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Gene expression alterations related to mania and psychosis in
peripheral blood of patients with a first episode of psychosis
ES Gouvea1,2,8, VK Ota1,3,4,8, C Noto1,2,4, ML Santoro3,4, LM Spindola1,3,4, PN Moretti1,3,4, CM Carvalho1,3,4, G Xavier3,4, AC Rios1,
JR Sato4,5, MAF Hayashi4,6, E Brietzke1,7, A Gadelha1,4, RA Bressan1,4, Q Cordeiro1,2 and SI Belangero1,3,4

Psychotic disorders affect ~ 3% of the general population and are among the most severe forms of mental diseases. In early stages
of psychosis, clinical aspects may be difficult to distinguish from one another. Undifferentiated psychopathology at the first-episode
of psychosis (FEP) highlights the need for biomarkers that can improve and refine differential diagnosis. We investigated gene
expression differences between patients with FEP–schizophrenia spectrum (SCZ; N= 53) or FEP–Mania (BD; N= 16) and healthy
controls (N= 73). We also verified whether gene expression was correlated to severity of psychotic, manic, depressive symptoms
and/or functional impairment. All participants were antipsychotic-naive. After the psychiatric interview, blood samples were
collected and the expression of 12 psychotic-disorder-related genes was evaluated by quantitative PCR. AKT1 and DICER1
expression levels were higher in BD patients compared with that in SCZ patients and healthy controls, suggesting that expression of
these genes is associated more specifically to manic features. Furthermore, MBP and NDEL1 expression levels were higher in SCZ
and BD patients than in healthy controls, indicating that these genes are psychosis related (independent of diagnosis). No
correlation was found between gene expression and severity of symptoms or functional impairment. Our findings suggest that
genes related to neurodevelopment are altered in psychotic disorders, and some might support the differential diagnosis between
schizophrenia and bipolar disorder, with a potential impact on the treatment of these disorders.
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INTRODUCTION
Psychotic disorders, including schizophrenia, bipolar disorder and
schizoaffective disorder, affect ~ 3% of the general population1,2

and represent some of the most severe mental diseases.
Characteristic symptoms include hallucinations, delusional beliefs,
severe mood variations and cognitive impairment. However, during
the early stages of psychosis, the clinical aspects may be difficult to
distinguish from one another. The first-episode psychosis (FEP) is a
critical period given that brain abnormalities and cognitive deficits
are already present and progress faster, and more aggressively in
the first years of the disorder,3 whereas the patients are not affected
yet by factors related to disease progression, that is, duration of
illness and exposure to antipsychotics.4,5

More than a century has passed since Kraepelin first proposed
the distinction between dementia praecox (schizophrenia) and
manic-depressive insanity (bipolar disorder),6 but as both dis-
orders may share the same psychotic symptoms, differentiating
schizophrenia spectrum disorders from bipolar disorder is still a
challenge. Therefore, different lines of research aim to identify
biomarkers capable of distinguishing these disorders, including
studies based on gene expression in peripheral tissues.7 On the
other hand, some genes, including microRNAs, show a concordant
expression and association for both schizophrenia and bipolar
disorder in blood8 and also in brain tissues,9,10 showing a possible
common pathophysiological mechanism between these disorders,

beyond the diagnostic boundaries. Moreover, previous studies
revealed an effect of antipsychotics on gene expression.11–13

Therefore, assessing gene expression in early stages, such as FEP,
is crucial, particularly before the administration of antipsychotics,
but this is only feasible in peripheral tissues.
The majority of studies have focused on schizophrenia-

spectrum psychosis, suggesting alterations in genes related to
myelination, neurodevelopment and AKT pathway,14 although
affective psychoses studies are under-represented in the literature,
particularly early-stage affective psychoses. Very few studies on
gene expression of antipsychotic-naive bipolar disorder patients
have been conducted,15–18 reporting alterations in inflammatory
genes, such as TNF,15 and in genes of AKT1/mTOR pathway.18

Our objectives are to investigate differences in the messenger
RNA (mRNA) levels of 12 genes among individuals with FEP of
schizophrenia-spectrum disorder (SCZ), FEP with mania (BD) and
healthy controls. We also want to verify whether gene expression
is correlated to clinical features, including functional impairment
and severity of psychotic, manic, and depressive symptoms.
Particularly, we compared SCZ with BD to identify diagnostic
specificity (genes related to manic symptoms), and FEP (both SCZ
and BD) and healthy controls to find genes related to psychosis
itself as a broad syndrome.
To our knowledge, this is the first study that compares gene

expression between antipsychotic-naive FEP of schizophrenia
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spectrum disorder and FEP with mania. The study aims are to
differentiate BD and SCZ, improving early diagnosis and adequate
intervention.
We selected the genes based on their biological role in

psychotic disorders. As a second criterion, these genes should
be expressed in whole blood (according to information available
in http://www.genecards.org). We selected genes related to
dopamine neurotransmission (COMT), inflammation and the
immune system (TNF), neurodevelopment (DISC1, PAFAH1B1 and
NDEL1), myelination (MBP), cell signaling (AKT1), the microRNA
machinery (DGCR8, DICER1 and DROSHA), protein degradation
(UFD1L) and adhesion (DGCR2). Some genes were selected mainly
because of their location in the 22q11.2 region (COMT, DGCR2,
DGCR8 and UFD1L), as its deletion is one of the strongest known
genetic risk factors for psychotic disorders.19 We previously analyzed
the same genes in other studies comparing FEP (excluding
individuals with bipolar disorder diagnosis) with ultra-high risk
individuals and controls, with positive findings.11,12,20,21–23 Here a
comparison between FEP of schizophrenia spectrum disorder
(SCZ) and FEP with mania (BD) is presented, as well as between BD
and healthy controls.

