposed to stress
or hypercortisolemia show reductions in hippocampal14 and
prefrontal volume.15

There have been remarkably few studies of the relationship
between alterations in HPA axis function and neuroimaging
abnormalities in psychosis. An inverse correlation between
hippocampal volume and cortisol levels has been observed in
patients with first episode psychosis,7 although interpretation of
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this finding is complicated by the possible effects of illness or
medication on both variables. These potentially confounding
factors can be overcome by studying individuals at UHR for the
disorder, who are usually medication-naive. UHR subjects show
extensive alterations in grey matter volume irrespective of
whether they subsequently develop the disorder,16 suggesting
that these represent neural correlates of their vulnerability to
psychosis. The only previous study in this group did not find a
significant relationship between cortisol levels and either hippo-
campal or pituitary volume.17 However, the study used a regions
of interest approach; therefore, the rest of the brain was not
examined. Cortisol levels were assessed at a single time point via a
blood sample.17 Serial samples provide a better index of HPA
function, and the findings from blood samples can be confounded
by the stress associated with venipuncture.
In the present study, we examined the relationship between the

cortisol response on waking and whole-brain grey matter volume
in UHR individuals. Cortisol was measured in serial salivary
samples, and magnetic resonance imaging data were acquired
on a 3 T scanner. We used the information on the regional
expression of GR and MR in the brain18 to inform our predictions
of the areas most likely to be related to HPA axis responsivity. On
the basis of previous findings, we expected that UHR subjects
would show a blunted waking cortisol response compared with
controls. We then tested the hypothesis that there would be a
significant relationship between blunted cortisol response and
grey matter volume reductions in the hippocampus and the
prefrontal cortex. A subsidiary hypothesis was that this relation-
ship would be more pronounced in the UHR individuals than in
controls.

MATERIALS AND METHODS
Ethical approval
The study was approved by the joint South London and Maudsley National
Health Service Foundation Trust Ethics Committee and all participants
gave written consent to participate after full details of the study were
explained.

Participants
Twenty-six individuals meeting criteria for an at-risk mental state (ARMS)
were recruited from OASIS (Outreach and Support in South London),19 a
clinical service for people at risk of developing psychosis within the South
London and Maudsley National Health Service Foundation Trust. The
diagnosis was based on Personal Assessment Crisis Evaluation criteria,20 as
assessed by two expert clinicians using the comprehensive assessment of
at-risk mental states (CAARMS)21 and confirmed at a consensus clinical
meeting. All participants were antipsychotic naive at the time they took
part in the study while five were taking antidepressant medication.
Seventeen control subjects were recruited over the same period from the
same sociodemographic area. Participants were aged 18 to 30 years and
were excluded if their intelligence quotient was below 70, if they had a
history of a neurological disorder or severe head injury or if they met DSM-
IV criteria for an alcohol or substance dependence disorder other than
nicotine. An additional exclusion criterion for control subjects was a family
history of psychosis.
All the UHR participants were followed up by OASIS for at least 2 years

after first contact and monitored for signs of transition to psychosis.

Clinical measures
CAARMS,21 Positive and Negative Syndrome Scale (PANSS),22 Hamilton
Anxiety Rating Scale (HAM-A)23 and Hamilton Depression Rating Scale
(HAM-D)24 were used on the day of scanning to assess and rate symptom
severity.

Salivary cortisol
Salivary cortisol was collected in a naturalistic, non-clinical environment.
Participants received verbal and written step-by-step instructions to use
Salivettes (Sarstedt, Leicester, UK) and return them in a pre-paid envelope.

Participants were instructed to wake up before 1000 h to collect saliva
samples immediately at awakening (0 minutes) and then after 30 and
60 minutes. They were asked to abstain from consuming alcohol the night
preceding collection and asked not to eat, drink, brush their teeth or
engage in physical activity during the 60-minute collection period.
Samples were stored at a temperature of − 20 °C until they were
centrifuged at 3500 rpm for 10 minutes at 6 °C to separate saliva from
the pad. Saliva was then transferred from the Salivettes to microtubes and
stored at − 80 °C until a continuous, automated, competitive chemilumi-
nescence immunoassay was performed using the Immulite immunoassay
analyzer system (DPC; www.diagnostics.siemens.com)25 to determine free
cortisol concentration. The percentage cross-reactivity of the antiserum
with cortisone and prednisolone was 0.35% and 27.5%, respectively. The
area under the curve for the cortisol awakening response (CAR) was
calculated using cortisol levels at 0, 30 and 60 minutes after awakening
with formulae described by Pruessner et al.26 The validity of the sampling
is dependent upon timing, with delayed collection leading to an
underestimation of peak response.27 A negative difference between the
samples at time 0 and 30 minutes (Δ30) is considered indicative of
delayed collection of the first sample with recommended exclusion from
the analysis.28 Any participant with a missing sample or one characterized
by very low salivary volume (o200 μl), one reportedly collected
15 minutes before or after the indicated time point or providing a
negative Δ30 was therefore excluded from the study.
Demographic and cortisol measures were compared between the two

groups using independent sample two-tailed t-tests, as variables were
normally distributed. Chi-square was used for categorical variables.

