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Exon-focused genome-wide association study of
obsessive-compulsive disorder and shared polygenic
risk with schizophrenia
J Costas1,19, N Carrera2,3,19, P Alonso4,5,6,7, X Gurriarán1,8, C Segalàs4,5,6, E Real4,5,6, C López-Solà4,5,6, S Mas6,9,10, P Gassó9,10,11,
L Domènech12,13,14,15, M Morell12,13,14,15, I Quintela16,17, L Lázaro6,10,11,18, JM Menchón4,5,6,7, X Estivill12,13,14,15 and Á Carracedo3,16,17

Common single-nucleotide polymorphisms (SNPs) account for a large proportion of the heritability of obsessive-compulsive
disorder (OCD). Co-ocurrence of OCD and schizophrenia is commoner than expected based on their respective prevalences,
complicating the clinical management of patients. This study addresses two main objectives: to identify particular genes associated
with OCD by SNP-based and gene-based tests; and to test the existence of a polygenic risk shared with schizophrenia. The primary
analysis was an exon-focused genome-wide association study of 370 OCD cases and 443 controls from Spain. A polygenic risk
model based on the Psychiatric Genetics Consortium schizophrenia data set (PGC-SCZ2) was tested in our OCD data. A polygenic
risk model based on our OCD data was tested on previous data of schizophrenia from our group. The most significant association at
the gene-based test was found at DNM3 (P= 7.9 × 10− 5), a gene involved in synaptic vesicle endocytosis. The polygenic risk model
from PGC-SCZ2 data was strongly associated with disease status in our OCD sample, reaching its most significant value after
removal of the major histocompatibility complex region (lowest P= 2.3 × 10− 6, explaining 3.7% of the variance). The shared
polygenic risk was confirmed in our schizophrenia data. In conclusion, DNM3 may be involved in risk to OCD. The shared polygenic
risk between schizophrenia and OCD may be partially responsible for the frequent comorbidity of both disorders, explaining
epidemiological data on cross-disorder risk. This common etiology may have clinical implications.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) is a clinically heterogeneous
neuropsychiatric disorder characterized by recurrent intrusive
thoughts causing distress or anxiety, and compulsions, defined as
repetitive behaviors or mental acts performed to alleviate this
distress. The prevalence is around 1–3%, and the onset is bimodal
during infancy or young adulthood.1 Twin studies revealed a
considerable effect of genetic additive factors, with an estimated
heritability of 42–52%.2 Co-occurrence of OCD and other related
disorders that present overlapping or similar features and
symptoms, such as Tourette's syndrome, is commoner than
expected based on their respective prevalences, suggesting
shared genetic susceptibility.3 A recent meta-analysis confirmed
that there is also a larger prevalence rate of OCD in schizophrenia
patients compared with the general population.4 Both the

presence of a prior diagnosis of OCD as well as the presence of
an OCD diagnosis in close relatives are associated with an
increased risk of developing schizophrenia.5,6 Atypical antipsycho-
tics may induce obsessive-compulsive symptoms in susceptible
schizophrenic patients.7 These findings suggest common etiolo-
gical mechanisms that may have clinical implications, deserving
further research.
A recent review of association studies at candidate genes in

OCD has identified some evidence of association at SLC6A4, HTR2A
and, in males only, MAOA and COMT.8 Linkage analysis has not
revealed a causal locus. These results suggest that, as for other
psychiatric disorders, OCD is a complex disorder that arises by the
combination of many genetic and environmental factors of
individual low effect. Two genome-wide association studies
(GWASs) of OCD have been published to date.9,10 Although the
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sample sizes were not large enough to detect significant single-
nucleotide polymorphisms (SNPs) at the stringent genome-wide
level, several interesting genes emerged for the follow-up studies.
Additional analyses on these data have revealed that common
SNPs account for a large proportion of the heritability and that a
considerable proportion of the polygenic risk was shared between
OCD and Tourette's syndrome.11,12 In the present study, we
describe an exon-based GWAS on OCD samples from Spain, and
test the hypothesis that co-occurrence of OCD and schizophrenia
may be partly owing to shared common SNPs of susceptibility.

