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Rare damaging variants in DNA repair and cell cycle
pathways are associated with hippocampal and cognitive
dysfunction: a combined genetic imaging study in
first-episode treatment-naive patients with schizophrenia
Z Yang1,6, M Li1,2,6, X Hu3, B Xiang1, W Deng1,2, Q Wang1,2, Y Wang1, L Zhao1, X Ma1,2, PC Sham4, G Northoff5 and T Li1,2

Schizophrenia is a complex neurodevelopmental disorder where changes in both hippocampus and memory-related cognitive
functions are central. However, the exact relationship between neurodevelopmental-genetic factors and hippocampal-cognitive
dysfunction remains unclear. The general aim of our study is to link the occurrence of rare damaging mutations involved in
susceptibility gene pathways to the structure and function of hippocampus in order to define genetically and phenotypically based
subgroups in schizophrenia. In the present study, by analyzing the exome sequencing and magnetic resonance imaging data in 94
first-episode treatment-naive schizophrenia patients and 134 normal controls, we identified that a cluster of rare damaging variants
(RDVs) enriched in DNA repair and cell cycle pathways was present only in a subgroup including 39 schizophrenic patients.
Furthermore, we found that schizophrenic patients with this RDVs show increased resting-state functional connectivity (rsFC)
between left hippocampus (especially for left dentate gyrus) and left inferior parietal cortex, as well as decreased rsFC between left
hippocampus and cerebellum. Moreover, abnormal rsFC was related to the deficits of spatial working memory (SWM; that is known
to recruit the hippocampus) in patients with the RDVs. Taken together, our data demonstrate for the first time, to our knowledge,
that damaging rare variants of genes in DNA repair and cell cycle pathways are associated with aberrant hippocampal rsFC, which
was further relative to cognitive deficits in first-episode treatment-naive schizophrenia. Therefore, our data provide some evidence
for the occurrence of phenotypic alterations in hippocampal and SWM function in a genetically defined subgroup of schizophrenia.
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INTRODUCTION
Schizophrenia, which affects ~ 1% of the population, is a devastat-
ing mental disorder characterized by a range of symptoms
including abnormal perception, thinking, cognitive, emotion and
social behavior and so on. It is widely accepted that a complex
interplay of genetic and environmental factors contributes to
the etiology of schizophrenia,1 which therefore is regarded a
neurodevelopmental disorder.2,3 During the last decades,
researchers have made significant strides in teasing apart
schizophrenia’s convoluted genetic vulnerabilities. These included
initial epidemiology studies within family, twin and adoption,4,5

and then linkage studies mainly using microsatellite markers6 to
candidate genes and genome-wide association studies.1

Recently, genome-wide association studies identified that some
common variants with small to moderate effects as well as rare
but gene-disrupting copy number variants are significantly
associated with schizophrenia.1–3,7 Studies using the whole-
exome sequencing technologies have also revealed that rare
damaging nonsense and loss-of-function variants and/or de novo
variants conferred higher risk to schizophrenia. However, to
validate these variants in population remains challenging because

of the low frequency and effect sizes.8–13 Converging evidence
from studies of common and rare variants identified broad classes
of genes and pathways involved in calcium ion channel, synaptic
plasticity and neurodevelopment processes,9,12–14 chromatin
remodeling and synaptic network.12,15 Although these results
show significant leads for identifying susceptibility genes of
schizophrenia, the exact and specific genetic factors contributing
to the abnormal neurodevelopment processes in schizophrenia
remain inconclusive.
A key brain region in schizophrenia is the hippocampus16,17

where reduced volume in especially left (rather than right)
hippocampus18 as well as resting-state functional connectivity
(rsFC) differences to other regions19,20 have been observed. This
corresponds to the observation of neuropsychological deficits,
especially dysfunctional spatial working memory (SWM) and
logical memory in patients with schizophrenia.21–23 However,
the exact linkage between hippocampus and memory deficits on
the one hand and underlying genetic-neurodevelopmental
changes on the other hand remain unclear.
The general aim of our study was to conduct multilevel genetic