MATERIALS AND METHODS
Study population
The Research Ethics Committee of UNIFESP approved the research
protocol, and all participants and family members provided written
informed consent prior to enrollment in the study (CEP 0603/10).
Antipsychotic-naive FEP patients (N= 69) were recruited from a

psychiatric emergency unit in São Paulo, Brazil. The diagnosis of a
psychotic disorder was established by trained psychiatrists based on the
criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV), using the Structured Clinical Interview of the DSM-IV.
Patients were assessed at baseline and followed up for at least 2 months.
At the end of follow-up, patients with a schizophrenia or schizophreniform
disorder diagnosis were classified as FEP of schizophrenia spectrum
disorder (SCZ, N= 53) and patients who met bipolar disorder (with
psychotic symptoms) diagnostic criteria were classified as FEP with mania
(BD, N= 16).
Inclusion criteria were age between 16 and 40 years and no previous

history of antipsychotic medication. Prior treatment with benzodiazepines
was allowed. Patients with psychotic episodes due to a general medical
condition, substance-induced psychotic disorder, intellectual disability or
psychotic episodes that were associated with major depressive disorder
were excluded.

The patients were assessed by: (a) PANSS (Positive and Negative
Syndrome Scale);24 (b) CGI (Clinical Global Impression Scale);25 (c) GAF
(Global Assessment of Functioning Scale), (d) CDSS (Calgary Depression
Scale for Schizophrenia);26 and (e) YMRS (Young Mania Rating Scale).
PANSS dimensions were derived from a previous study in a Brazilian
population.27

The healthy control group (N= 73) comprised age- and gender-matched
volunteers with no current or previous psychiatric diagnoses or first-degree
family history of psychotic disorders.
Peripheral blood samples were collected prior to the administration of

antipsychotics (for patients) or after psychiatric interview (for controls).

Analysis of transcript levels of selected genes
A total of 5 ml of whole blood was collected in PAXgene RNA tubes
(PreAnalytix, Hombrechtikon, Switzerland). RNA was isolated using a
PAXgene Blood RNA kit (Qiagen, Germantown, MD, USA) according to the
manufacturer’s instructions. RNA integrity was determined through
electrophoresis on a 1.0% agarose gel, and the quality and quantity of
the RNA samples were determined using a NanoDrop ND-1000 spectro-
photometer (Nanodrop, Wilmington, DE, USA).
Approximately 400 ng of each RNA sample was reverse-transcribed

using a High-Capacity cDNA Reverse Transcription Kit (Life Technologies,
Foster City, CA, USA). Then, 20 to 100 ng of complementary DNA
(cDNA) was diluted in H2O, mixed with TaqMan Universal PCR Master
Mix (Life Technologies), and loaded on Taqman Low-Density Array (TLDA)
microfluidic cards (Life Technologies). Probes and primers of 12 target
genes, two housekeeping genes (ACTB and GAPDH), and one positive
control for the reaction (18S) were preloaded in the 384 wells (in triplicates)
of each TLDA card (Life Technologies). Assays and the exons and
transcripts that they recognize are described in Supplementary
Table 1. The experiments were performed in accordance with the
manufacturer's instructions using the ViiA 7 Real-Time PCR System (Life
Technologies).
Genes were selected based on their previously reported association

with psychotic disorders and their expression in blood (http://www.
genecards.org/).
Gene expression was quantified using the relative threshold method

(Crt) with the geometric mean (GM) between ACTB and GAPDH as the
endogenous control. Delta cycle relative threshold values (ΔCrt = Crttarget
gene−CrtGM) were calculated for each sample and 2-ΔCrt values were
included in the PASW Statistics (version 18.0, SPSS, Chicago, IL, USA)
data set.

Statistical analysis
Sample size was chosen using G*Power 3.1.6 software (Heinrich-Heine-
Universität Düsseldorf, Düsseldorf, Germany) and considering an analysis
of variance test, with medium effect size f= 0.30, α=0.05; power = 0.80 and

Table 1. Clinical and demographic characteristics of the participants

Variable Controls SCZ BD Test value; df; P-value

Gender
Males (%) 42 (57.5) 34 (64.2) 12 (75)
Females (%) 31 (42.5) 19 (35.8) 4 (25) χ2= 1.869; df= 2; P= 0.393

