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The genetic overlap between mood disorders and
cardiometabolic diseases: a systematic review of
genome wide and candidate gene studies
AT Amare1, KO Schubert1,2, M Klingler-Hoffmann3, S Cohen-Woods4 and BT Baune1

Meta-analyses of genome-wide association studies (meta-GWASs) and candidate gene studies have identified genetic variants
associated with cardiovascular diseases, metabolic diseases and mood disorders. Although previous efforts were successful for
individual disease conditions (single disease), limited information exists on shared genetic risk between these disorders. This article
presents a detailed review and analysis of cardiometabolic diseases risk (CMD-R) genes that are also associated with mood
disorders. First, we reviewed meta-GWASs published until January 2016, for the diseases ‘type 2 diabetes, coronary artery disease,
hypertension’ and/or for the risk factors ‘blood pressure, obesity, plasma lipid levels, insulin and glucose related traits’. We then
searched the literature for published associations of these CMD-R genes with mood disorders. We considered studies that reported
a significant association of at least one of the CMD-R genes and ‘depression’ or ‘depressive disorder’ or ‘depressive symptoms’ or
‘bipolar disorder’ or ‘lithium treatment response in bipolar disorder’, or ‘serotonin reuptake inhibitors treatment response in major
depression’. Our review revealed 24 potential pleiotropic genes that are likely to be shared between mood disorders and CMD-Rs.
These genes include MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4,
PPP1R1B, APOE, CRY2, HTR1A, ADRA2A, TCF7L2, MTNR1B and IGF1. A pathway analysis of these genes revealed significant pathways:
corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-mediated or G-protein coupled receptor signaling, axonal guidance
signaling, serotonin or dopamine receptors signaling, dopamine-DARPP32 feedback in cAMP signaling, circadian rhythm signaling and
leptin signaling. Our review provides insights into the shared biological mechanisms of mood disorders and cardiometabolic
diseases.
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INTRODUCTION
Major depressive disorder (MDD), bipolar disorder (BPD), coronary
artery diseases, type 2 diabetes and hypertension are amongst the
major causes of disability, morbidity and mortality worldwide.1,2

Although each of these conditions independently represent a
major burden facing the health-care systems,1–3 their co-occurrence
(co-morbidity) aggravates the situation and represents a challenge
in psychosomatic medicine.4 Epidemiologically, MDD and BPD are
bi-directionally associated with cardiometabolic diseases.5,6 A
similar pattern of association has been shown in the relationship
between the pharmacological treatment of mood disorders and
cardiometabolic diseases. For instance, the use of antidepressants
and mood stabilizers is associated with an increased risk of
cardiometabolic abnormalities7 and cardiac medications might
increase the risk of mood disorders.8 One explanation for these
relationships could be the presence of pleiotropic (common)
genes and shared biological pathways that function as a hub to
link the disorders. Potential common biological mechanisms
underlying mood disorders and cardiometabolic disease comor-
bidity have been proposed, including altered circadian rhythms,9

abnormal hypothalamic–pituitary–adrenal axis (HPA axis)
function,10 imbalanced neurotransmitters11 and inflammation.6

However, the molecular drivers of these commonly affected
mechanisms remain poorly understood.

THE GENETICS OF MOOD DISORDERS AND CARDIOMETABOLIC
DISEASES
Major depression, bipolar disorder and cardiometabolic diseases
are highly heritable and they are caused by a combination of
genetic and environmental factors. Genetic factors contribute to
31-42% in MDD,12 59–85% in BPD,13,14 30–60% in coronary artery
diseases,15 26–69% in type 2 diabetes,16,17 24–37% in blood
pressure,18 40–70% in obesity19 and 58–66% in serum lipids
level.20 Moreover, twin studies have revealed relatively modest
genetic co-heritabilities (genetic correlations) between mood
disorders and the different cardiometabolic abnormalities sug-
gesting the influence of pleiotropic genes and shared biological
pathways among them. For instance, the genetic correlation of
depression with hypertension is estimated to be 19%, and
between depression and heart disease is about 42%.21 The
genetic correlation of depressive symptoms with plasma
lipids level ranges from 10 to 31%,22 and 12% of the genetic
component for depression is shared with obesity.23 Furthermore,
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gene–environment interactions can contribute to the cardiometa-
bolic and mood disorders link. The interactions of genetic factors
with stress, physical exercise, diet and lifestyle can influence the
progression and pathogenesis of both cardiometabolic and mood
disorders (Figure 1).24–26 These environmental factors might for
example, modulate the expression of genes involved in the
cardiometabolic pathways and a variety of pathways in the brain.
Although it is at infancy stage, the ‘microbiome’ era has also
revealed a range of complex interactions between environmental
factors, genes and psychiatric disorders.27

In the last decade, substantial amounts of univariate (single
disease) meta-analyses of genome-wide association studies (meta-
GWASs) and candidate gene studies have been published. Indeed,
the meta-GWASs and candidate gene studies have successfully
identified a considerable list of candidate genes for major depres-
sive disorder,28 bipolar disorder,29 coronary artery diseases,30 type
2 diabetes,31 hypertension,26 obesity,32 plasma lipids level,33

insulin and glucose traits31,34 and blood pressure.26,35

Despite the potential significance of studying pleiotropic genes
and shared biological pathways, previous meta-GWAS and
candidate gene studies were entirely focused on a single
phenotype approach (single disease). A recent analysis of single-
nucleotide polymorphisms (SNPs) and genes from the NHGRI
GWAS catalog36 has showed as 16.9% of the genes and 4.6% of
the SNPs have pleiotropic effects on complex diseases.37