imaging cognitive investigation in a unique large sample of first-
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episode treatment-naive schizophrenic patients. For that purpose,
we combined genetic analysis of neurodevelopmentally related
genes with structural and functional imaging of the hippocampus
and related cognitive measures. Specifically, genetic investigation
in schizophrenic (and healthy) subjects served to determine
specific genetic neurodevelopmentally relevant subtypes, which
were then further characterized phenotypically using structural
and functional hippocampal imaging as well as related cognitive,
that is, memory measures.
The first specific aim was to unravel unique rare damaging

variants (RDVs) in a unique sample of first-episode treatment-
naive schizophrenia patients relative to healthy controls by using
whole-exome sequencing approach, and then apply Gene
Ontology (GO) enrichment strategy to identify gene pathways.
Consequently, we focused on the RDVs in DNA repair and cell
cycle pathways for the following reasons. First, the majority of
these genes in DNA repair and cell cycle pathways are most highly
expressed in various brain regions, such as hippocampus;8–13

previous studies suggested indeed that genes involved in the
regulation of cell cycle and DNA repair significantly influence the
hippocampus function in schizophrenia.24–28 However, how the
expression profile of these genes in cell cycle and DNA repair
pathways map spatially and temporally during the critical
neurodevelopmental stage in specifically the hippocampus in
schizophrenia remains unclear.8–13 We therefore hypothesized
that we could distinguish two genetic subtypes in schizophrenia,
one with RDVs and one without RDVs, as related to hippocampal
developmental function.
On the basis of these considerations, the second specific aim

consisted of measuring especially rsFC (as controlled for by
structural volume) of the hippocampus in the same patients using
brain magnetic resonance imaging (MRI), and to explore the
relationship among genes, rsFC of the hippocampus and related
neurocognitive functions. We hypothesized different hippocampal
rsFC patterns in those schizophrenic patients with RDVs when
compared with the ones without RDVs. To further underline
hippocampal involvement, we included cognitive measures like
spatial and logical memory that have been shown to be
associated with specifically hippocampal function.29 We hypothe-
sized that schizophrenic patients with RDVs may have different
memory-related cognitive functions relative to schizophrenic
patients without RDVs.
There are several unique advantages in the present study. First,

this is the first investigation, to our knowledge, to study the
contribution of RDVs to the imaging and neurocognitive
phenotype of schizophrenia. Second, we recruited first-episode
treatment-naive patients with schizophrenia to rule out the
confounding factors of chronicity of the illness and treatment
effects on neuroimaging and neurocognitive assessments. Third,
extending limits on the power to identifying specific loci
responsible for the disorder,30,31 we improve the definition of
the phenotype and/or reducing the phenotypic complexity of
schizophrenia for genetic studies by combining the latter with
cognitive (for example, neuropsychological) and neural (for
example, neuroimaging measures) that are more closely related
to the phenotype.

MATERIALS AND METHODS
Samples
There were total 234 participants including 97 first-episode treatment-
naive patients with schizophrenia and 137 healthy controls. Patients with
schizophrenia were recruited at the Mental Health Centre of the West
China Hospital, Sichuan University, China. Healthy volunteers were
recruited from the community. The study was approved by the ethical
committee in West China Hospital of Sichuan University. All participants
were Han Chinese and provided written informed consent for their
participation in this study.

Clinical and memory assessments
All patients were interviewed by a trained psychiatrist using the Structured
Clinical Interview for the DSM-IV (SCID).32 DSM-IV criteria for schizophrenia
were used for diagnosis. Those who were initially diagnosed with
schizophrenia from psychosis due to the illness duration (less than
6 months) were followed up for at least 6 months to meet the DSM-IV
criteria for schizophrenia. Psychopathology associated with schizophrenia
was evaluated using the positive and negative syndrome scale.33 Healthy
controls were screened with the SCID-P non-patient version for the lifetime
absence of psychiatric illnesses. Subjects with the existence of organic
brain disorders, alcohol or drug abuse, pregnancy or any severe physical
illness, such as brain tumor or epilepsy, were excluded from the study.
Schizophrenic patients and healthy controls completed SWM test in the

Cambridge Neuropsychological Test Automated Battery (CANTAB; http://
www.cantab.com) and immediate and delayed (30 min) logical memory
subtest of the Wechsler Memory Scale,34 respectively.

MRI data acquisition
Overall, 74 healthy controls and 74 patients with schizophrenia underwent
structural MRI scans on a Signa 3.0-T scanner (General Electric, Medical
Systems, Milwaukee, WI, USA), whereas 65 healthy controls and 55 patients
were scanned to obtain brain resting-state functional MRI in the
Department of Radiology at West China Hospital. Detailed procedures of
scanning are presented in Supplementary Information, sections 7 and 8.