Age in years; mean (s.d.) 25.66 (7.31) 26.34 (7.53) 25.13 (6.98) F(2,139)= 0.220; P= 0.803
PANSS negative; mean (s.d.) 27.32 (10.38) 15.67 (6.80) t= 3.692; df= 60; P= 4.826 × 10-4*
PANSS disorganization/cognition; mean (s.d.) 27.56 (7.91) 29.09 (6.73) t=− 0.640; df= 59; P= 0.524
PANSS excitement; mean (s.d.) 26.42 (10.39) 37.68 (11.17) t=− 2.946; df= 60; P= 0.005*
PANSS positive; mean (s.d.) 35.94 (6.97) 35.18 (7.97) t= 0.433; df= 59; P= 0.666
PANSS depression/anxiety; mean (s.d.) 25.33 (9.29) 24.83 (7.23) t=− 0.066; df= 59; P= 0.948
PANSS total; mean (s.d.) 96.27 (20.09) 91.55 (19.21) t= 0.709; df= 58; P= 0.481
GAF; mean (s.d.) 31.96 (8.81) 20.43 (9.60) t= 3.711; df= 16.957; P= 0.002*
CGI; mean (s.d.) 4.87 (0.74) 5.36 (1.15) t=− 1.183; df= 16.062; P= 0.254
CDSS; mean (s.d.) 4.85 (5.32) 1.00 (1.49) t= 1.416; df= 36; P= 0.165
YMRS; mean (s.d.) 11.63 (10.87) 27.23 (12.12) t=− 4.242; df= 36.088; P= 1.473 × 10-4*

Abbreviations: BD, first-episode of psychosis—mania with psychosis; CDSS, Calgary Depression Scale for Schizophrenia; CGI, Clinical Global Impression Scale;
df, degrees of freedom; GAF, Global Assessment of Functioning Scale; PANSS, Positive and Negative Syndrome Scale; SCZ, first-episode of psychosis—
schizophrenia spectrum; YMRS, Young Mania Rating Scale. *Po0.05.
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3 groups. Two-sided tests were used for statistical analyses. For continuous
variables, normality and homogeneity was checked with Shapiro–Wilk
and Levene tests and log-transformed as needed. Gender and age
differences between the SCZ, BD and control group were verified using the
χ2-test and analysis of variance test, respectively. Differences in severity of
symptoms and functional impairment (CDSS, CGI, GAF and YMRS total
scores and PANSS scores) were compared using Student’s t-test.
2-ΔCrt values were compared among SCZ, BD and control groups using

general linear model (GLM), with gender as a fixed factor if necessary and
with Bonferroni correction for multiple comparisons (12, considering the
number of genes assessed). Post hoc comparisons were carried out using
the Bonferroni test. In addition, for genes that were differentially
expressed, we verified the correlation between the 2-ΔCrt values and the
clinical aspects using linear regression and inserting group (SCZ or BD) as
an independent variable. In order to evaluate the predictive power of these
genes, receiver-operating characteristic curves were obtained, and the
respective statistical significance were assessed by χ2-test on the area
under the curve (AUC). The significance level was set at 5%.

RESULTS
The clinical and demographic characteristics of the participants
are presented in Table 1.
SCZ patients exhibited higher scores on the negative dimension

of the PANSS, and lower scores on the excitement compound of
the PANSS and YMRS, than BD patients (Table 1). In addition, BD
patients presented with poorer global function, as indicated by
GAF (Table 1), compared with SCZ patients. No significant age or
gender differences were observed among the different groups.

Analysis of transcript levels of selected genes among
antipsychotic-naive SCZ, BD patients and healthy controls
Gene expression results comparing the three groups (SCZ, BD and
healthy controls) are reported in Table 2. Four genes were found
to be differentially expressed among the groups after Bonferroni
correction for 12 comparisons. Of them, two genes (MBP and
NDEL1) exhibited higher expression levels in antipsychotic-naive
patients (both SCZ and BD) than in healthy controls (Table 2).
Moreover, the expression of two other genes, AKT1 and DICER, was
higher in BD than in both SCZ patients and controls (Table 2).
The expression of these four genes was not correlated with

prior benzodiazepine administration (P40.05) or age (P40.05).
We analyzed the receiver-operating characteristic curve and

we found the same results: AKT1 and DICER1 2-ΔCrt values
differentiated BD from SCZ patients (AKT1 AUC=0.768, P= 0.001;
DICER1 AUC=0.812, P= 1.706 × 10-4; Supplementary Figure 1) and
healthy controls (AKT1 AUC=0.798, P= 2.129 × 10-4; DICER1 AUC=
0.865, P= 5.525 × 10-6; Supplementary Figure 2), but not SCZ from
healthy controls (AKT1 AUC=0.505, P= 0.927; DICER1 AUC=0.561,
P= 0.246; Supplementary Figure 3). On the other hand, MBP and
NDEL1 ΔCrt values did not distinguish SCZ from BD (MBP
AUC=0.597, P= 0.267; NDEL1 AUC=0.553, P= 0.525; Supplemen-
tary Figure 1), but both could differentiate SCZ (MBP AUC=0.677,
P= 0.006; NDEL1 AUC=0.660, P= 0.002; Supplementary Figure 3)
and BD patients (MBP AUC=0.805, P= 2.856 × 10-4; NDEL1 AUC=
0.728, P= 0.004; Supplementary Figure 2) from healthy controls.

Correlation between gene expression and clinical characteristics
We tested the correlation of differential gene expression (AKT1,
DICER, MBP and NDEL1) and the severity of symptoms and
functional impairment (CDSS, CGI, GAF and YMRS total scores, and
PANSS scores) using linear regression and inserting group as an
independent variable. However, no significant correlation was
detected after Bonferroni correction for multiple comparisons. Ta
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DISCUSSION
In the present study, we identified gene expression alterations that
might be linked to manic and psychotic features. We primarily
detected that AKT1 and DICER1 expression levels were higher in BD
patients compared with SCZ patients and controls, suggesting that
the expression of these genes is associated more specifically to manic
features. In addition, MBP and NDEL1 expression levels were higher in
both SCZ and BD patients than in healthy controls, indicating that
these genes may be related to psychosis per se (independently of
diagnosis). We described similar results comparing FEP (excluding BD)
and controls in a previous study.22 Here we focused on verifying if
these changes in gene expression are also observed in BD, and
moreover, if they can discriminate BD from SCZ patients. Although all
these four genes have a role in central nervous system, this study
aimed to find potential biomarkers, even if they might not be related
to the pathophysiology of the disease. A brief description of each
comparison (SCZ×BD and BD×control) and the relationship of each
gene with psychotic disorders are described below.