Considering such evidence, we hypothesized that common
genetic signatures and biological pathways mediate the mood
disorders to cardiometabolic diseases relationship. In addition,
these genes and their signalling pathways can influence the
response to treatments in mood disorder patients (Figure 1). In
this review, we systematically investigated the cardiometabolic
diseases risk (CMD-R) genes that are possibly associated with
mood disorders susceptibility, and with treatment response to
MDD and BPD. We performed pathway and gene network analysis
to provide additional insights in to the common pathways
and biological mechanisms regulating mood disorders and the

CMD-Rs. Understanding of these common pathways may provide
new insights and novel ways for the diagnosis and treatment of
comorbid cardiometabolic and mood disorders.

MATERIALS AND METHODS
Search strategy
Step 1: Identification of candidate genes for cardiometabolic
diseases. We carried out a systematic search of candidate genes
for the cardiometabolic diseases and/or associated risk factors.
The National Human Genome Research Institute (NHGRI) GWAS
catalogue,36 Westra et al.38 and Multiple Tissue Human Expression
Resource (MuTHER)39 databases were used to identify the CMD-R
genes. We reviewed meta-GWA study papers published until
January 2016 for the diseases ‘type 2 diabetes’ or ‘coronary artery
disease’ or ‘hypertension’ and (or) for the risk factors ‘blood
pressure’ or ‘obesity or body mass index (BMI)’ or "plasma lipid
levels (high-density lipoprotein, low-density lipoprotein, triglycer-
ides, total cholesterol)’ or ‘insulin and glucose related traits (fasting
glucose, fasting insulin, fasting proinsulin, insulin sensitivity,
insulin resistance-HOMA-IR, beta cell function-HOMA-β and
glycated haemoglobinA1C-HbA1C)’.
All GWAS significant SNPs (Po5 × 10− 8) information (lead SNPs,

reported genes, author(s), PubMed ID, date of publication, journal,
discovery and replication sample sizes) was downloaded from the
GWAS catalogue database. Additional information about the
effect of the lead SNPs on nearby gene expression (cis-eQTLs) was
collected from their respective publications. For the SNPs with no
cis-eQTL information in their respective publications, we per-
formed expression quantitative trait loci (cis-eQTL) analysis to
verify the functional relationship between the reported genes and
the lead SNPs using two publicly available databases: Westra
et al.,38 and MuTHER.39 A CMD-R gene was considered as a
candidate gene if, (1) at least one of the lead SNPs is located
within or nearby to the gene; and (2) it is functionally relevant to
influence at least one of the CMD-Rs as evidenced by gene
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Figure 1. Schematic model for the potential pleiotropic effects of a shared gene locus that is associated with mood disorders and
cardiometabolic diseases.5,6,26,70,71,75 The distal and proximal factors are obtained from the literature, and the World Health Organization
(WHO) often uses the classification. Distal factors refer to those factors that require an intermediate factor to cause diseases, while proximal
factors can directly cause diseases. The red bold lines represent the pleiotropic effect of a genetic locus on cardiometabolic diseases and
associated risk factors, psychiatric morbidity, i.e.mood disorders and pharmacological treatment response in MDD and BPD. The bi-directional
arrows indicate bidirectional epidemiological relationships between the cardiometabolic diseases and mood disorders. BPD, bipolar disorder;
MDD, major depressive disorder.
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expression analyses. We took the identified CMD-R genes forward
for the second step literature review, as described below.

Step 2: Exploration of the role of cardiometabolic genes in mood
disorders. In the second systematic review, we conducted a
literature search in PubMed (MEDLINE database) for any genome
wide association, candidate gene, or gene expression analysis
study published in the fields of mood disorders and pharmaco-
genetics of mood disorders until January 2016. This step of the
literature search was performed using SNIPPER tool (see web
resources and tools). We considered studies that reported at least
one of the CMD-R genes in ‘depression’ or ‘depressive disorder’ or
‘depressive symptoms’ or ‘MDD’ or ‘bipolar disorder’ or ‘mood
disorder’ or ‘lithium treatment response’ or ‘Selective Serotonin
Reuptake Inhibitors (SSRIs) treatment response’. A prior literature
search implemented before the final review found that the
majority of the genetic studies on treatment response to
antidepressants and mood stabilizers were on lithium and SSRIs.
As a result, the literature search on pharmacogenomics of mood
disorders was limited to these predominant treatments.

Inclusion criteria
General inclusion criteria of genetic studies that involve indivi-
duals of all ages in both sexes was implemented. The
pharmacogenomics studies were restricted to only lithium or
SSRIs treatment response in mood disorders.

Exclusion criteria
Pharmacogenomics studies that used SSRIs or lithium for the
treatment of psychosis, anxiety disorders, obsessive-compulsive
disorder, post-traumatic stress disorder were excluded. We also
excluded genetic studies that investigated drug-induced side
effects of mood disorders.