MATERIALS AND METHODS
Samples
The case sample included 433 patients (227 males and 206 females)
diagnosed with OCD. The onset was before the age of 15 years for 38% of
the patients, and before 12 years of age for 21%. Diagnosis was done by two
experienced psychiatrists following the SCID-CV (Structured Clinical Interview
for DSM-IV Axis I Disorders-Clinician Version) in adults and the K.SADS-PL
(The Schedule for affective Disorders and Schizophrenia for School-age
Children-present and lifetime version) in pediatric group. The cases were
recruited between 2003 and 2012 at the OCD Unit from the Bellvitge Hospital
and the Department of Child and Adolescent Psychiatry and Psychology of
Hospital Clínic, both from the Barcelona (Spain) health care area. All the
patients are of European ancestry from Spain. The exclusion criteria were
active psychoactive drugs dependence, psychotic disorders, intellectual
disability and severe organic or neurologic pathology except tic disorders.
The control sample comprises 484 subjects (282 males and 202 females)

from the National DNA Bank Carlos III (Salamanca University) and
individuals attending primary health care centers in Galicia (NW Spain).
They were all healthy unrelated individuals declaring not to suffer any
disease and being subjected to a brief medical examination and a
questionnaire. These controls are different from those of the Carrera et al.
study13 used in polygenic risk analysis (see below). Informed consent was
obtained for all the participants, and the research was done according to
the principles of the Declaration of Helsinki after approval by the
appropriate Ethic Committees (the Bellvitge University Hospital Ethical
Committee, Barcelona, Spain; the Hospital Clínic Ethical Committee,
Barcelona, Spain; and the Galician Ethical Committee for Clinical Research,
Santiago de Compostela, Spain).

Genotyping
The Axiom Exome Array (Affymetrix, Santa Clara, CA, USA) was used for
genotyping cases and controls, following the manufacturer’s instructions.
The panel includes around 300 000 variants located in coding regions,
GWAS tags from the NHGRI Catalog of Published Associations (August
2011), as well as ancestral informative markers. To minimize any batch
effect, all the arrays contained approximately the same number of cases
and controls. Variant call was performed by the Affymetrix Genotyping
Console Software using the Axiom GT1 algorithm.

Quality control
Extensive quality control filtering of the obtained genotypes was
performed using standard procedures in PLINK.14 In particular, SNPs were
removed from the study if they did not pass any of the following filters: (i)
genotyping call rate above 95%, (ii) no significant departures from Hardy–
Weinberg equilibrium in control samples (P41× 10− 3); and (iii) no
significant difference in call rate between cases and controls (P41 × 10− 3).
The samples presenting any of these conditions were removed: (i) call

rate below 95%; (ii) discordant gender between the one recorded in our
database and the one inferred from the genotypes; (iii) heterozygosity
levels departing three standard deviations from the mean; (iv) cryptic
relatedness, detected by proportion identity-by-descent (PI_HAT) values
greater than 0.05, as recommended by PLINK. In that case, the sample of
the pair with lower call rate was removed. Finally, the genotype data of
3410 ancestral informative markers present in our samples were used to
identify individuals with less than 90% Spanish ancestry using Structure
v2.3.3 (ref. 15) and the HapMap samples from European ancestry (CEU),
African ancestry (YRI) and Asian ancestry (JPT+CHB) as reference sets. The
structure was run under the admixture model with 100 000 replications for
burnin period and 100 000 replications after burnin for parameter
estimations.

