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Transcriptomic signatures of neuronal differentiation
and their association with risk genes for autism spectrum
and related neuropsychiatric disorders
AG Chiocchetti1, D Haslinger1, JL Stein2, L de la Torre-Ubieta2, E Cocchi3, T Rothämel4, S Lindlar1, R Waltes1, S Fulda5,
DH Geschwind2 and CM Freitag1

Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or
schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely
used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We
implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic
level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating
developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y
models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time
warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated
gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We
confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we
report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS
and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal
differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in
histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the
underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in
ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of
neuropsychiatric disorders.
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INTRODUCTION
Autism spectrum disorders (ASD) share some of their genetic
architecture with other neuropsychiatric disorders such as fragile X
syndrome (FXS), schizophrenia (SCZ) and intellectual disabilities
(ID). It is known that the fragile X mental retardation protein
(FMRP), a translational repressor causal for FXS, specifically binds
ASD risk genes,1 and common variants of genes involved in the
regulation of FMRP pathways are associated with ASD.2 In
addition, several genes affected by copy number variations (CNVs)
and mutations detected in ASD patients were also associated with
SCZ3,4 or ID.5,6 However, integrative analyses investigating the
functional overlap between ID and ASD showed that only ASD
genes, but not ID-implicated genes, are enriched in neocortical
developmental networks.7,8 Thus, it is unclear to which extent the
genetic overlap reflects shared or differential pathomechanisms.
Investigating the effect of disease risk genes on neurodevelop-
ment is of major interest to understand the etiology and
pathophysiology of these neuropsychiatric disorders. Feasible,

reproducible and scalable cell models are thus needed to
elucidate the functional consequences of genetic variants. Human
neuronal models used so far include neurons differentiated from
embryonic stem cells, induced pluripotent stem cells (iPSCs),
human neuronal progenitor cells (NPCs) or neuroblastoma cell
lines. The choice between the different cell models involves clear
tradeoffs. The SH-SY5Y neuroblastoma cell line is the most cited
in vitro model in neuropsychiatric research and has the advantage
of low cost, ease of culture (feasibility), reproducibility and
available literature. Despite its origin from a tumour, its
neuroectodermal lineage allows investigating neuronal pheno-
types of neurodevelopmental and neurodegenerative diseases.
New models based on embryonic stem cells or iPSCs promise to
recapitulate in vivo development more faithfully than this or other
cell lines,9 leading to the question of the most appropriate use of
SH-SY5Y models in modelling of neuropsychiatric disorders. Yet, it
should be acknowledged that embryonic stem cell, iPSC and
human NPC models are expensive, and culturing and differentiat-
ing of these cells in a reproducible manner is far more difficult
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than for SH-SY5Y cells.10,11 Recognising the limitations of all model
systems, it therefore is important to understand how the optimal
protocol for using the efficient SH-SY5Y model system recapitu-
lates in vivo development, which will be helpful in guiding this and
future studies. In summary, we focused on improving neuronal
differentiation of SH-SY5Y cells because of feasibility, reproduci-
bility, the broad use of this model in previous publications and the
large data resources available.
Goldie et al.12 summarised that 72% of SH-SY5Y differentiation

protocols used all-trans retinoic acid (RA) only, whereas others
used a sequential treatment with RA and brain-derived neuro-
trophic factor (BDNF) or alternative agents such as 12-O-
tetradecanoylphorbol-13-acetate. However, no study has used
RA and BDNF in combination, as it is currently used in NPC and
iPSC differentiation protocols. BDNF is strongly involved in
differentiation and maintenance of cortical neurons.13,14 Here,
we tested whether a continuous exposure of SH-SY5Y to RA and
BDNF (cRA-BDNF) improves differentiation ability compared with
RA only or subsequent RA-BDNF (sRA-BDNF) protocols. Therefore,
we evaluated publicly available and newly generated transcrip-
tomic signatures of these three methods (RA-only;15 sRA-BDNF;16

and cRA-BDNF, the data set produced here) for their capacity to
model cortical development implementing the CoNTeXT
framework9 specifically developed for this use. The CoNTeXT
framework is based on a machine-learning algorithm trained on
genome-wide transcriptomic data available through the Brain
Span Atlas of the developing brain (www.brainspan.org). This data
set includes cross-sectional transcriptomic data across all human
brain regions spanning the whole lifespan (2 weeks after
conception to 4 60 years17,18). The CoNTeXT framework predicts
developmental stage and region of origin of a transcriptomic
signature, analyses gene-network preservation based on weighted
gene co-expression analysis and compares developmental transi-
tions. The accuracy of predictions can be estimated based on
empirical modelling using rank–rank hypergeometric overlap
(RRHO) tests provided in the original publication by Stein et al.9

To then exploit our improved cell system, we performed a
biostatistical analysis of generated transcriptomic signatures.
Finally, we delineated specific regulatory modules and signatures
of neuronal differentiation and their association with neuropsy-
chiatric disorders comparing ASD with FXS, ID and SCZ.