BIOLOGICAL PATHWAY AND NETWORK ANALYSIS
The potential pleiotropic genes were further explored to identify the
most enriched canonical pathways and visualize gene networks
using QIAGEN's Ingenuity Pathway Analysis (IPA, QIAGEN Redwood
City, CA, USA, www.qiagen.com/ingenuity). For the analysis, all the
24 potential pleiotropic genes were entered as input into the
software. IPA compares the proportion of input genes mapping
to a biological pathway to the reference genes in the ingenuity
databases. The significance of the overrepresented canonical
pathways were determined using the right-tailed Fisher’s exact test
later adjusted for multiple testing using the Benjamini-Hochberg
(BH) method.40 Significance levels were determined at BH adjusted
P-value o0.01. A gene network that connects the input genes with
MDD, BPD and the cardiometabolic disorders was also generated.

Web resources and tools
GWAS Catalogue: https://www.ebi.ac.uk/gwas/home
Westra et al. blood eQTL browser: http://genenetwork.nl/

bloodeqtlbrowser/
MuTHER eQTL resource: http://www.muther.ac.uk/
SNIPPER tool v1.2: http://csg.sph.umich.edu/boehnke/snipper/
QIAGEN's Ingenuity Pathway Analysis: www.qiagen.com/

ingenuity

RESULTS
Characteristics of meta-GWA studies for the cardiometabolic
disorders
The literature searches in the GWAS catalogue yielded 153 meta-
GWA studies for the CMD-Rs: 38 studies for type 2 diabetes, 17
studies for coronary artery disease, 15 studies for hypertension

and blood pressure, 26 studies for obesity and BMI, 37 studies
for lipids and 20 studies for glucose and insulin traits (Figure 2).
As shown in Figure 2, the meta-GWA studies reported 1047 lead
SNPs and 682 nearby genes. Of these, 123 genes were functionally
relevant to the cardiometabolic diseases and associated risk
factors, as confirmed by gene expression analysis (cis-eQTLs).
These genes were reviewed for their association with mood
disorders and pharmacogenetics of mood disorders. Twenty-four
of the 123 CMD-R genes have been implicated in mood disorders;
and we named these genes the Cardiometabolic Mood disorders
hub (CMMDh) genes.
Table 1 summarizes the 24 CMMDh genes and specific genetic

variants across mood disorders and cardiometabolic diseases.
These genes are MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN,
REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4,
PPP1R1B, APOE, CRY2, HTR1A, ADRA2 A, TCF7L2, MTNR1B, and IGF1
(for further details see Table 1). These genes were over-repre-
sented in the following biological pathways: corticotrophin-
releasing hormone signaling BDNF, CREB1, GNAS, POMC; AMPK
signaling ADRA2A, ADRB1, CREB1, GNAS, LEP; cAMP-mediated and
G-protein coupled receptor signaling ADRA2A, ADRB1, CREB1,
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Figure 2. The flow chart shows the stages of literature search and
evaluation of candidate pleiotropic genes for the CMD-Rs and mood
disorders. CMD-R genes refers to the genes in which the CMD-R lead
SNPs are located-in or nearby and their expression is influenced
by the respective lead SNPs (cis-eQTL). CMD-R, Cardiometabolic
Diseases and associated Risk factors; CMMDh, Cardiometabolic
Mood Disorders hub genes; cis-eQTL, Cis (nearby) gene expression
quantitative trait loci; GWAS, Genome Wide Assocation Study; Meta-
GWA, meta-analysis of Genome Wide Association studies; MuTHER,
Multiple Tissue Human Expression Resource; SNP, single nucleotide
polymorphism.
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Table 1. An overview of the 24 CMMDh genes shared between mood disorders and the cardiometabolic diseases

Pleiotropic
genes

Function of the coded protein Polymorphisms associated with

Cardiometabolic
disorders (lead SNP)

Mood disorders (description)

MTHFR The encoded MTHFR enzyme
catalyzes the conversion of
5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate,
a co-substrate for homocysteine
remethylation to methionine.
Methionine is an essential protein
with multiple function in the brain
and body.

Blood pressure
rs17367504-G/A46

The common MTHFR C677T was associated with depression,76

and BPD.77 MTHFR gene polymorphisms interaction with
childhood trauma increases the risk for depression.78

CACNA1D Mediates the entry of calcium ions
into cells

Blood pressure and
hypertension
rs9810888-G/T26

Rare variants in the calcium channel genes (CACNA1B, CACNA1C,
CACNA1D, CACNG2) contribute to BPD79 and may influence
treatment response to lithium.80

CACNB2 Mediates the entry of calcium ions
into cells

Blood pressure
rs4373814-G/C35

rs12258967-G/C46

rs11014166-A/T81

CACNB2 gene polymorphisms were implicated in MDD and
BPD.82

GNAS Control the activity of endocrine
glands through adenylate cyclase
enzyme

Blood pressure and
hypertension
rs6015450-G/A35

SNPs in the GNAS gene were associated with BPD (rs6064714,
rs6026565, rs35113254)44 and may influence antidepressant
treatment response.83

ADRB1 Mediates the effects of epinephrine
and norepinephrine

Blood pressure
rs2782980-T/C46

Gly389 polymorphism of the beta-1 adrenergic receptor might
lead to better response to antidepressant treatment in patients
with MDD.84

REST Regulate neurogenesis Coronary artery disease
rs17087335-T/G30

Reduced expression of REST in MDD patients at depressive
state,85 and alteration in the expression of the REST gene was
revealed in the brain of women with MDD.86

LEP An appetite-regulating hormone
that acts through the leptin receptor,
functions as part of a signaling
pathway that inhibits food intake
and regulate energy.