Sequencing and variant calling
All samples were sequenced using the TruSeq Exome Enrichment Kit (San
Diego, CA, USA) optimized for IlluminaHiSeq2000 sequencing. The pipeline
of raw data processing and variants calling is present in Supplementary
Figure 2, which includes using Burrows-Wheeler Alignment tool35 alignment
reads to the reference human genome (hg19); Picard tools (http://picard.
sourceforge.net/) to collect quality statistics and fix read group problem;
GATK36 for IN/DEL alignment; Samtools (http://samtools.sourceforge.net/) to
filter out low-quality reads; and GATK to perform SNP and INDEL calling.
Validation of selected variants was conducted by Sanger sequencing.

Data analysis
We use PLINK37 and KGGSeq (http://statgenpro.psychiatry.hku.hk/limx/
kggseq/doc/UserManual.html)38 to perform individual and variants' quality
control. We use software KGGSeq to integrate databases to annotate the
minor allele frequency of variants, including Hapmap and 1000 Genome.
The cutoff frequency was set at 0.1% for rare variance. Methods
implemented in PLINK/Seq (http://atgu.mgh.harvard.edu/plinkseq/) were
employed for single site and gene-based association analysis. After
filtering, we performed GO enrichment analysis in 2895 mutations within
2442 genes in cases and 4484 mutations within 3481 genes in controls
using GeneMANIA (http://www.genemania.org/).The results of enrichment
indicated that two GO (GO: 0006281 and GO:0007049) only present in
cases. We identified more mutations in controls (that is, 2895 mutations
within 2442 genes in schizophrenic patients and 4484 mutations within
3481 genes in healthy controls) mainly because, in present study, the
sample size in controls (134) is bigger than cases (94). The bigger sample
size in controls provides the higher chance to identify mutations. The
weighted gene coexpression network analysis (WGCNA)39 was used for
expression profile, all of which was carried out by the WGCNA R package.40

All of Brain expression data from different points in life were acquired from
a published study (The Human Brain Transcriptome).41 Sample size and
statistical power were conducted by the statistical software, Exome Power
Calculation (http://darth.ssg.uab.edu:8080/epc/).
rsFC of bilateral hippocampus and six hippocampal subregions was

calculated by seed-to-voxel analysis using Statistical Parametric Mapping
(SPM8, http://www.fil.ion.ucl.ac.uk/spm) and data-processing assistant for
resting-state functional MRI from resting-state functional MRI
(Supplementary material). The time courses averaged over all voxels of
each hippocampus and six hippocampal subregions were extracted.
Pearson's correlation coefficients (r) between time courses of left/right
hippocampus and all other voxels were calculated and transformed to
Fisher’s z-scores to derive rsFC maps. Thus, 67 349 pairs of functional
connectivity were calculated between right hippocampus and the other
voxels of the brain, whereas 67 370 pairs of functional connectivity were
computed between left hippocampus and the other voxels of the brain.
Statistical tests on the functional connectivity maps of hippocampus
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between patients with schizophrenia and healthy controls were performed
using analysis of covariance with sex, age and education years, and volume
of hippocampus as covariates in SPM8. The significant threshold was set at
Po0.05, corrected for multiple comparisons based on Monte Carlo
simulations. Subsequently, the mean Z-value of each cluster with a
significant functional connectivity (FC) difference was extracted and were
compared by analysis of variance followed by post hoc test (least significant
difference) in SPSS 18.0, across patients with RDVs, patients without RDVs
and healthy controls (SPSS, Chicago, IL, USA), significant level of P values
were set at less than 0.05. Analysis of covariance followed by post hoc test
were applied to test the differences of functional connectivity and memory
functions among patients with RDVs, patients without RDVs and healthy
controls. Partial correlation analysis was used to analyze the relationship
between the functional connectivities of bilateral hippocampus (and six
hippocampal subregions) and cognitive, that is, memory functions, with age,
sex and education years (and structural hippocampal volume) as covariance
(Supplementary material). Furthermore, Fisher's Z-transformation was used
to transform the correlation coefficients(r value) to Z-score, and Z-test was
used for testing the differences of correlations between groups. Corrections
for multiple comparisons were applied as appropriate.