SCZ and BD
Two genes were differentially expressed in BD, when compared
with both SCZ and healthy controls, namely AKT1 (V-Akt Murine
Thymoma Viral Oncogene Homolog 1) and DICER1 (Dicer 1,
ribonuclease type III).
AKT1, which encodes a serine–threonine protein kinase, is

involved in a variety of central nervous system functions such as
neurodevelopment, synaptic plasticity and protein synthesis.28

Moreover, AKT1 was shown to facilitate dopamine signaling,29,30

and to regulate a wide array of cellular processes, such as
metabolism, growth, proliferation and apoptosis.31 AKT1 partici-
pates in the PI3K/Akt/mTOR pathway, which is important for many
immunological mechanisms.32

In addition, lithium, antidepressants, antipsychotics and other
mood stabilizers seem to increase phosphorylation of AKT.33–35 A
decrease in AKT1 protein and mRNA levels was found in
postmortem brain tissue and lymphocyte-derived cells of indivi-
duals with schizophrenia and bipolar disorder, compared with
healthy controls.35–37 Although these studies primarily suggest an
AKT1 deficiency, a recent study14 found increased AKT1 expression
levels in peripheral blood of antipsychotic-naive schizophrenia
patients. Kumarasinghe et al. (2013) also observed that anti-
psychotic pharmacotherapy could partially compensate for this
upregulation, providing further evidence for a link between AKT1
and dopaminergic transmission.
Although we did not find differences in AKT1 mRNA levels

between SCZ and controls, we found that this gene was
upregulated specifically in BD patients. A previous study in a
Brazilian sample of unmedicated, depressed individuals with
bipolar disorder showed decreased AKT1 expression in the
blood.18 Our finding of increased AKT1 expression in patients on
the opposite pole of the spectrum (in mania) may suggest an
association between AKT1 expression and mood pole.
DICER1 synthesizes DICER, a member of the ribonuclease III

protein family that is involved in the generation of microRNAs
(miRNAs), which regulate gene expression at the posttranscrip-
tional level.38 MiRNAs are 22-nt-long RNAs generated from longer
precursor RNAs. In general, they repress translation, but they can
also acquire other functions after binding to their target RNA.
Notably, many studies implicated miRNAs in the development of
psychotic disorders.39,40

DICER has an important role in the development and function of
the immune41 and central nervous systems.42 DICER1 is upregulated
in the dorsolateral prefrontal cortex42,43 and lymphoblastoid cell
lines44 of schizophrenia cases. In addition, DICER1 single-nucleotide
polymorphisms45 and copy-number variations46 are associated to
schizophrenia. Notably, valproic acid, a mood stabilizer used to treat
bipolar disorder, induces DICER degradation.47

BD and healthy controls
Four genes were upregulated in BD patients compared with
healthy controls (AKT1, DICER1, MBP and NDEL1). AKT1 and DICER1
expression levels were different between BD and SCZ patients,
whereas the expression levels of MBP (myelin basic protein) and
NDEL1 (nuclear distribution of protein nudE-like 1) were similar.
Notably, in our previous findings in a larger cohort of FEP without
bipolar disorder patients we found that MBP and NDEL1 were
upregulated in antipsychotic-naive patients compared with
controls.22 Here we show that these genes are also dysregulated
in FEP with mania.
Myelin-related pathways are involved in the aetiologies of both

schizophrenia and bipolar disorder.48 The MBP gene produces two
families of structurally related proteins from different promoters:
the MBP and the Golli (gene in the oligodendrocyte lineage)
isoforms. In our study, we used an assay that can detect both
types of isoforms (one Golli—NM_001025101, and two classic
MBP isoforms—NM_001025090 and NM_001025092;
Supplementary Table 1). Owing to the higher expression of Golli
isoforms in the immune system,49 we may assume that they
represent the expression detected in our experiments. The
biological function of Golli isoforms involves myelin formation
and maintenance,50 oligodendrocyte proliferation and
migration,51 and calcium homeostasis.52 This specific calcium
pathway is altered in schizophrenia and bipolar disorder53 and is
also affected by antipsychotic medications.54

MBP expression studies in postmortem tissues from different
brain regions revealed an association with psychotic disorders,
suggesting that MBP mRNA and protein levels (of the classic
isoforms) are decreased in patients with schizophrenia 55–57 or
bipolar disorder.58 However, no differences were found in the
Golli-MBP mRNA levels in postmortem dorsolateral prefrontal
cortex samples of schizophrenia patients compared with
controls.59 Notably, MBP expression is affected by antipsychotic
treatment,60,61 and hence, analyzing antipsychotic-naive patients
is essential to attenuate the effects of these medications on gene
expression.
In our study, both antipsychotic-naive SCZ and BD patients

exhibited increased MBP expression levels (most likely Golli
isoforms) compared with healthy controls, suggesting that this
gene might be associated to psychosis per se, as both patient
groups exhibited psychotic symptoms. Indeed, when we analyzed
FEP patients in a larger sample, excluding those with manic
features, MBP was also upregulated compared with healthy
controls22 and to ultra-high risk individuals,23 supporting that
MBP might have a role in psychosis. Moreover, in an independent
report by Kumarasinghe et al. (2013), antipsychotic-naive schizo-
phrenia patients exhibited higher MBP mRNA levels, compared
with controls. After 6 to 8 weeks of risperidone or haloperidol
treatment, the MBP mRNA levels were similar to that of controls.14