Type 2 diabetes
rs791595-A/G 87

SNPs in the leptin gene, decreased leptin gene expression and
leptin deficiency in serum were related to antidepressant
resistance.88 A significant reduction of the mRNA expression
was found in the brain of MDD and suicidal patients.89

ADRA2A Regulate neurotransmitter release
from sympathetic nerves and from
adrenergic neurons in the central
nervous system

Type 2 diabetes or fasting
glucose
rs10885122-G/T31

ADRA2A gene polymorphisms (ADRA2A-1291G-male, ADRB2
Arg-female) were associated with sex-specific MDD,90 predicted
antidepressant treatment outcome in MDD,91 and modified the
effect of antidepressants for better improvement.92 However,
they increased suicidal ideation during antidepressant
treatment.93 Treatment with lithium produced an over
expression of the ADRA2A gene in rats brain.94

TCF7L2 Regulate blood glucose
homeostasis

Type 2 diabetes
rs7903146-T/C95

Fasting glucose, proinsulin,
insulin levels, or insulin
resistance
rs7903146-T/C34

rs4506565-T/A31,34

Genome-wide association study of BPD in European Americans
identifies a new risk allele (rs12772424-A/T) within the TCF7L2
gene.96

HTR1A Receptor for serotonin Fasting insulin or insulin
resistance
rs16891077-A/G97

Variants in the HTR1A gene (rs6295, rs878567) were related to
MDD and BPD.60,61 A significant decrease in HTR1AmRNA levels
in the brain of patients with MDD and BPD was found.98 Other
polymorphisms (5-HT1A-1019G, Gly272Asp) in this gene were
associated with antidepressant treatment response in
MDD62–64 and in BPD.63 Increased DNA methylation in the
promoter region of the HTR1A gene was also observed in
patients with BPD.99

CRY2 Regulates the circadian clock Fasting glucose or insulin
rs11605924-A/C31,34

Polymorphisms in CRY2 gene were significantly associated with
MDD100 and BPD.100,101

MTNR1B Receptor for melatonin that
participate in light-dependent
functions in the retina and brain.
May be involved in the
neurobiological effects of
melatonin

Type 2 diabetes or plasma
glucose level
rs3847554-C/T34

rs10830962-C/G102

rs2166706-T/C103

rs10830963-G/C31

rs1387153-T/C104,105

Gałecka et al. 2011 reported the significance of the MTNR1B
gene polymorphism (rs4753426) for recurrent MDD.106

Additional SNP on the MTNR1B gene (rs794837) increased
mRNA level in MDD patients.106

IGF1 Involved in mediating body
growth and development

Fasting insulin, fasting
glucose, or glucose
homeostasis
rs35767-G/A,31

rs35747-G/A34

Elevated levels of IGF-I was associated with MDD and
antidepressant treatment response.107 A long-term deficiency
of IGF-1 in adult mice induced depressive behaviour.108

Polymorphisms in the IGF1 gene increased BPD risk.109 An over-
expression of IGF1 gene of BPD patients who respond well for
lithium treatment was also reported.110
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Table 1. (Continued )

Pleiotropic
genes

Function of the coded protein Polymorphisms associated with

Cardiometabolic
disorders (lead SNP)

Mood disorders (description)

FTO Regulates energy homeostasis,
contributes to the regulation of
body size and body fat
accumulation. Studies in mice and
humans indicate its role in body
mass index, obesity risk, and type 2
diabetes.

Obesity
rs7185735-G/A32,111

Type 2 diabetes
rs9936385-C/T95

HDL or triglycerides
rs1121980-A/G33

The FTO gene variant (rs9939609-A/T) was associated with
depression.112 Other variants of the FTO gene were involved in
the mechanism underlying the association between mood
disorders and obesity.113

POMC Maintain the body"s energy balance
and control sodium in the body

Obesity (BMI)
rs713586-C/T45

rs1561288-T/C114

rs10182181-G/A111

Genetic variants in this gene were involved in treatment
response to SSRIs (escitalopram or mirtazapine) in MDD
patients.115

ITIH4 Involved in inflammatory responses Obesity (BMI)
rs2535633-G/C116

Genetic variants located in the regions of ITIH1, ITIH3, ITIH4
genes were associated with BPD,29 and suicidal attempt in BPD
patients.117

TLR4 Pathogen recognition and activation
of innate immunity

Obesity (BMI)
rs1928295-T/C32

The mRNA levels of the TLR3 and TLR4 genes were increased in
depressed suicidal patients.118 TLR4 gene expression was
related to severity of major depression.119

BDNF Promotes the survival of nerve cells Obesity (BMI)
rs2030323-C/A 32,111

rs925946-T/G 120

rs10767664-A/T45

The Val66Met polymorphism was associated with depressive
disorder,42 BPD121 and suicidal behavior in depressed and BPD
patients.122,123 It was also associated with SSRIs (escitalopram)
response in depressed patients.124 A significantly decreased
expression of the BDNF gene was observed in the lymphocytes
and platelets of depressed patients.125 Treatment responsive
depressive patients have also shown a decreased mRNA levels
of the BDNF gene.126