RESULTS
Genetic investigation of single nucleotide variants and In/Dels
In the current study, 234 subjects (97 patients with first-episode
treatment-naive schizophrenia and 137 healthy controls) were
collected for exome sequencing to identify those alleles, genes or
gene networks that harbor rare coding variants of moderate or large
effect on risk for schizophrenia (Supplementary Information, sections
1). Six samples were removed with low quality along with likely
contamination after quality control and variant calling (Supple-
mentary Information, sections 2 and 3). Quality control of all variants
was conducted by in-house software KGGSeq.38 The final data set
comprised 94 schizophrenic cases and 134 controls. Detailed
demographic and clinical information, as well as summary for
sequencing quality, was shown in Table 1. There were no significant
differences in age, sex distribution and years of education (Table 1).
On average, we obtained 7.67 Gb of mappable sequence data

per individual after exome enrichment, targeting ~ 62 Mb from
exons and their flanking regions. In all, 99.75% of the reads were

properly aligned to the reference genome. Our median read depth
is ~ 45 × , which is higher than the estimated average depth (33 × )
required for highly accurate downstream heterozygous variant
detection. In addition, 88.60% of the captured target exons were
covered by high-quality genotype calls at least 10 times to ensure
good detection sensitivity.42 Technical sequencing metrics,
including total coverage, proportion of deeply covered targets
and initial mapping reads, indicated no difference between
schizophrenic patients and healthy controls (Table 2).
Importantly, we found that schizophrenic patients enriched

significantly more nonsynonymous and coding variants than
controls (Table 2, Po0.001). Allele counts between schizophrenic
cases and healthy subjects did not show significant difference after
adjustment (Supplementary Information, section 4). We performed
two series of gene-based tests: a one-sided burden test of an
increased rare allele rate in cases (https://atgu.mgh.harvard.edu/
plinkseq/) and the CALPHA test.43 Both tests indicated that gene
NRK (Nik Related Kinase, NM_198465, chrX: 105132399...105199499)
had increased rare allele rate in cases (P⩽1.0 ×10−6). However, even
according to the most stringent Bofferroni correction (0.05-
/20000=2.5×10−6, 20 000 are the total gene number; the results
of NRK gene still present significant statistical difference.44 Nine rare
variants within NRK present in 13 schizophrenic patients, but not in
healthy controls (Supplementary Table 1).
NRK is a protein-coding gene, which is associated with

hypermobility syndrome, hyperinsulinemic and hypoglycemia.
GO annotations related to this gene include protein serine/
threonine kinase activity and small GTPase regulator activity.
Previous studies did not denote any association between NRK and
schizophrenia; however, an important paralog of this gene is
TAOK2, which is essential for dendrite morphogenesis and has
been associated with autism spectrum disorder.45

Next, we adopted an alternative strategy in which we
studied RDVs. Previous reports have shown that RDVs have a
higher likelihood of having a role in schizophrenia (Supplementary
Information, section 5). After applying several filters (Supplemen-
tary Figure 1), 2895 mutations within 2442 genes in schizophrenic
patients and 4484 mutations within 3481 genes in healthy
controls were investigated with GO enrichment at the gene-
based level using GeneMANIA. There were 505 and 952 pathway
(or GO) terms enriched in cases and controls separately, but 56
RDVs in 42 genes within two pathways of DNA repair (GO:
0006281, 31 RDVs in 20 genes) and cell cycle (GO: 0007049, 25
RDVs in 22 genes) were present only in 39 schizophrenic patients
(Supplementary Table 2 and Table 3), which also indicated a
significant q-value. There are 60 control-only categories that were
not statistical significant. In the present study, we focused on
pathways damaged in cases only. We identified the developmental

Table 1. Statistic of demographic data for all samples

Case (N= 94) Control (N= 134) P-value

Gender (male/female) 46/48 71/63 0.64
Age (mean± s.d) 23.94± 6.92 24.39± 10.95 0.37
Education (mean± s.d) 12.79± 3.15 13.50± 2.89 0.07