However, another study did not reveal significant changes in MBP
in the peripheral blood of first-episode schizophrenia and bipolar
disorder patients.17

NDEL1 is encoded by a gene located at chromosome 17p13.1,
and is robustly expressed in developing and mature neurons in
the brain. It has been suggested to have a role in neuronal
migration during embryogenesis.62 Other well-known functions of
NDEL1 include cytoskeleton organization, cell proliferation and
survival regulation, oligopeptidase activity (potential neuropepti-
dase activity), neuritogenesis, neuronal migration and cell
signaling.63–65 This protein was first discovered due to its
enzyme activity on neuropeptides,66 and second because of its
ability to form complexes with other proteins such as LIS1,
which is encoded by the PAFAH1B1 (platelet-activating factor
acetylhydrolase 1b, regulatory Subunit 1 (45 kDa)) gene that is
mutated in lissencephaly, a rare brain formation disorder.67,68 In
addition, NDEL1 is able to bind DISC1,65 a psychosis-associated
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protein that is the product of a well-known schizophrenia risk
factor gene,69 and is associated with bipolar disorder.70

Gene expression studies conducted in both brain and
peripheral tissues revealed reduced NDEL1 expression levels in
schizophrenia patients.71,72 However, none of these studies have
investigated antipsychotic-naive subjects or patients at the first
stages of psychotic disorders. In a similar analysis, we have
previously reported an upregulation of NDEL1 gene expression in
FEP patients compared with healthy controls.22As we have
included BD patients in the present study, we suggest that NDEL1
expression is also altered in psychotic disorders with manic
features, in the same way as observed in SCZ patients. Moreover, a
subgroup of FEP patients with depression showed lower levels of
NDEL1 expression,20 opposite to our finding in BD, which is also at
the opposite pole of depression. Thus, higher NDEL1 expression
might be characteristic of BD and FEP without depression, while
lower NDEL1 expression levels could be associated to FEP with
depression.
The results of this study need to be replicated in additional

studies and should be interpreted in light of some limitations.
First, the sample size of the groups and particularly the BD patient
group was small, and, hence, it may lack power to identify some
gene expression differences. Second, it was a cross-sectional
study, and the follow-up of these patients would confirm the
diagnosis and may help to find markers for response to treatment.
Third, we did not have a group of patients with mania without
psychotic symptoms. Such a group would help to define which
genes are specifically related to mania. Fourth, we cannot assure if
our findings in whole blood translate to what occurs in the brain.
Considering that whole blood presents a mixture of various
leukocyte subtypes, our gene expression findings may also be
partially confounded by various proportions of leukocyte
subtypes.73 However, an important strength is our focus on
unmedicated patients in the first stages of the disorder.
Consequently, we needed to use a biological material that can
be easily collected, though we acknowledge that peripheral
markers may not necessarily reflect brain pathophysiology.

CONCLUSIONS
To our knowledge, this is the first study that compares gene
expression in antipsychotic-naive FEP of SCZ and FEP with mania
(BD), suggesting potential diagnostic specificities. On the basis of
an integrated model, we propose that MBP and NDEL1 are
upregulated in SCZ and BD patients, who all exhibit psychotic
symptoms. Moreover, two other genes, AKT1 and DICER1, were
upregulated in BD patients only, indicating that these genes could
be related to mania, independently of psychotic symptoms.
Although further validation in a large sample is still needed, our
findings suggest that genes related to neuronal development are
altered in psychotic disorders, and some of them might support
the differential diagnosis between schizophrenia and bipolar
disorder in the near future, which in turn could have an impact on
the treatment of these disorders.

CONFLICT OF INTEREST
CN has received a scholarship from Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) and has served as a consultant or advisory board member for
Janssen. AG was on the speakers’ bureau and/or has acted as a consultant for
Janssen-Cilag in the last 12 months and has also received research support from
Brazilian government institutions (CNPq). EB has been supported by CNPq, CAPES
and FAPESP. RAB has received research funding from FAPESP, CNPq, CAPES,
Fundação Safra, Fundação ABADS, Janssen, Eli Lilly, Lundbeck, Novartis and Roche,
has served as a speaker for Astra Zeneca, Bristol, Janssen, Lundbeck and Revista
Brasileira de Psiquiatria and is a shareholder of Radiopharmacus Ltda and
Biomolecular Technology. The remaining authors declare no conflict of interest.

ACKNOWLEDGMENTS
We thank the patients, their families, and the psychiatrists and nurses for their
participation in this study. This study was supported by Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP 2010/08968-6; 2011/50740-5; 2014/50830-
2, 2014/07280-1, 2013/10498-6, 2012/12686-1), Brazil; and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

REFERENCES
1 Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S et al. Lifetime

prevalence of psychotic and bipolar I disorders in a general population. Arch Gen
Psychiatry 2007; 64: 19–28.