CREB1 Involved in different cellular
processes including the
synchronization of circadian
rhythmicity and the differentiation
of adipose cells

Obesity
rs17203016-G/A32

SNPs within this gene were associated with MDD risk in women
43 and antidepressants treatment resistance in MDD
patients.127 An interaction of CREB1 gene variants with BDNF
variants predicted response to paroxetine.128 The CREB1 gene
variants (rs6785, rs2709370) increased BPD susceptibility129 and
other SNPs on CREB1 were suggested for BPD and lithium
response.130

NCAN Modulation of cell adhesion
and migration

Total cholesterol
rs2304130-G/A131

LDL cholesterol
rs16996148-G/T132

rs10401969-C/T133

Triglycerides
rs17216525-T/C133

rs16996148-G/T132

A SNP (rs1064395) in NCAN gene was found to be a risk factor
for BPD in the European population.134 This SNP might resulted
in a structural change of the brain cortex folding.135

GSK3B Energy balance, metabolism,
neuronal cell development, and
body pattern formation

HDL cholesterol
rs6805251-T/C33

Higher GSK3B activity was observed in MDD patients with
severe depressive episode.136 Polymorphisms of this gene
(rs334555, rs119258668, rs11927974) were implicated in
MDD.137 In addition, rare variants in GSK3B gene increased BPD
risk.138,139 The GSK3B is a target gene for several mood
stabilizers including lithium.140,141

SLC18A1 Accumulate and transport
neurotransmitters

Triglycerides
rs9644568-A/G142

rs79236614-G/C143

rs326-A/G144

Variations in the SLC18A1 (rs988713, rs2279709, Thr136Ser)
gene confer susceptibility to BPD.145

PPP1R1B A target for dopamine HDL cholesterol
rs11869286-G/C33

DARPP-32 decreased in the prefrontal cortex of BPD patients,146

increased expression was also shown in BPD.147

APOE Apolipoprotein E combines with
fats (lipids) to form the lipoproteins.
Lipoproteins are responsible for
packaging cholesterol and other
fats and carrying them through the
bloodstream. APOE is the principal
cholesterol carrier in the brain.
There are at least three slightly
different versions (alleles) of the
APOE gene (E2, E3, and E4), of
which E3 is the most common.

HDL, LDL or total
cholesterol
rs4420638-A/G33

rs1160985-C/T148

rs519113-C/G149

Genetic variation at the APOE gene contributed to depressive
symptoms.150

Abbreviations: BPD, bipolar disorder; CMMDh, Cardiometabolic Mood Disorders hub genes; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MDD,
major depressive disorder; SNP, single nucleotide polymorphism.
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GNAS, HTR1 A; axonal guidance signaling BDNF, GNAS, GSK3B, IGF1;
serotonin and dopamine receptors signaling GNAS, HTR1A,
SLC18A1, PPP1R1B; dopamine-DARPP32 feedback in cAMP
PPP1R1B, CACNA1D, CREB1, GNAS; leptin signaling GNAS, LEP,
POMC; and the circadian rhythm signaling CRY2, CREB1 (Table 2
and Figure 3).
We also performed a gene network analysis of the CMMDh

genes to the mood disorders and cardiometabolic diseases. On
the basis of the network analysis, the CMMDh genes were
centrally involved in the link between mood disorders and the
cardiometabolic diseases. For instance, ADRB1 and ADRA2A genes
linked the four most common cardiometabolic disorders (coronary
diseases, hypertension, diabetes, obesity) with BPD and depressive
disorder. The CACNB2 and CACNA1D genes have shown
network with coronary diseases, hypertension, diabetes, BPD

and depression. Similarly, the other CMMDh genes acted as a hub
between at least one of the cardiometabolic disorders and BPD
and/or depression (Figure 3).

DISCUSSION
This, to the best of our knowledge, first cross-disorder review
systematically evaluated candidate pleiotropic genes and biologi-
cal pathways that are likely to be shared with mood disorders,
cardiovascular diseases and metabolic disorders. We revealed 24
cardiovascular and metabolic disease genes implicated in depres-
sion, bipolar disorder or both. These genes belong to interrelated
signaling pathways important in the hypotheses of both
cardiometabolic diseases and mood disorders: corticotrophin-
releasing hormone signaling, AMPK signaling, cAMP-mediated

Table 2. The top canonical signaling pathways enriched for the cardiometabolic mood disorders hub genes

Canonical pathways Enriched genes P-valuea

Corticotrophin releasing hormone BDNF, CREB1, GNAS, POMC 2.12 × 10− 5

AMPK signaling ADRA2A, ADRB1, CREB1, GNAS, LEP 9.24 × 10− 6

cAMP-mediated ADRA2A, ADRB1, CREB1, GNAS, HTR1A 1.71 × 10− 5

G-Protein coupled receptor 2.18 × 10− 5

Dopamine-DARPP32 feedback in cAMP CACNA1D, CREB1, GNAS, PPP1R1B 5.28 × 10− 5

Serotonin receptor GNAS, HTR1A, SLC18A1 3.26 × 10− 5

Dopamine receptor SLC18A1, GNAS, PPP1R1B 1.21 × 10− 4

Axonal guidance BDNF, GNAS, GSK3B, IGF1 1.47 × 10− 3

Leptin signaling GNAS, LEP, POMC 1.17 × 10− 4

Cardiac hypertrophy ADRA2A, ADRB1, CACNA1D, CREB1, GNAS, GSK3B, IGF1 5.12 × 10− 8