Imputation
Imputation was performed for autosomal chromosomes following a pre-
phasing/imputation stepwise approach with IMPUTE2/SHAPEIT, using
default parameters.16,17 As recommended, the chromosomes were divided
in chunks of 5 Mb for the imputation and all the SNPs with minor allele
frequency (MAF) over 0.01 were included as the input (94 096 variants).
The 1000 Genome Project data set was used as the reference.18 After
imputation, only the genotypes with an imputation info score 40.9 were
considered for further analysis. Any SNP with imputation data on less than
95% of the sample was removed for further analysis.

Association analysis at individual SNP level
After imputation, association analysis at SNP level was performed using
logistic regression under an additive model, considering those SNPs at
MAF45%. The first 10 dimensions of multidimensional scaling, calculated
from genotyped data at MAF45%, were included as covariates to control
for population stratification. The analysis was performed as implemented
in PLINK 1.9. Manhattan plots and quantile-quantile plots were created
with the R package qqman (https://github.com/stephenturner/qqman).
Meta-analysis with previous GWAS data was performed using METAL.19

Gene-based association analysis
VEGAS2 was used to perform gene-based tests from genotyped SNPs at
MAF40.1% in our samples using the exonic regions as gene boundaries.20

The SNP P-values were those based on logistic regression using the first 10
multidimensional scaling dimensions as covariates. The SNP P-values are
converted to upper-tail χ2 statistics with one degree of freedom and
summed to calculate the gene-based test statistic. To account for linkage
disequilibrium among the SNPs, the null distribution of the test was
estimated by simulation from the 1000 Genomes European samples. Only
those SNPs with MAF41% in the 1000 Genomes Project were considered
for analysis. The analysis was performed using the web-based version of
VEGAS2. A Bonferoni's correction based on the number of genes tested
was used as a formal criteria for consideration of significance, although this
is clearly conservative, taking into account that many genes overlap along
the genome.

Polygenic risk scores
Polygenic risk analysis was performed as previously described.21,22 Basically,
a polygenic risk model was constructed from GWAS data on a discovery
sample. The model included the associated allele and its effect, measured as
the logarithm of the OR, at each one of the SNP under a specific threshold of
association P-values (Pthreshold). SNPs with alleles A/T or C/G were excluded to
avoid strand ambiguity. Several different Pthreshold, from 0.01 to 1 (that is,
inclusion of all the SNPs) were considered. Correlated SNPs due to linkage
disequilibrium were pruned, using the clumping algorithm of PLINK,
considering an r2 = 0.2 and a window size of 500 kb. The polygenic risk
model was tested on a target sample, obtaining a polygenic risk score for
each sample as the sum of the number of risk alleles carried by that sample
weighted by its effect. The significance of the results, based on a Wald test
for the coefficient of the score, was tested by comparison of two logistic
regression models, one considering only the first 10 dimensions of
multidimensional scaling to control for stratification, and another consider-
ing additionally the polygenic risk score. Nagelkerke’s pseudo-R2 was
calculated as a measure of the variance explained on the observed scaled.
Two different analyses were done, using PRSice.23 The first one

considered the discovery phase of the second Psychiatric Genomics
Consortium schizophrenia case–control mega-analysis, Psychiatric Genetics
Consortium schizophrenia data set (PGC-SCZ2),24 as discovery sample and
our OCD case–control samples as the target sample. By this way, the
existence of common genetic susceptibility for both disorders was tested.
Only genotyped SNPs or imputed SNPs with an imputation info score40.9
were selected from the schizophrenia data. As an internal control, 100
permutations of the case–control labels at the OCD data were used as
target samples.
The second analysis used the OCD data generated at this work as

discovery sample and our previous data of a schizophrenia–control study
on exonic SNPs using the Affymetrix 20k cSNPs array as target sample13 to
test for the shared polygenic risk in an additional sample. The OCD data in
polygenic risk analysis were restricted to all genotyped autosomal SNPs.
Power calculation for polygenic risk analysis was performed by the

method of Palla and Dudbrigde (2015),25 as implemented in AVENGEME.
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These authors estimated several parameters of relevance in our calculation,
such as additive genetic variance in schizophrenia explained by SNPs at
common GWAS arrays equal to 0.3; and additive genetic covariance
between schizophrenia and major depression or schizophrenia and bipolar
disorder explained by SNPs at common GWAS arrays equal to 0.165 or
0.185, respectively. For power calculation, we assumed an additive genetic
covariance between schizophrenia and OCD of 0.15.