Image acquisition and analyses
Volumetric magnetic resonance images were acquired using a General
Electric (Milwaukee, WI, USA) 3 T magnetic resonance system. A whole-
brain three-dimensional coronal inversion recovery prepared spoiled
gradient echo scan was acquired with echo time 2.82 ms, repetition time
6.96 ms, inversion time 450 ms and flip angle 20°.
Group-related differences in grey matter volume (GMV) were analysed

using voxel-based morphometry, implemented in SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm) running under Matlab 7.4 (MatWorks, Natick,
MA, USA). T1-weighted volumetric images were preprocessed using the
Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra
(DARTEL)29 SPM8 toolbox, iteratively registering grey matter by nonlinear
warping to a template generated using DARTEL to obtain a high-
dimensional normalization.29 A homogeneity check across the sample was
followed by smoothing with an 8-mm full-width at half maximum (FWHM)
Gaussian kernel. The normalization protocol included a ‘modulatory step’
to preserve information about the absolute grey matter values.30 We then
looked for grey matter voxels in the normalized modulated smoothed data
that correlated with CAR in all subjects. Age, gender and antidepressant
medication were modelled in the analysis to reduce the potential impact
of these variables on the findings. To identify specific changes not
confounded by global volumetric differences, the proportional scaling
option was used. We also looked for any existing differences in the
relationship between cortisol response and cortical grey matter between
UHR participants and controls. We thus used the general linear model to
look for brain voxels in which this correlation differed according to the
clinical status of the participants (UHR/control).

Use of a priori biological information to guide statistical inferences
Neuroimaging studies usually involve the analysis of multiple univariate
comparisons, posing a multiple-comparison problem. We here corrected
our results based on the expression of corticoid receptors in the brain,
using this to threshold our results. Our rationale was that regions that had
high levels of these receptors were more likely to be influenced by cortisol,
reducing the likelihood that a correlation with local grey matter volume
would be a false positive. We used data from the Allen Brain Atlas,18 a
multimodal atlas integrating neuroanatomical and gene expression
information in humans. Briefly, the Atlas is based on tissue samples
collected postmortem from anatomically diverse regions of six healthy
adult human brains. Microarray analyses of the samples gave information
on the RNA expression levels of a large number of genes for each of the
regions sampled. The information on gene expression distribution across
different regions of the brain was then used to build a whole-brain atlas.
We retrieved the normalized transcription rates of the GRs and MRs on all
the available sampled regions, then divided the brain into anatomically
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defined regions following a widely used template.31 Where one of the
template regions included more than one sampling site, microarray
information from the multiple samples was averaged. In addition, the Brain
Allen project designed their microarray analysis such that more than one
probe would target the expression of a specific gene. In this case, the
expression levels of the GR and MR genes were inferred to be the average
expression of the different probes targeting them. We took the mean
across subjects, and on the basis that one-third of regulated genes are
responsive to both receptor types,32 we averaged measures for both GR
and MR expression in one a priori mask (Figure 1). Average transcription of
the receptors across class and subjects were used to determine a priori
probabilities of a false positive as described below.
We assumed that a biological relationship with cortisol levels would be

most likely in brain areas where the expression of cortisol receptor genes
was highest. In these areas, the statistical threshold was set at Po0.01,
uncorrected for multiple comparisons. At the other extreme, in areas with
the lowest expression of these genes, the statistical threshold was set at
Po0.05, Bonferroni-corrected for all voxels within the mask. All areas were
ranked according to their expression level and assigned a statistical
threshold between Po0.01 uncorrected and Po0.05 Bonferroni-
corrected. This range of probabilities was divided into equally sized steps,
and a threshold was assigned to each region according to its rank.