Circadian rhythm signaling CRY2,CREB1 7.37 × 10− 4

Abbreviations: AMPK, 5′ adenosine monophosphate-activated protein kinase; cAMP, cyclic adenosine 3′,5′-monophosphate; CMMDh, cardiometabolic mood
disorders hub genes. The table shows the top canonical pathways and enriched CMMDh genes as determined at BH adjusted P-value o0.01. The P-value
indicates the likelihood of finding gene enrichment of the given pathway by chance. aP-values were adjusted by Benjamini & Hochberg (BH) method.40

Corticotrophin releasing hormone 
BDNF, CREB1, GNAS, POMC

AMPK signaling 
ADRA2A, ADRB1, CREB1, GNAS,
LEP

cAMP-mediated or G-Protein 
coupled receptor
ADRA2A, ADRB1, CREB1, GNAS,
HTR1A

Dopamine-DARPP32 feedback in 
cAMP 
CACNA1D, CREB1, GNAS, PPP1R1B

Serotonin receptor 
GNAS, HTR1A, SLC18A1

Dopamine receptor
SLC18A1, GNAS, PPP1R1B

Axonal guidance 
BDNF, GNAS, GSK3B, IGF1

Leptin signaling 
GNAS, LEP, POMC

Cardiac hypertrophy 
ADRA2A, ADRB1, CACNA1D,
CREB1, GNAS, GSK3B, IGF1

Circadian rhythm signaling 
CRY2,CREB1

Network of CMMDh genes

MTHFR
CACNA1D
CACNB2
GNAS
ADRB1
REST
LEP
ADRA2A
TCF7L2
HTR1A
CRY2
MTNR1B
IGF1
FTO
POMC
ITIH4
TLR4
BDNF
CREB1
NCAN
GSK3B
SLC18A1
PPP1R1B
APOE

Twenty four 
CMMDh genes

Biological pathways and enriched CMMDh genes

Figure 3. The list of 24 CMMDh genes (left), genes enriched to the top canonical signaling pathways (middle) and the network of these genes
with mood disorders and the CMD-Rs (right). In the right, it illustrates ingenuity IPA-generated network of the CMMDh genes with coronary
artery diseases, hypertension, diabetes mellitus, obesity, depressive disorder and bipolar disorder. The coloured dotted lines highlights
CMMDh genes that were related to bipolar disorder (orange) and depression (red). CMMDh, Cardiometabolic Mood Disorders hub genes; IPA,
Ingenuity Pathway Analysis.
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and G-protein-coupled receptor signaling, axonal guidance signal-
ing, serotonin and dopamine receptors signaling, dopamine-
DARPP32 feedback in cAMP signaling, leptin signaling and
circadian rhythm signaling.
The corticotrophin-releasing hormone (CRH) signaling is one of

the top canonical pathways that may underlie the link between
CMD-Rs and mood disorders. This pathway comprises of CRH, CRH
receptors (CRHR1, CRHR2), and other CRH-related peptides. It is
the principal regulator of the HPA axis. There are consistent
findings in the literature that support the role of the HPA axis
dysregulation in mediating the risk of mood disorders and
cardiovascular outcome.41 Our analysis found enriched CMMDh
genes in the CRH signaling pathways (BDNF, CREB1, GNAS and
POMC). Genetic variants of the genes for BDNF, CREB1, GNAS and
POMC are associated with MDD,42,43 BPD,44 obesity,32,45 blood
pressure and hypertension.35,46 The genes belong to the group of
stress responsive genes, and their activity could be modulated
through the activation of the HPA-axis. In animal studies, the
expression of BDNF47 and CREB1[ref. 48] genes were dysregulated
by chronic stress. It is therefore possible that an interaction of
BDNF, CREB1, GNAS, and POMC genes with exposure to chronic
stress or traumatic life events increase the risk of cardiometabolic
and mood disorders either simultaneously, or through mediating
factors. The CRH signaling pathway is the principal regulator of
stress responses.49 Following an exposure to stress, the hypotha-
lamus releases the CRH, stimulating the secretion of adrenocorti-
cotrophic hormone from the anterior pituitary gland. This in turn
stimulates the adrenal gland to produce glucocorticoids (princi-
pally cortisol). Cortisol will then act on several organs including
the brain through its receptors.49 In acute conditions, the
production of cortisol helps the body to fight pathogens (stress)
and alleviate inflammation. However, when stressors are long
lasting (chronic) they can cause cortisol receptor resistance and
failure of the HPA-axis negative-feedback mechanism. This
increases the duration and chronicity of inflammation, and a
failure to downregulate the inflammatory response. Ultimately,
failure in the HPA-axis processes may cause dysfunction in the
brain and the body, causing both somatic diseases and brain
disorders. Stress can either originate from the external environ-
ment as chronic extrinsic stress (CES) or within the internal body
system as chronic intrinsic stress (CIS). Both CES and CIS can
influence the CRH pathway genes mainly through gene expression
and DNA methylation mechanisms.50