2 Bogren M, Mattisson C, Isberg PE, Nettelbladt P. How common are psychotic and
bipolar disorders? A 50-year follow-up of the Lundby population. Nord J Psychiatry
2009; 63: 336–346.

3 Birchwood M, Todd P, Jackson C. Early intervention in psychosis. The critical
period hypothesis. Br J Psychiatry Suppl 1998; 172: 53–59.

4 Demjaha A, MacCabe JH, Murray RM. How genes and environmental factors
determine the different neurodevelopmental trajectories of schizophrenia and
bipolar disorder. Schizophr Bull 2012; 38: 209–214.

5 Fuste M, Pinacho R, Melendez-Perez I, Villalmanzo N, Villalta-Gil V, Haro JM et al.
Reduced expression of SP1 and SP4 transcription factors in peripheral blood
mononuclear cells in first-episode psychosis. J Psychiatr Res 2013; 47: 1608–1614.

6 Kraepelin E. Manic-Depressive Insanity and Paranoia. E. & S. Livingstone: Edin-
burgh, UK, 1919.

7 van de Leemput J, Glatt SJ, Tsuang MT. The potential of genetic and gene
expression analysis in the diagnosis of neuropsychiatric disorders. Expert Rev Mol
Diagn 2016; 16: 677–695.

8 Wirgenes KV, Tesli M, Inderhaug E, Athanasiu L, Agartz I, Melle I et al. ANK3 gene
expression in bipolar disorder and schizophrenia. Br J Psychiatry 2014; 205:
244–245.

9 Zhao Z, Xu J, Chen J, Kim S, Reimers M, Bacanu SA et al. Transcriptome
sequencing and genome-wide association analyses reveal lysosomal function and
actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psy-
chiatry 2015; 20: 563–572.

10 Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of
microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar
disorder and depressed subjects. PLoS ONE 2014; 9: e86469.

11 Ota VK, Noto C, Gadelha A, Santoro ML, Ortiz BB, Andrade EH et al. Evaluation of
neurotransmitter receptor gene expression identifies GABA receptor changes: a
follow-up study in antipsychotic-naive patients with first-episode psychosis. J
Psychiatr Res 2014; 56: 130–136.

12 Ota VK, Noto C, Gadelha A, Santoro ML, Silva PN, Melaragno MI et al. Neuro-
transmitter receptor and regulatory gene expression in peripheral blood of Bra-
zilian drug-naive first-episode psychosis patients before and after antipsychotic
treatment. Psychiatry Res 2013; 210: 1290–1292.

13 Santoro ML, Ota VK, Stilhano RS, Silva PN, Santos CM, Diana MC et al. Effect of
antipsychotic drugs on gene expression in the prefrontal cortex and nucleus
accumbens in the spontaneously hypertensive rat (SHR). Schizophr Res 2014; 157:
163–168.

14 Kumarasinghe N, Beveridge NJ, Gardiner E, Scott RJ, Yasawardene S, Perera A et al.
Gene expression profiling in treatment-naive schizophrenia patients identifies
abnormalities in biological pathways involving AKT1 that are corrected by anti-
psychotic medication. Int J Neuropsychopharmacol 2013; 16: 1483–1503.

15 Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ et al. A dis-
criminating messenger RNA signature for bipolar disorder formed by an aberrant
expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008; 65:
395–407.

16 Clelland CL, Read LL, Panek LJ, Nadrich RH, Bancroft C, Clelland JD. Utilization of
never-medicated bipolar disorder patients towards development and validation
of a peripheral biomarker profile. PLoS ONE 2013; 8: e69082.

17 Gutierrez-Fernandez A, Gonzalez-Pinto A, Vega P, Barbeito S, Matute C. Expression
of oligodendrocyte and myelin genes is not altered in peripheral blood cells of
patients with first-episode schizophrenia and bipolar disorder. Bipol Disord 2010;
12: 107–109.

18 Machado-Vieira R, Zanetti MV, Teixeira AL, Uno M, Valiengo LL, Soeiro-de-Souza
MG et al. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar
disorder. Eur Neuropsychopharmacol 2015; 25: 468–473.

19 Christofolini DM, Bellucco FT, Ota VK, Belangero SI, Cernach MC, Gadelha A et al.
Assessment of 22q11.2 copy number variations in a sample of Brazilian schizo-
phrenia patients. Schizophr Res 2011; 132: 99–100.

20 Noto C, Ota VK, Santoro ML, Gouvea ES, Silva PN, Spindola LM et al. Depression,
cytokine, and cytokine by treatment interactions modulate gene expression in

Gene expression changes in mania and psychosis
ES Gouvea et al

5

Translational Psychiatry (2016), 1 – 7



antipsychotic naive first episode psychosis. Mol Neurobiol 2015; e-pub ahead of
print 22 October 2015; doi:10.1007/s12035-015-9489-3.

21 Ota VK, Noto C, Gadelha A, Santoro ML, Spindola LM, Gouvea ES et al. Changes in
gene expression and methylation in the blood of patients with first-episode
psychosis. Schizophr Res 2014; 159: 358–364.

22 Ota VK, Noto C, Santoro ML, Spindola LM, Gouvea ES, Carvalho CM et al. Increased
expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-
naive patients with first-episode psychosis. Eur Neuropsychopharmacol 2015; 25:
2416–2425.