Table 2. Summary for sequencing quality

Total (N= 228) Case (N=94) Control (N= 134) P-value

Total reads 75 918 287 76 078 777 75 805 704 0.45
Total yield (bp) 7 667 746 978 7 683 956 451 7 656 376 154 0.45
Initial mappable reads (%) 75 731 958 (99.75%) 75 897 153 (99.76%) 75 616 076 (99.75%) 0.44
1× , Target genotypes (%) 58 570 040 (94.34%) 58 500 027 (94.23%) 58 619 153 (94.42%) 0.08
10× , Target genotypes (%) 55 003 180 (88.60%) 54 965 986 (88.53%) 55 029 271 (88.64%) 0.33
Mean target depth 44.95 46.54 43.84 0.009
SNPs 74 413 74501 74351 0.25
Coding SNPs 20 229 20157 20280 o0.001
Synonymous SNPs 10 491 10457 10516 0.001
Nonsynonymous SNPs 9220 9185 9245 o0.001
Indels 7645 7664 7632 0.19
Coding indels 383 378 386 o0.001

Abbreviation: SNP, single-nucleotide polymorphism. Bold values show significant statistic difference.
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expression profile of 22 genes in cell cycle pathway and 20 genes
in DNA repair pathway (Supplementary Information, section 6),
which show high expression during the stage of brain develop-
ment before birth, with a sharp decrease in expression after birth
in hippocampus. The expression profile obtained by WGCNA is
presented in Figure 1.

Clinical characterization and hippocampal characterization in
schizophrenic patients with or without RDVs
Clinical characterization. Comparisons here focus on schizophre-
nic and healthy subjects as well as on the two genetic-based
subgroups with schizophrenia, that is, patients with RDVs and those
without RDVs. There were no significant differences in age and sex
among patients with RDVs, patients without RDVs and healthy
controls (Table 4); however, the education years in patients without
RDVs are significantly lower than those in patients with RDVs and
controls. In addition, there were no significant differences in the

duration of illnesses and severity of clinical symptoms between the
two genetic-based patient subgroups.

rsFC of hippocampus
Functional connectivity of bilateral hippocampus: Using analysis
of covariance with sex, age, education and the hippocampal
volume as covariances, we found that left hippocampus showed
significant difference in rsFC with left inferior parietal cortex
(Montreal Neurological Institute (MNI) atlas coordinates: x=− 36,
y=− 56, z= 43; voxels = 42), and the right cerebellar posterior lobe
(MNI coordinate: x= 9, y=− 75, z=− 45; voxels = 40) between the
three groups at Po0.05 (corrected for multiple comparisons
based on Monte Carlo simulations; Figure 2a). Post hoc test
indicated that, compared with healthy controls and patients
without RDVs, patients with RDVs demonstrated increased rsFC
between left hippocampus and left inferior parietal cortex, as well
as decreased rsFC between left hippocampus and right cerebel-
lum posterior lobe. In contrast, there was no significantly different
rsFC between healthy controls and patients without RDVs
(Figure 2b). Unlike in the left hippocampus, there were no
significant rsFC differences in the right hippocampus with other
brain regions among the three groups.
rsFC of the six hippocampal subregions: Analysis of covariance
showed significant differences in rsFC between the left dentate
gyrus (DG) and left inferior parietal cortex (MNI coordinate:
x=− 36, y=− 54, z= 42; voxels = 77), between right DG and left
inferior parietal cortex (MNI coordinate: x=− 48, y=− 54, z= 48;
voxels = 46) as well as posterior cingulate cortex (MNI coordinate:
x=− 6, y=− 33, z= 30; voxels = 33), between left CA and right
calcarine (MNI coordinate: x= 24, y=− 93, z= 0; voxels = 68),
between right CA and right calcarine (MNI coordinate: x= 21,
y=− 93, z= 3; voxels = 68) as well as left fusiform (MNI coordinate:
x=− 27, y=− 54, z=− 3; voxels = 32), between left SC and orbital
medial frontal cortex (MNI coordinate: x= 3, y= 30, z=− 12;
voxels = 37) among the three groups at Po0.05 (corrected for
multiple comparisons based on Monte Carlo simulations).
Post hoc tests indicated that increased rsFC between left DG and

left inferior parietal cortex was only found in patients with RDVs,
whereas increased rsFC between right DG and left inferior parietal
cortex as well as posterior cingulum was detected in both patients
group. rsFC of CA was significantly decreased in patients without
RDVs and a trend decreased in patients with RDVs. Decreased rsFC
of left SC and orbital medial frontal cortex was found only in
patients without RDVs (Table 3, Figure 3).