RESULTS
Demographic and clinical characteristics of the sample
26 individuals at UHR for psychosis and 17 healthy controls were
originally included. Four UHR subjects had to be excluded due to
the poor quality of the cortisol sampling, leaving 22 subjects with
data for analysis.
Control and UHR individuals did not differ in terms of age (UHR

mean [SD] = 22.45 [4.08] years, controls mean [SD] = 24.24 [4.21]
years, df = 37, t=− 1.33, P= 0.19) or gender (UHR females n= 9,
control females n= 7, P= 0.98). There was a trend for higher
estimated premorbid intelligence in control participants (UHR
mean [SD] = 110.27 [10.46], controls mean [SD] = 115.45 [7.04],
df = 37, t=− 1.85, P= 0.073).
As would be expected, UHR subjects had higher levels of

psychopathology than controls as measured using the CAARMS
and the PANSS and lower levels of functioning measured using
the Global Assessment of Functioning (GAF). In addition, they
showed higher levels of anxiety and depression symptoms as
measured using the HAM-A and HAM-D (Supplementary Table 1).
The UHR participants were followed up for at least 2 years after

the baseline assessments. Within that period, four subjects (18.2%)
developed a psychotic disorder.

Cortisol awakening response
UHR participants showed lower levels of cortisol in response to
awakening than controls, although this difference did not reach
statistical significance (UHR mean [SD]= 223.84 [233.52] nmol min/l,
controls mean [SD] = 320.97 [253.85] nmol min/l, df = 37, t=− 1.24,
P= 0.22). Visual inspection of the data (Figure 2) led to the
identification of an outlier in the UHR group, confirmed by
computing standard scores (z= 3.02). After this subject was
excluded, there was a strong trend for a between-group difference
(UHR mean [SD] = 190.29 [176.77] nmol min/l, controls mean
[SD] = 320.97 [253.85] nmol min/l, df = 36, t=− 1.87, P= 0.07). The
four subjects that subsequently transitioned to psychosis had CAR
values significantly lower than controls (UHR-transition mean
[SD] = 24.75 [49.50] nmol min/l, controls mean [SD] = 320.97
[253.85] nmol min/l, df = 19, t=− 2.281, P= 0.034).

Imaging
Across all subjects, there was a significant positive correlation
between CAR and regional GMV in the superior frontal gyrus, the
precentral and postcentral gyri and the supplementary motor

Figure 1. Method used to include a priori biological information. We
used data from the Allen Brain Atlas (Allen Brain Atlas methodology
summarized in (a–c) and described in detail in ref. 18) to create a
new brain mask (d) used to flexibly threshold our results according
to the expression of cortisol-binding receptors. (a) Information
about expression levels of glucocorticoid (GR) and mineralocorticoid
(MR) receptors was obtained from several parts of the brain of six
healthy adults from the Allen Brain Atlas. (b) Samples obtained from
the same region of interest of the template used were averaged. (c)
Expression rates of probes targeting the same gene (MR or GR) were
averaged. (d) Brain mask ranking regions according to their average
expression of glucocorticoid and mineralocorticoid receptors in the
healthy brain. The brain is shown in radiological convention (where
the left side of the figure is the right side of the brain).

Figure 2. Cortisol awakening response (CAR) in ultra-high risk
subjects and controls (nmol min/l). ARMS, at-risk mental state.
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cortex, bilaterally. Correlations were also evident in the right
hippocampus, the right middle frontal, supramarginal, middle
temporal and cingulate gyri, and in the left inferior temporal
gyrus, superior parietal cortex and operculum (Figure 3). In all
these regions, a blunted cortisol response was associated with
smaller grey matter volume.
The correlation between CAR and GMV was significantly

stronger in UHR individuals than in controls in the right middle
frontal gyrus, the right superior parietal gyrus, the right parietal
operculum, the right postcentral gyrus, the left angular gyrus, the
left precuneus and the left parahippocampal/fusiform gyrus
(Figure 4). Conversely, controls showed a stronger relationship in
the left fusiform gyrus (Supplementary Figure 1).

DISCUSSION
This study examined the relationship between grey matter volume
in individuals at UHR for psychosis16 and HPA axis abnormalities.8

Consistent with a previous finding in a larger sample,8 there was a
trend for a blunting of the CAR in the UHR group. Our first major
finding was that there was a significant positive relationship
between CAR and regional GMV across all the subjects in bilateral
frontal, parietal, and temporal cortices, and the right hippocam-
pus, confirming our initial hypothesis. Consistent with our second
hypothesis, this relationship was particularly marked in the UHR
group, with impaired responsivity of the HPA axis linked to smaller
GMV in the right prefrontal, left parahippocampal/fusiform
and parietal cortices. The findings in the prefrontal and

parahippocampal cortex are of particular interest, as these are
the two brain regions most consistently implicated in animal
models of psychosis,33,34 neuroimaging studies of UHR subjects16

and patients with psychosis.35 The group differences at the
neuroimaging level may have been more significant than those in
the cortisol responses because they provide a more direct
measure of the underlying pathophysiology.
Attenuated cortisol responses to stress in UHR individuals are

thought to reflect a desensitization of the HPA axis that may
increase the vulnerability to psychosis.9 It has also been suggested
that HPA axis abnormalities may alter normal brain maturational
processes. Exposure to stress during key periods of vulnerability
may slow brain development2 as corticosteroids influence
neurogenesis and neuroplasticity, affecting levels of neurotro-
phins such as BDNF.36 Elevated corticosteroid levels can also be
neurotoxic, inducing regression of dendritic processes and
decreasing neuronal survival following insults, thereby contribut-
ing to neuronal death.37 These effects could manifest as
reductions in regional brain matter volume and could contribute
to the emergence of psychotic symptoms.38