RESULTS
Genotyping and quality control
We obtained genotypic data for 295 983 SNPs in 433 cases and
484 controls. A total of 144 203 SNPs were monomorphic in our
samples. After quality control procedures, the final data set
consists of 38 305 SNPs at a frequency higher than 5% in 370
cases and 443 controls. The details on the application of the
quality control filters are shown in Supplementary Table 1 and
Supplementary Figure 1. Imputation of genotypes reported
368 840 additional SNPs with high imputation quality, MAF45%
and data on more than 95% of the samples. Therefore our final
analytic sample contained 407 145 SNPs.
The population stratification was well controlled with inclusion

of the first 10 dimensions of multidimensional scaling, as revealed
by a reduction of the stratification factor λ from 1.038 to 1.018
(Figure 1).

Association analyses
The results for the association test are shown in Figure 2. The most
significant SNP (P= 1.34 × 10− 5) was rs12151009, a missense
variant in EML2. Forty-five SNPs at six different regions present
Po1 × 10− 4, including two different regions at the major
histocompatibility complex (MHC). Table 1 shows association
results for the most significant SNP at each region. The regional
association plots are shown at Supplementary Figure 2.
The analysis at the gene level, based on 7920 genes with at

least two genotyped SNPs, revealed one gene with a P-value lower
than 1 × 10− 4, DNM3 (P= 7.9 × 10− 5). Four of the five genotyped
SNPs at this gene presented P-value for association lower than
0.05, and the linkage disequilibrium among them is very low
(Table 2). As a consequence, the gene-based P-value was more
significant than any of those for individual SNPs.

Comparison with previous GWAS
We compared our results with the available data from previous
GWAS studies: (i) SNPs at Po1 × 10− 3 in meta-analysis of all the
samples in the study of Stewart et al.;9 (ii) SNPs at Po1 × 10− 4 in

the study of Matthiesen et al.10 None of the 33 SNPs reported by
Matthiesen et al. were presented in our samples. A total of 44 SNPs
in our sample are among the 601 reported by Stewart et al. Two of
them are at Po0.05 in our samples, but only one, rs6845865,
showed the same direction of association. The C variant is present
in 18% of our cases and 14% of our controls. Adding our results to
the meta-analysis of Stewart et al. increased the significance of the
association from 2.5 × 10− 4 to 5.4 × 10− 5.The SNP is located within
an intron of ARHGAP10, 25.3 kb apart from NR3C2.
Regarding the gene-based tests, Matthiesen et al. reported two

experiment-wise significant genes, C16orf88, currently known as
KNOP1, and IQCK. The first gene is absent from our data, while
IQCK lacked any evidence of significance (P= 0.90).

Shared polygenic risk between schizophrenia and OCD
A cross-disorder polygenic risk score analysis, using the schizo-
phrenia data from the PGC-SCZ2 as the discovery sample, and
OCD data from our study as the target sample, revealed that the
polygenic risk score based on schizophrenia risk is significantly
different in OCD subjects than in controls in the expected
direction (lowest P= 1.35 × 10− 5, reached at Pthreshold = 0.05, based
on 2760 near-independent SNPs), corresponding to 3.17% of
variance explained (Figure 3a). Assuming an OR= 1 for the first
quintile, the fifth quintile presented an OR= 2.44 (95% CI = 1.52–
3.92), Fisher's P= 1.4 × 10− 4. None of the 100 random replicates of
OCD data, permuting the case–control labels, explained a variance
as large as this one (maximum R2 = 1.67%, average R2 = 0.30%,
Supplementary Figure 3A). Removal of the extended MHC region
before the analysis improved the significance and percentage of
variance explained (lowest P= 2.3 × 10− 6 at Pthreshold = 0.05;
R2 = 3.7%; Figure 3b and Supplementary Figure 3B).
Taking into account the 16 675 nearly independent SNPs in