In relation to stress, there are two possibilities to explain mood
disorders to cardiometabolic diseases association. The first is that
the human body system may consider mood disorders or CMD-Rs
as CIS and then dysregulate the HPA-axis through the CRH
signaling pathways. Given that mood disorders tend to have an
earlier age of onset compared to most of the CMD-Rs,51 they
might be the primary CIS to induce cardiometabolic outcomes
through the CRH signaling mechanism. Another possibility is that
CES and/or CIS interact with the CRH signaling genes to cause
both CMD-Rs and mood disorders. In either of the conditions, the
CRH signaling genes interacts with the stressors to cause a
dysfunction in the HPA-axis.
The second main canonical pathway was the adenosine

monophosphate-activated protein kinase (AMPK) signaling path-
way. This pathway regulates the intercellular energy balance. It
inhibits or induces ATP consuming and generating pathways as
needed. The pathway is especially important for nerve cells, as
they need more energy with small energy reserves.52 Abnormal-
ities in the pathway can disturb normal brain functioning. In
animal studies, Zhu et al., 2014 showed chronically stressed mice
developed symptoms related to mood and metabolic abnormal-
ities, such as significant weight gain, heightened anxiety, and
depressive-like behavior. They also reported decreased levels of
phosphorylated AMP-activated roteinkinase α (AMPKα), confirm-
ing the involvement of the AMPK pathway and its regulatory

genes in metabolic disorders and depression.53 Recent studies
also reported the activation of the AMPK pathway in rat
hippocampus after ketamine treatment exerting rapid antidepres-
sant effect.54 Major contributing CMMDh genes enriched in the
AMPK pathway are ADRA2A, ADRB1, LEP, CREB1 and GNAS.
Variations in one or more of these genes can influence the
activity of the AMPK pathway, subsequently impairing energy
homeostasis in the brain and possibly in other cells.52 This could
later cause energy shortages for the brain and somatic cells. Since
brain cells are the most vulnerable units that require substantial
amount of energy supply, any energy shortage would severely
affect first the brain. Symptoms of mood change such as
depressive behavior could emerge during this process. Moreover,
AMP activation, for instance during stress, could induce insulin
resistance promoting metabolic syndrome, that is, obesity,
diabetes and cardiovascular diseases.55,56 Hence, it is very likely
that inappropriate activity of the AMPK pathway can imbalance
the energy needs of the cells and be a cause to mood disorders
and cardiometabolic diseases.
Axonal guidance signaling was also among the top over-

represented canonical pathways. The pathway is essentially
related to neuronal connections formed by the extension of
axons, which migrate to reach their synaptic targets. Axon
guidance is an important step in neural development. It allows
growing axons to stretch and reach the next target axon to form
the complex neuronal networks in the brain and throughout the
body. The patterns of connection between nerves depend on the
regulated action of guidance cues and their neuronal receptors
that are themselves encoded by axonal guidance coding genes.
Activation of specific signaling pathways can promote attraction
or repulsion and affect the rate of axon extension. One important
observation in the axonal guidance pathway is the role of calcium
and voltage-dependent calcium channels. The pathway is
regulated by the entrance of calcium through the plasma
membrane and release from intracellular calcium store. Calcium
has been implicated in controlling axon outgrowth.57 CMMDh
genes overrepresented in the axonal guidance-signaling pathway
include the BDNF, GNAS, GSK3B and IGF1 genes. Mutant axonal
guidance genes followed by abnormal axon guidance and
connectivity could cause a disorder primarily in the brain and
subsequently to the peripheral organs.58

Other strong candidate mechanisms underlying mood disorders
and cardiometabolic diseases are the serotonin and dopamine
receptors signaling pathways. The serotonin pathway is
mainly regulated by serotonin and its receptors known as
5-hydroxytryptamine receptors. Serotonin is a monoamine neuro-
transmitter synthesized in the central nervous system and its
signaling modulates several physiological processes including
regulation of appetite, mood and sleep, body temperature and
metabolism. The SLC18A1, HTR1A and GNAS gene are among the
CMMDh genes involved in the serotonin receptor-signaling
pathway. The SLC18A1 gene encodes for the vesicular monoamine
transporter that transports for monoamines. Its function is
essential to the activity of the monoaminergic systems that have
been implicated in several human neuropsychiatric disorders.59

The HTR1A gene encodes a receptor for serotonin, and it
belongs to the 5-hydroxytryptamine receptor subfamily. Dysregu-
lation of serotonergic neurotransmission has been suggested to
contribute for the pathogenesis of mood disorders60,61 and it is
implicated in the action of selective serotonin reuptake
inhibitors.62–64 Animal studies have consistently demonstrated
the influence of the serotonin pathway on both mood disorders
and cardiometabolic disorders. Ohta et al., 2011 have previously
revealed as there is a converge in insulin and serotonin producing
cells that can lead to metabolic diseases (diabetes) and mood
disorders.65 The products of the insulin-producing cells (beta-islet
cells) are involved to express the genes that synthesize serotonin,
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and serotonin also plays a role in the synthesis of insulin in the
beta-islet cells.65