Relationships between hippocampal rsFC and memory
Compared with healthy controls, both patient groups showed
significant impairments in SWM as well as in immediate and

Table 3. Aberrant functional connectivity of hippocampus and hippocampal subregions in patients group

Brain region Peak MNI (x y z) Peak Z-score Cluster size

Hippocampus_L Inferior parietal lobule_L − 36 − 56 43 6.8463 42
Cerebellar posterior lobe 9 − 75 − 45 7.3691 40

Hippocampal subregions
DG_L Inferior parietal lobule_L − 36 − 54 42 10.7382 77
DG_R Inferior parietal lobule_L − 48 − 54 48 8.2654 46

Posterior cingulate cortex − 6 − 33 30 7.0922 33
CA_L Calcarine_R 24 − 93 0 11.1746 68
CA_R Calcarine_R 21 − 93 3 13.0346 97

Fusiform extent to lingual_L − 27 − 54 − 3 9.205 32
SUB_L Medial frontal cortex 3 30 − 12 7.1874 37

Abbreviations: CA, cornuammonis; DG, dentate gyrus; L, left; MNI, Montreal Neurological Institute; SC, subicular complex; R, right. Note: The statistical
significance threshold for main effect for diagnosis of functional connectivity of each hippocampal subregions was set at Po0.05, corrected for multiple
comparisons based on Monte Carlo simulations.

Figure 1. The developmental expression profile of 22 genes in the
cell cycle pathway and 20 genes in the DNA repair pathway in
hippocampus. Following colors for different Gene Ontology (GO)
categories were used: red for DNA repair and blue for cell cycle, and
a smooth curve with confidence interval (gray range). The
expression profiles show high expression during the stage of brain
development before birth, with a sharp decrease in expression
after birth.
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delayed logical memory (Supplementary Figure 4). No significant
differences in these measures were observed between the two
genetic-based subgroups in schizophrenic patients, that is, with
and without RDVs (Supplementary Figure 4). Despite the lack of
memory-related differences between the two genetic subgroups,
we nevertheless observed different correlation patterns between
rsFC and cognitive deficits. Errors in SWM were positively
correlated to rsFC between left DG and left inferior parietal cortex
in schizophrenic patients with RDVs (r= 0.670, uncorrected
P= 0.034), whereas they were negatively correlated to rsFC
between left DG and left inferior parietal cortex in healthy
controls (r=− 0.373, uncorrected P= 0.032; Figure 4). However,
after correction for multiple tests, none of correlations above
remains significant statistically, probably because of the small
sample size. No correlation was observed in schizophrenic
patients without RDV (r=− 0.102, uncorrected P= 0.739).
We then compared the correlation coefficient between each of

the two groups by using Z-test. We found that the difference in
correlations was statistically significant between schizophrenic
patients with RDVs and healthy controls (Z= 3.331,
P= 8.65 × 10− 4), as well as between patients with RDVs and those
without RDVs (Z= 2.171, P= 0.030) after Bonferroni correction. No

significant difference was found between patients without RDVs
and healthy controls (Z= 0.884, P= 0.377).

DISCUSSION
Investigating a unique large sample of first-episode treatment-
naive schizophrenic patients, we first identified that 56 RDVs in 42
genes within two pathways implicated in DNA repair and cell cycle
were present only in a subgroup including 39 schizophrenic
patients, whereas the remaining schizophrenic patients (that is,
those without RDVs) as well as healthy subjects did not show
these RDVs. Further analysis revealed that these genes are highly
expressed during the stage of brain development before birth,
with a sharp decreased expression after birth in specifically the
hippocampus. Second, we identified a unique hippocampus rsFC
pattern in schizophrenic patients with RDVs, that is, increased rsFC
between left hippocampus (especially for left dentate gyrus) and
left inferior parietal cortex, as well as decreased rsFC between the
left hippocampus and cerebellum. Subsequently, we found a
tentative significant correlation of altered hippocampal rsFC with
spatial memory deficits in schizophrenic patients with RDVs.