common between PGC-SCZ2 and our OCD data set, and the
assumptions described in methodology, the analysis had ~ 80%
power to detect polygenic risk in our OCD samples if the total
additive genetic variance explained by SNPs in common is one-
fifth of that estimated from common GWAS arrays.
The polygenic risk effect was also detected using the OCD data

generated in this work as discovery sample and the schizophrenia
data of our previous work as target sample, in spite of the reduced

Figure 1. Quantile-quantile plot of the observed versus expected
statistic of the OCD study. OCD, obsessive-compulsive disorder.

Figure 2. Manhattan plot of genetic associations with OCD showing
significance by genomic location. OCD, obsessive-compulsive
disorder.
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number of SNPs in common for the analysis. The most significant
effect (P= 0.0044 at Pthreshold = 0.25) explained 1.16% of the
variance and is based on 821 near-independent SNPs
(Supplementary Figure 4).

DISCUSSION
In contrast to most of the common psychiatric disorders, where
many GWASs have been performed since 2007 including
thousands of samples, there are only two published GWASs on
OCD, the one by the International OCD Foundation Genetic
Collaborative9 and the one by the OCD Collaborative Genetics
Association Study.10 The present work adds new GWAS data to
increase our knowledge on the genetics of OCD. Recently, Davis

et al.11 and Yu et al.12 detected the polygenic risk model in OCD
and identified a shared polygenic risk between OCD and
Tourette's syndrome. Here, we identified for we believe the first
time a shared polygenic risk between OCD and schizophrenia.
The relation between schizophrenia and obsessive-compulsive

symptoms is a well-known feature since the beginning of modern
psychiatry.26 A recent meta-analysis, including 3007 samples from
34 studies, estimated a prevalence of OCD in schizophrenia
spectrum disorders of 12.1% (95% CI = 7.0–17.1%), although there
were a highly significant heterogeneity among studies.4 This
heterogeneity may be considered an evidence of the difficulties in
the study of OCD–schizophrenia co-occurrence. Such difficulties
include the fact that obsessions and delusions are not always easy
to distinguish, obsessions may appear in response to second-

Table 1. Association results for the most significant SNP at those regions with minimal Po1 ×10− 4

SNP Chr: position (hg19) Alleles MAF OR (95% CI) minor allelea P-valuea Genes in region

rs12151009 19:46141845 C/T 0.14 (C) 0.50 (0.37–0.68) 1.34 × 10− 5 EML2
rs12327049 18:72260234 C/T 0.20 (C) 0.56 (0.43–0.73) 2.06 × 10− 5 CNDP1, ZNF407
rs11685700 2:71162996 A/G 0.44 (A) 1.58 (1.28–1.96) 2.40 × 10− 5 VAX2, ATP6V1B1
rs198841 6:26111671 G/T 0.45 (G) 1.56 (1.26–192) 3.27 × 10− 5 MHC, telomeric edge extended class I subregion
rs9523762 13:93331886 A/G 0.41 (A) 0.66 (0.54–0.81) 6.23 × 10− 5 GPC5
rs114371521 6:29717380 C/T 0.27 (C) 0.59 (0.45–0.76) 7.58 × 10− 5 MHC, extended class I subregion/classical

class I subregion boundary

Abbreviations: Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; MDS, multidimensional scaling; MHC, major histocompatibility complex;
OR, odds ratio; SNP, single-nucleotide polymorphism. aBased on logistic regression using 10 MDS dimensions as covariates.