23 Santoro ML, Gadelha A, Ota VK, Cunha GR, Asevedo E, Noto CS et al. Gene
expression analysis in blood of ultra-high risk subjects compared to first-episode
of psychosis patients and controls. World J Biol Psychiatry 2015; 16: 441–446.

24 Vessoni AL. Adaptação e estudo de confiabilidade da escala de avaliação das
síndromes positiva e negativa para a esquizofrenia no Brasil. São Paulo Escola
Paulista de Medicina 1993.

25 Lima MS, Soares BG, Paoliello G, Machado Vieira R, Martins CM, Mota Neto JI et al.
The Portuguese version of the Clinical Global Impression-Schizophrenia Scale:
validation study. Rev Bras Psiquiatr 2007; 29: 246–249.

26 Bressan RA, Chaves AC, Shirakawa I, de Mari J. Validity study of the Brazilian
version of the Calgary Depression Scale for Schizophrenia. Schizophr Res 1998; 32:
41–49.

27 Higuchi CH, Ortiz B, Berberian AA, Noto C, Cordeiro Q, Belangero SI et al. Factor
structure of the Positive and Negative Syndrome Scale (PANSS) in Brazil: con-
vergent validation of the Brazilian version. Rev Bras Psiquiatr 2014; 36: 336–339.

28 Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK et al. The possible role of
the Akt signaling pathway in schizophrenia. Brain Res 2012; 1470: 145–158.

29 Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. Mechanism
of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15:
6541–6551.

30 Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of
psychotropic drugs. Ann Rev Pharmacol Toxicol 2009; 49: 327–347.

31 Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion
on multiple fronts. Trends Biochem Sci 2004; 29: 233–242.

32 Weichhart T, Saemann MD. The PI3K/Akt/mTOR pathway in innate immune cells:
emerging therapeutic applications. Annals of the rheumatic diseases. Ann Rheum
Dis 2008, 67 Suppl 3: iii70–iii74.

33 Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase
Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons.
Proc Natl Acad Sci USA 1999; 96: 8745–8750.

34 De Sarno P, Li X, Jope RS. Regulation of Akt and glycogen synthase kinase-3 beta
phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43:
1158–1164.

35 Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evi-
dence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004;
36: 131–137.

36 Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A et al. AKT1 is
associated with schizophrenia across multiple symptom dimensions in the Irish
study of high density schizophrenia families. Biol Psychiatry 2008; 63: 449–457.

37 van Beveren NJ, Buitendijk GH, Swagemakers S, Krab LC, Roder C, de Haan L et al.
Marked reduction of AKT1 expression and deregulation of AKT1-associated
pathways in peripheral blood mononuclear cells of schizophrenia patients. PLoS
ONE 2012; 7: e32618.

38 Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev 2006; 16:
203–208.

39 Forstner AJ, Hofmann A, Maaser A, Sumer S, Khudayberdiev S, Muhleisen TW et al.
Genome-wide analysis implicates microRNAs and their target genes in the
development of bipolar disorder. Transl Psychiatry 2015; 5: e678.

40 Caputo V, Ciolfi A, Macri S, Pizzuti A. The emerging role of MicroRNA in schizo-
phrenia. CNS Neurol Disord Drug Targets 2015; 14: 208–221.

41 Devasthanam AS, Tomasi TB. Dicer in immune cell development and function.
Immunol Invest 2014; 43: 182–195.

42 Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ. Upregulation of dicer and
microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in
schizophrenia. Biol Psychiatry 2011; 69: 180–187.

43 Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is
associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010;
15: 1176–1189.

44 Sanders AR, Goring HH, Duan J, Drigalenko EI, Moy W, Freda J et al. Transcriptome
study of differential expression in schizophrenia. Hum Mol Genet 2013; 22: 5001–5014.

45 Zhou Y, Wang J, Lu X, Song X, Ye Y, Zhou J et al. Evaluation of six SNPs of
MicroRNA machinery genes and risk of schizophrenia. J Mol Neurosci 2013; 49:
594–599.

46 Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong asso-
ciation of de novo copy number mutations with sporadic schizophrenia. Nat
Genet 2008; 40: 880–885.

47 Zhang Z, Convertini P, Shen M, Xu X, Lemoine F, de la Grange P et al. Valproic acid
causes proteasomal degradation of DICER and influences miRNA expression. PLoS
ONE 2013; 8: e82895.

48 Yu H, Bi W, Liu C, Zhao Y, Zhang D, Yue W. A hypothesis-driven pathway analysis
reveals myelin-related pathways that contribute to the risk of schizophrenia and
bipolar disorder. Progress Neuropsychopharmacol Biol Psychiatry 2014; 51:
140–145.

49 Feng JM, Hu YK, Xie LH, Colwell CS, Shao XM, Sun XP et al. Golli protein negatively
regulates store depletion-induced calcium influx in T cells. Immunity 2006; 24:
717–727.

50 Jacobs EC, Pribyl TM, Feng JM, Kampf K, Spreur V, Campagnoni C et al. Region-
specific myelin pathology in mice lacking the golli products of the myelin basic
protein gene. J Neurosci 2005; 25: 7004–7013.

51 Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT. Modulation of cano-
nical transient receptor potential channel 1 in the proliferation of oligoden-
drocyte precursor cells by the golli products of the myelin basic protein gene. J
Neurosc 2011; 31: 3625–3637.