Table 4. Sample summary and test scores for imaging

Category (mean± s.d.) Cases with RDVs (n= 26) Cases without RDVs (n= 48) Control (n= 74) df F/t/λ/value P-value

Age (years) 25.69± 7.2 23.00± 6.92 23.23± 6.52 2 1.54 0.22
Gender (male/female) 13/13 24/24 41/33 2 0.43 0.81
Years of education 13.42± 3.19 11.90± 3.08 13.44± 3.24 2 3.72 0.03
Duration of disease 3.5 2 72 0.57 0.57
PANSS total 87.08± 17.16 88.06± 12.55 71 − 0.28 0.78
PANSS positive 23.65± 8.27 24.34± 5.55 37.72 − 0.38 0.71
PANSS negative 18.69± 8.50 18.87± 6.75 42.68 − 0.09 0.93
PANSS general psychopathology 44.73± 8.84 44.85± 7.47 71 − 0.06 0.95
Logical memory immediate 6.16± 3.31 7.84± 4.62 12.94± 3.89 2 45.47 o0.001
Logical memory delay 4.09± 3.19 5.65± 4.39 11.02± 4.12 2 44.51 o0.001
Hippocampus L milliliter 2534.70± 291.31 2512.42± 239.22 2722.55± 301.57 2 7.42 0.001
Hippocampus R milliliter 2573.12± 305.71 2559.78± 262.83 2741.44±289.61 2 5.63 0.004

Abbreviations: L, left; PANSS, Positive and Negative Syndrome Scale; R, right; RDV, rare damage variant. Note: values are mean (s.d.).

Figure 2. Aberrant resting-state functional connectivity (rsFC) of the left hippocampus among three groups. (a) Left inferior parietal cortex
and right cerebellum posterior lobe showed significantly different rsFC with left hippocampus among three groups. The statistical significance
threshold was set at Po0.05 and corrected for multiple comparisons based on Monte Carlo simulations, for main effect for diagnosis of
functional connectivity (FC) of left hippocampus. (b) ANCOVA with sex, age, education and the hippocampal volume as covariances. rsFC
between left hippocampus and left inferior parietal cortex is increased, whereas rsFC between left hippocampus and cerebellum is decreased
only in schizophrenic patients with rare damage variants (RDVs). The statistical significance threshold was set at Po0.05, post hoc test by least
significant difference. ANCOVA, analysis of covariance; HIP, hippocampus; IPL, inferior parietal cortex; L, left; PCL, cerebellum posterior lobe;
R, right. Notes: s.e. for all figures.
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Schizophrenic patients harbor more than threefolds rare DNA
mutations, especially in those with early onset of illness.14 More de
novo mutations were found recently at genomic hotspots,
including chromosomes 1q21.1, 15q13.3, 16p13.1 and 22q11.2.46

Studies in larger sample sets demonstrated a polygenic burden
that increases the risk for schizophrenia, those genes primarily
comprising many ultrarare nonsense mutations distributed across
many genes, which mainly involved in neurodevelopment
pathways.13 Considering the low frequency and larger effect sizes
of rare DNA mutations in current studies, we focused here on the
case-unique RDVs, and found that these variants enriched in two
pathways, for example, cell cycle regulation and DNA repair. Our
finding in current study supported that disturbances of cell cycle
regulation and DNA repair in post-mitotic neurons have been
implicated in development of psychotic disorders.25,47–49

Importantly, most of the genes enrichment in these two
pathways was detected to be highly expressed in the hippocam-
pus in the fetal stage, with the expression level sharply decreasing
after birth. On the basis of this finding, we could hypothesize that
individuals possessing mutations in these two particular pathways
may be more prone to develop schizophrenia later on because of
the critical gene expressions during their fetal development. More
interestingly, such hypothesis genetically specifies and conforms
well with the neurodevelopmental model that emphasizes insults

as early as late-first or early-second trimester as central for
pathological activation of neural circuits in schizophrenia14,50,51

Our finding of the RDVs in these two pathways hints upon
alterations in cell cycle regulation and the DNA repair in
schizophrenic patients during embryogenesis, although the
underlying mechanisms are still in explicit. Study from Katsel
et al. suggested abnormal patterns of cell cycle gene and protein
expression in schizophrenia, which may contribute to the
oligodendroglial deficits observed in schizophrenia.52 This could
lead to changes in brain development and make the brain more
susceptible to environmental risk factors, with downstream effects
on neural progenitor proliferation and differentiation.53