Table 2. Association results for SNPs at DNM3

SNP Position Chr 1 (hg19) Alleles MAF OR (95% CI) minor allelea Pa SNPs in LD (r2)b

rs10914144 171.949.750 T/C 0.16 (T) 0.70 (0.53–0.91) 0.0081
rs17346452 172.053.287 T/C 0.28 (C) 1.10 (0.88–1.37) 0.41
rs678962 172.189.889 T/G 0.22 (G) 1.41 (1.11–1.79) 0.0047 rs4916245 (0.21)
rs4916245 172.206.026 G/A 0.43 (A) 0.70 (0.57–0.86) 0.00078 rs678962 (0.21)
rs1011731 172.346.548 G/A 0.38 (G) 1.26 (1.03–1.55) 0.026

Abbreviations: Chr, chromosome; CI, confidence interval; LD, linkage disequilibrium; MAF, minor allele frequency; MDS, multidimensional scaling; OR, odds
ratio; SNP, single-nucleotide polymorphism. aBased on logistic regression using 10 MDS dimensions as covariates. br2 values higher than 0.05 are present.

Figure 3. Results of the polygenic risk score analysis using the PGC-SCZ2 data as the discovery sample and OCD data as target sample. The x
axis represents the different Pthreshold. Significance of the score is shown above each column. The y axis represents the percentage of variance
explained on the observed scale (Nagelkerke's pseudo-R2). (a) Values including the extended MHC region. (b) Values after removing the
extended MHC region. MHC, major histocompatibility complex; OCD, obsessive-compulsive disorder; PGC-SCZ2, Psychiatric Genetics
Consortium schizophrenia data set.
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generation antipsychotic treatment, patients with two psychiatric
disorders are more likely to seek medical help, there have been
changes in hierarchy rules in the different DSM versions,
and different assessment instruments may lead to different
conclusions.4,27

Recent epidemiological findings using longitudinal nationwide
registers from Denmark identified an increase risk of developing
schizophrenia in people first diagnosed with OCD (incidence rate
ratio = 6.90, 95% CI = 6.25–7.60), and this risk was approximately
twice that of other infancy/adolescent psychiatric disorders such
as autism, attention-deficit/hyperactivity disorder or bulimia
nervosa.5 A parental diagnosis of OCD increased the incidence
rate ratio of schizophrenia in the offspring to 4.31 (95% CI = 2.72–
6.43); and the risk associated to parental diagnosis of OCD was
higher than that associated to parental diagnosis of any
psychiatric disorder other than schizophrenia or schizophrenia
spectrum disorders. Similar results were found in a longitudinal
and multigenerational family study using Swedish Patient
Register.6 Interestingly, OCD-unaffected close relatives of OCD
probands had also an increased risk for schizophrenia, and the
magnitude of the effect increased as the genetic distance
decreased. These facts suggest the existence of shared genetic
susceptibility between OCD and schizophrenia spectrum disor-
ders. Our data confirm its existence, providing an explanation for
the high co-occurrence of OCD and schizophrenia.
The most strongly associated locus in schizophrenia GWAS is

the MHC.21,28 Two of the top results in our GWAS are located in
this region. Nevertheless, linkage disequilibrium analysis indicates
that our top variants are not related to the main variants involved
in schizophrenia susceptibility (Supplementary Figure 5). Further-
more, the polygenic risk is more significant and explains a larger
proportion of variance if the MHC region is removed before the
analysis. These facts strongly suggest that, although immunity
may have a role in both disorders,29 this is not due to shared
susceptibility variants at the MHC region.
There is a long-lasting debate about the validity of considering

a subtype of schizo-obsessive patients in the schizophrenia
spectrum.26,27,30,31 Schizo-obsessive patients seem to have distinct
clinical features, such as higher global, positive and negative
symptom severity, more suicide attempts, earlier age at onset or
specific cognitive deficits.26,32 According to Poyurovsky et al.,26

delineation of distinct subgroups of patients on a putative
schizophrenia–OCD axis has prognostic and treatment
implications, as first-line medications for one disorder can
exacerbate the symptoms of the other. Therefore, future
improvement of the estimation of the shared polygenic risk,
using for instance Bayesian approaches such as the pleiotropy
enrichment33 or the genomic annotation enrichment,34 would be
useful in the stratification of OCD patients with psychotic features,
or schizophrenic patients with obsessive-compulsive symptoms
for more specific treatment.
Interestingly, among the genes at the six different regions at