The hippocampus and prefrontal cortex have been found to be
particularly susceptible to the effects of chronic or repeated
exposure to stress in both animals and humans.13,36 The
hippocampus is most susceptible during the first years of life,
when it is completing key maturational processes, while the
prefrontal cortex remains vulnerable throughout the post-pubertal
maturational period that coincides with the peak window of
psychosis risk. Alterations in hippocampal volume may therefore

Figure 3. Brain regions showing a significant positive correlation with cortisol awakening response across all the subjects. L, left; R, right.

Figure 4. Brain regions where there was a stronger correlation between the grey matter volume and the cortisol awakening response in UHR
subjects than in controls. L, left; R, right; UHR, ultra-high risk.
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be a correlate of early exposure to stress and may contribute to
sensitization to stress due to the role of the hippocampus in the
feedback control of the HPA axis.5 Desensitization of the HPA axis,
mirrored by a heightened perception of daily experiences as
stressful,39,40 may contribute to further abnormalities through the
effect of cortisol on brain regions undergoing neurodevelopment
later in life, even in the absence of further trauma.
The mechanisms underlying stress sensitization are unknown,

but changes in the dopaminergic circuitry have been suggested to
play a role.41 Glucocorticoids augment dopamine activity,
especially in the mesolimbic system42 and subjects at UHR for
psychosis showed increased dopamine synthesis capacity43 and
increased dopamine release in response to stress.44 Microdialysis
investigations in rodents show that prefrontal GRs mediate the
enhanced mesocortical dopamine efflux observed in response to
acute stress, leading to an impairment of executive cognitive
functioning.45 Impaired executive function is a key feature of the
UHR state and of psychosis,46 and the frontal and parietal regions
where we found correlations with the cortisol response mediate
these processes. Our findings are thus in line with data from both
animals and humans linking early social deprivation with
structural and functional abnormalities in brain regions that
mediate executive functions.47,48 In patients with first episode
psychosis, a blunted CAR predicts impaired executive functioning
and poor treatment response.49,50

The present study has a number of limitations. The sample size
was modest, mainly because UHR subjects are difficult to recruit,
and participation in the present study was relatively demanding,
with subjects having to follow a complicated cortisol sampling
protocol, undergo magnetic resonance imaging scanning and
consent to long-term follow-up. A small sample size is a particular
issue when studying UHR samples, which are characterized by
significant clinical heterogeneity. Larger samples can be recruited
through multicentre studies.51 The significantly attenuated CAR
observed in subjects who subsequently progressed to an
established psychotic illness needs therefore to be considered
with caution due to the small number of UHR subjects who
transitioned. A greater severity of anxiety and depression
symptoms in the UHR participants also needs to be acknowl-
edged, especially considering that a blunted CAR is not a finding
specific to psychosis. Although all the UHR individuals were
antipsychotic naive, four of them had been exposed to
antidepressant treatment. We therefore covaried to minimize
the effect of antidepressant use, which can alter cortisol levels.52

The correction we used for our imaging analysis was based on
receptor density, but the range included Po0.01 uncorrected for
regions where expression was highest. Finally, the information
on receptor density distribution was derived from an atlas
of the healthy adult brain, and we cannot exclude the possibility
that corticosteroid receptor expression differs in UHR subjects
because of epigenetic effects of stress.53 Strengths of the study
include the naturalistic measurement of the CAR, minimizing the
potentially confounding effects of measuring stress in an
experimental setting, and the use of salivary as opposed to
plasma sampling, which reduces the risk of stress being induced
by the sampling procedure. We also informed our neuroimaging
analysis with data on the central distribution of corticosteroid
receptors.
To our knowledge, this is the first study to find a relationship

between the cortisol response to stress and alterations in grey
matter volume in people at high risk for psychosis. The data
suggest that the neural diathesis-stress vulnerability model for
psychosis may include the frontal, parietal and hippocampal areas.
Their involvement is consistent with a wealth of data implicating
these regions in the pathophysiology of psychosis.
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