The dopamine receptors pathway, centrally regulated by
dopamine, also appears to underlie the relationship between
mood disorders and cardiometabolic diseases. Dopamine serves
as a chemical messenger in the nervous system and its signaling
has important roles in processes: emotion; positive reinforcement;
motivation; movement; and in the periphery as a modulator of
renal, cardiovascular and the endocrine systems.66 The SLC18A1
and GNAS genes are among the CMMDh genes that belong to this
pathway. The dopamine-signaling pathway further induces the
dopamine-DARPP32 Feedback in cAMP signaling. The central
regulator of this pathway is the PPP1R1B gene that encodes a
bifunctional signal transduction molecule called the dopamine
and cAMP-regulated neuronal phosphoprotein (DARPP-32). Other
CMMDh genes in the pathway include CACNA1D, CREB1, and
GNAS. The CACNA1D gene encodes the alpha-1D subunit of the
calcium channels that mediates the entry of calcium ions into
excitable cells. Calcium channel proteins are involved in a variety
of calcium-dependent processes, including hormone or neuro-
transmitter release, and gene expression.67

Overall, genes that encode for molecules involved in HPA-axis
activity, circadian rhythm, inflammation, neurotransmission, meta-
bolism and energy balance were found to have a central role to
link mood disorders with cardiometabolic diseases. It is also worth
noting the gene–environment interaction that might contribute to
the diseases.

IMPLICATIONS OF THE REVIEW FINDINGS
Knowledge of genes and molecular pathways that are shared
between mood disorders and cardiometabolic disorders have
several important implications for future research and clinical
practice. It is expected that increasing sample size, and conse-
quently increasing power, will identify many more of the genes in
the near future. Here we identify four implications of our findings.
First, the identification of shared molecular pathways implicated

in disease susceptibility supports a growing evidence base for
cross-diagnostic treatment paradigms. Shared molecular path-
ways could help to explain recent findings of reduced cardiovas-
cular mortality,68 or improved diabetic control,69 in MDD patients
treated with SSRIs. Second, further exploration of overlapping
molecular pathophysiology has the potential to unveil novel
targets for drug development, and may give clues for the re-
purposing of existing medications.
Third, cardiometabolic disorders are associated with an

increased risk of poor response to standard treatments in mood
disorders.70,71 Genetic profiling for cardiometabolic risk and
stratified diagnosis of patients may help to classify treatment
responders and treat them accordingly, thereby reducing the
costs of ineffective exposure to medicines for the individuals and
for the society. Early identification of at-risk individuals would also
guide practitioner’s treatment recommendations, which may
involve alternative somatic (for example, electroconvulsive ther-
apy, repetitive Transcranial Magnetic Stimulation, ketamine) or
specific psychological therapies as first- or second line treatments.
Fourth, studying the mechanisms of pleiotropic genes and

shared pathways of mood disorders and somatic diseases could
help untangle the clinical and genetic heterogeneity that
characterizes these illnesses. It is possible that a ‘cardiometabolic’
endophenotype exists among mood disorders patients that may
be identifiable through genetic profiling using polygenic scores or
analysis of blood protein biomarkers. Preliminary evidence for
such a phenotype, approximating the concept of ‘atypical
depression’ characterized by increased appetite, weight gain
and increased need for sleep, is emerging.72,73 Working towards
personalized care that allows for precise diagnostic, treatment and
prevention strategies, research could then focus on genetically

stratified patient cohorts instead of the very diverse patient pool
currently diagnosed with MDD or BPD. There is a growing
consensus that such stratification approaches have the potential
to substantially improve the quality of mental health research and
mental healthcare over the coming decades.74

Our review has limitations. Perhaps the most fundamental
limitation was that almost all of the reviewed studies were
performed in a univariate manner (single diseases approach).
Essentially, multivariate models such as principal component
analyses, multivariate mixed models and multivariate regression
analyses are regarded as statistically powerful to perform cross-
disorder analyses and identify pleiotropic genes. Unlike the
multivariate approach, a univariate analysis investigates the
association between a genetic variant and a single phenotype,
aimed to identify genetic variants for individual diseases. Second,
the review included studies that reported positively associated
genes, and neither negative findings nor inconsistent evidences
were assessed. We also found limited replication in some of the
candidate genes, thereby demonstrating the necessity of future
confirmatory studies. Third, only meta-GWAS were reviewed for the
CMD-Rs and we implemented somewhat less stringent criteria for
the genetic studies of mood disorders. GWAS for mood disorders
have been less successful, mainly due to inadequate sample size
and the phenotypic heterogeneity of the disorders. For this reason,
the inclusion criteria for studies in these disorders was less strict.
Hence, our review should be viewed as complementary to future
mood disorders to cardiometabolic diseases gene investigation,
providing an initial thorough summary of potential pleiotropic
genes. Further population or case–control studies are necessary to
confirm our proposed findings.

CONCLUSION
Our review revealed potential pleiotropic genes and biological
pathways that are likely to be shared between mood disorders
and cardiometabolic diseases. Although the review provides some
insight into common mechanisms and the role of pleiotropic
genes, in-depth understanding of how these genes (and possibly
others) mediate the association between mood disorders and
cardiometabolic diseases requires future comprehensive cross-
disorder research in large-scale genetic studies. This will enable us
to better understand why patients suffer from multiple diseases,
and how multi-morbidities influence pharmacological treatment
response to diseases.
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