Po1 × 10− 4, there is a gene, GABBR1, considered one of the top
candidate genes for anxiety disorders based on a convergence
functional genomics approach35 (Supplementary Figure 2). Com-
parison with top results in previous GWASs on OCD revealed an
interesting SNP near the mineralocorticoid receptor NR3C2. This
receptor has a role in the hypothalamo–pituitary–adrenal axis
response to stress,36,37 a process that may be involved in OCD
susceptibility.38,39 The most significant gene in our gene-level
analysis was DNM3, an interesting gene based on its function as
well as pattern of expression. DNM3 is highly expressed in
neurons, where it is involved in clathrin-mediated synaptic vesicle
endocytosis.40 In addition, a role for DNM3 in recycling AMPA
receptors in dendritic spines has been proposed,41 although this
result was not confirmed.40 New studies are needed to clarify
whether DNM3 has any postsynaptic role.42 Several independent
SNPs are responsible for the association of DNM3 in our work,

suggesting allelic heterogeneity (Table 2). This is not uncommon
in psychiatric genetics. For instance, the existence of different risk
alleles at the same locus has been reported previously in the case
of schizophrenia at TCF4 or at the 16p.11.2 locus, among
others.43,44 Our result did not reached experiment-wide signifi-
cance, conservatively set as P= 6.31 × 10− 6, requiring further
testing in additional data sets.
Taking into account the hypothesis that a subgroup of OCD

patients, known as pediatric autoimmune neuropsychiatric
disorders associated with streptococcal infections subgroup,29

might be related to autoimmunity, the identification of two hits at
the MHC in our data may be of relevance. Nevertheless, the
absence of similar evidence in previous GWASs of OCD and
related disorders, as well as the high density of SNPs at the MHC in
the Axiom Exome array, suggest that this may be a chance finding.
The main limit of the study is the reduced sample size,

underpowered to identify SNPs associated at genome-wide
significant level. In addition, we have used a genotyping array
focused on exonic regions instead of genome-wide arrays.
Nevertheless, regarding polygenic risk analysis, once a minimum
size is achieved for the target sample, the main factor in the
detection of polygenic risk is the sample size of the discovery
sample.45 Our discovery sample was the schizophrenia PGC-SCZ2
data set, that includes 49 case–control sets of samples (comprising
34 241 cases and 45 604 controls) and three family-based sets of
samples (1235 parent–affected offspring trios).24 Power analysis
revealed that our study is well-powered to detect polygenic risk,
assuming that additive genetic covariance between schizophrenia
and OCD is similar to that between schizophrenia and major
depression or bipolar disorder, if the total additive genetic
variance explained by SNPs in our data set is at least one-fifth
of that estimated from common GWAS arrays. Bearing in mind
that there is an important enrichment in GWAS signals around
genes,34 this assumption seems reasonable. In fact, the intergenic
SNPs were depleted of association signals more than 10-fold.34

Therefore, polygenic risk analysis may be done on exome arrays,
considerably reducing the cost while being able to resolve
important questions, such as, in our case, the existence of
common SNPs conferring shared risk to schizophrenia and OCD.
In summary, our exome-focused GWASs unveiled DNM3 as an

interesting gene for follow-up studies on the genetic susceptibility
to OCD. In addition, the shared polygenic risk between schizo-
phrenia and OCD was detected for the first time. This common
genetic susceptibility may be partially responsible for the frequent
comorbidity of both the disorders, explaining the epidemiological
data on cross-disorder risk.
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