In the present study, we detected aberrant functional con-
nectivity of left hippocampus with inferior parietal lobe, posterior
cingulate cortex, visual cortex and medial frontal gyrus in
schizophrenic patients with RDVs. In contrast, schizophrenic
patients without RDVs did not show such pattern. This suggests
that the aberrant resting-state functional connections of left
hippocampus in schizophrenia might likely be of neurodevelop-
mental origin (rather than of neurodegenerative origin or affected
by antipsychotics with the latter being excluded here anyway
because of the fact that our sample of treatment-naive). Most
interesting, we found that increased functional connectivity of left
hippocampus (especially for the dentate gyrus) with left inferior

Figure 3. Aberrant resting-state functional connectivity (rsFC) of hippocampal subregions. (a) The brain map of aberrant rsFC with
hippocampal subregions among three groups. The statistical significance threshold was set at Po0.05, corrected for multiple comparisons
based on Monte Carlo simulations, for main effect for diagnosis of functional connectivity (FC) of the different hippocampal subregions.
(b) rsFC between left DG and left IPL increased only in schizophrenic patients with rare damage variants, whereas decreased rsFC of left SC with
MFG was only found in schizophrenic patients without rare damage variants. The statistical significance threshold was set at Po0.05, post hoc test
by least significant difference. CA, cornuammonis; Cal, calcarine; DG, dentate gyrus; Fus, fusiform; IPL, inferior parietal cortex; L, left; MFG,
medial frontal cortex; PCC, posterior cingulate cortex; R, right; RDV, rare damaging variant; SC, subicular complex. Notes: s.e. for all figures.
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parietal cortex and decreased FC between left hippocampus and
cerebellum were only found in schizophrenic patients with RDVs.
This further underlines the neurodevelopmental impact of RDV on
phenotypic makers like the left hippocampal rsFC and its high
relevance for schizophrenia. The exact mechanisms mediating the
transition from early prenatal RDVs' occurrence to hippocampal
rsFC abnormalities during the later outbreak of schizophrenia
remain unclear though.
Increased functional connectivity between left dentate gyrus

and left inferior parietal cortex was correlated with more errors of
SWM in schizophrenic patients with RDVs, whereas no such
correlation was found in schizophrenic patients without RDVs (and
opposite, that is, negative) and in healthy subjects. The dentate
gyrus has been regarded as one of a few brain structures owning
high rates of adult neurogenesis and has a critical role in resolving
new memories and spatial memory.54–56 A recent study demon-
strated that the inferior parietal cortex is involved in spatial
perception and spatial orientation in particular and spatial
functions in general (the ‘where’).52 In addition, the inferior
parietal cortex is also the target of output from hippocampus.57

The findings in the present study thus provided direct evidence
that aberrant increased FC of left dentate gyrus with inferior
parietal cortex might contribute to the severity of SWM deficits in
schizophrenic patients with RDVs. Above all, our results provide a
link among RDVs, dentate gyrus dysfunctional resting-state
connectivity and SWM deficits in a genetic-based neurodevelop-
mental subgroup of patients with schizophrenia.
However, several limitations must be born in mind when

interpreting our results. First, the sample size of the present study
is relatively small for genetic study, which might be lack of the
power to detect significant association signal between cases and
controls. However, we adopt an alternative strategy for filtering
rare variants and then enrich to find two special pathways.
Second, not all the subjects underwent the memory test in both
the two-patient groups, which could have affected the results of
correlation analysis between imaging and cognitive data. For-
tunately, there were no significant differences in clinical profiles
between patients with RDVs who underwent cognitive tests and
those who did not within both groups. Third, considering the

small sample size of patients who underwent the cognitive tasks,
the correlation analysis between neuroimaging and neurocogni-
tion remained uncorrected for multiple comparisons, which might
lead to false-positive results.
In sum, to our knowledge, our findings demonstrate for the first

time the presence of genes implicated in DNA repair and cell cycle
pathways and related specifically to hippocampal development in a
subgroup of first-episode treatment-naive schizophrenic patients.
Importantly, the presence of these genes directly had an impact on
or modulated phenotypic expression as hippocampal rsFC and
related spatial memory function in this subgroup. Hence, our
findings bridge the gap from genes regulating hippocampal
development before birth to corresponding phenotypical markers
like rsFC of hippocampus and associated cognitive, that is, SWM
function at the outbreak of first-episode schizophrenia.
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