52 Feng JM, Fernandes AO, Campagnoni CW, Hu YH, Campagnoni AT. The golli-
myelin basic protein negatively regulates signal transduction in T lymphocytes. J
Neuroimmunol 2004; 152: 57–66.

53 Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ et al. Genetic disruption
of voltage-gated calcium channels in psychiatric and neurological disorders.
Progress Neurobiol 2015; 134: 36–54.

54 Lidow MS. Calcium signaling dysfunction in schizophrenia: a unifying approach.
Brain Res Brain Res Rev 2003; 43: 70–84.

55 Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyas E,
Eberlin MN et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the
involvement of cytoskeleton, oligodendrocyte, energy metabolism and new
potential markers in schizophrenia. J Psychiatr Res 2009; 43: 978–986.

56 Matthews PR, Eastwood SL, Harrison PJ. Reduced myelin basic protein and actin-
related gene expression in visual cortex in schizophrenia. PLoS ONE 2012; 7:
e38211.

57 Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oli-
godendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003;
362: 798–805.

58 Wesseling H, Gottschalk MG, Bahn S. Targeted multiplexed selected reaction
monitoring analysis evaluates protein expression changes of molecular risk fac-
tors for major psychiatric disorders. Int J Neuropsychopharmacol 2015; 18: 1.

59 Baruch K, Silberberg G, Aviv A, Shamir E, Bening-Abu-Shach U, Baruch Y et al.
Association between golli-MBP and schizophrenia in the Jewish Ashkenazi
population: are regulatory regions involved? Int J Neuropsychopharmacol 2009;
12: 885–894.

60 Narayan S, Kass KE, Thomas EA. Chronic haloperidol treatment results in a
decrease in the expression of myelin/oligodendrocyte-related genes in the
mouse brain. J Neurosci Res 2007; 85: 757–765.

61 Sugai T, Kawamura M, Iritani S, Araki K, Makifuchi T, Imai C et al. Prefrontal
abnormality of schizophrenia revealed by DNA microarray: impact on glial and
neurotrophic gene expression. Ann N Y Acad Sci 2004; 1025: 84–91.

62 Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1 Nudel. (Noodle):
flexible in the cell? Cytoskeleton 2011; 68: 540–554.

63 Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M et al. Complete
loss of Ndel1 results in neuronal migration defects and early embryonic lethality.
Mol Cell Biol 2005; 25: 7812–7827.

64 Chansard M, Wang J, Tran HC, Neumayer G, Shim SY, Park YU et al. The cytos-
keletal protein Ndel1 regulates dynamin 2 GTPase activity. PLoS ONE 2011; 6:
e14583.

65 Hayashi MA, Portaro FC, Bastos MF, Guerreiro JR, Oliveira V, Gorrao SS et al.
Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase
activity by disrupted-in-schizophrenia 1. Proc Natl Acad Sci USA. 2005; 102:
3828–3833.

66 Hayashi MA, Portaro FC, Tambourgi DV, Sucupira M, Yamane T, Fernandes BL et al.
Molecular and immunochemical evidences demonstrate that endooligopeptidase
A is the predominant cytosolic oligopeptidase of rabbit brain. Biochem Biophys
Res Commun 2000; 269: 7–13.

67 Reiner O. LIS1. let's interact sometimes... (part 1). Neuron 2000; 28: 633–636.
68 Reiner O, Cahana A, Escamez T, Martinez S. LIS1-no more no less. Mol Psychiatry

2002; 7: 12–16.
69 Tomppo L, Hennah W, Lahermo P, Loukola A, Tuulio-Henriksson A, Suvisaari J

et al. Association between genes of Disrupted in schizophrenia 1 (DISC1) inter-
actors and schizophrenia supports the role of the DISC1 pathway in the etiology
of major mental illnesses. Biol Psychiatry 2009; 65: 1055–1062.

70 Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P et al. Association
of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum dis-
orders and with underlying cognitive impairments. Hum Mol Genet 2007; 16:
2517–2528.

Gene expression changes in mania and psychosis
ES Gouvea et al

6

Translational Psychiatry (2016), 1 – 7



71 Lipska BK, Mitkus SN, Mathew SV, Fatula R, Hyde TM, Weinberger DR et al.
Functional genomics in postmortem human brain: abnormalities in
a DISC1 molecular pathway in schizophrenia. Dialogues Clin Neurosci 2006; 8:
353–357.

72 Rampino A, Walker RM, Torrance HS, Anderson SM, Fazio L, Di Giorgio A et al.
Expression of DISC1-interactome members correlates with cognitive phenotypes
related to schizophrenia. PLoS ONE 2014; 9: e99892.

73 Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA et al.
Individuality and variation in gene expression patterns in human blood. Proc Natl
Acad Sci USA. 2003; 100: 1896–1901.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Gene expression changes in mania and psychosis
ES Gouvea et al

7

Translational Psychiatry (2016), 1 – 7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Gene expression alterations related to mania and psychosis in peripheral blood of patients with a first episode of psychosis
	Introduction
	Materials and methods
	Study population
	Analysis of transcript levels of selected genes
	Statistical analysis

	Results
	Analysis of transcript levels of selected genes among antipsychotic-naive SCZ, BD patients and healthy controls
	Correlation between gene expression and clinical characteristics

	Discussion
	SCZ and BD
	BD and healthy controls

	Conclusions
	Acknowledgements
	Note
	References