MATERIALS AND METHODS
Neuronal differentiation of SH-SY5Y
SH-SY5Y identity was confirmed by DNA fingerprinting using AmpFℓSTR
Profiler and AmpFℓSTR NGM Select PCR Amplification Kits (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer's protocol.
Cells were proliferated under standard conditions (Dulbecco's modified
Eagle medium, 10% fetal bovine serum, 1% sodium pyruvate (all Life
Technologies, Carlsbad, CA, USA) and 1% penicillin/streptomycin (PAA,
Dartmouth, MA, USA)). Here, we used a protocol for neuronal differentia-
tion applying RA and BDNF simultaneously in contrast to currently used
standard protocols.19 Cells were differentiated in Neurobasal-A medium
with 1 × GlutaMAX, 1 × B-27 supplement (all Life Technologies), 10 μM RA,
2 mM cAMP (both Sigma-Aldrich, St. Louis, MO, USA), 50 ng ml− 1 hBDNF
(Immunotools, Altenoythe, Germany), 1% PAA and 20 mM KCl over a time
course of 11 days changing the medium every other day. The time points
for mRNA analysis were set 24 h after changing the medium and were as
follows: 0 (undifferentiated cells), 1, 3, 5, 7, 9 and 11 days in vitro (DIV).

Validation of differentiation. Markers for neuronal differentiation were
analysed at mRNA and protein levels using real-time reverse transcriptase-
PCR (RT-PCR) and western blot analyses, respectively. We used CDK1 as
marker for cell division and MAPT as marker for axonal outgrowth
(Supplementary Methods and Supplementary Table 1).

Whole-genome expression analysis
mRNA microarray raw-data SH-SY5Y. For whole-transcriptome analysis of
the SH-SY5Y cell line, whole RNA of three biological replicates
of time points 0 DIV to 11 DIV was extracted using the GeneJet RNA
Purification Kit according to the manufacturer’s protocol (Fermentas)
including DNase treatment. All samples passed quality check analysis (RNA
Integrity Number RIN47, Bioanalyzer, Agilent, Santa Clara, CA, USA).
Microarray analysis using HumanHT-12 v4 Expression BeadChips (Illumina,
San Diego, CA, USA) was outsourced to Atlas Biolabs (Berlin, Germany).
Raw intensity data for each probe were extracted using GenomeStudio
software v2011.1 (Illumina). The mean signal intensities per probe were
exported for further analysis. Microarray data can be accessed through the
gene expression omnibus repository (GEO) under the accession number
GSE69838.

Computational analysis. All analyses were conducted in R-program
version 3.0.2., if not otherwise specified.
Pre-processing and quality check analysis: Microarray raw data were
log2-transformed and quantile-normalised. All Illumina probe IDs were
matched to the respective annotated Entrez Gene ID using the 'biomaRt'
Package. Entrez Gene IDs were mapped to the official human genome
nomenclature symbol. If genes were targeted by more than one probes,
the probe with the highest variance was chosen for further investigation. A
total of N=20 318 unique annotated genes were targeted by the
microarray (Supplementary Table 2). Genes that were significantly
(detection P-valueo0.05) expressed above background in all replicates
were defined as the expressed neuronal transcriptome (N=11 392).
Hierarchical cluster analysis of the top 2 000 genes by variance

(distance= 1− Pearson correlation, method= average linkage) was used to
identify methodological outliers. No samples presented with high branch
points in the cluster dendrogram. Principal component analysis confirmed
similarity of the biological replicates (Supplementary Figure 3).
Microarray mRNA expression of selected ASD-risk genes and neuronal

differentiation-specific markers were validated using relative real-time RT-
PCR and compared using Pearson correlation analysis (Supplementary
Methods, Supplementary Figure 1 and Supplementary Table 1).
CoNTExT analysis: We used the recently developed framework of
algorithms matching in vitromRNA expression signatures to transcriptomic
atlases of in vivo brain development. The CoNTExT algorithm (http://
context.semel.ucla.edu/) is a machine-learning framework that determines
the temporal and regional identity as well as preservation of co-regulated
modules based on expression signatures from 18 different stages of the
human lifespan representing early embryonic stage to an age greater than
60 years. Accuracy is dependent on the overlap in gene signatures
between the in vitro and the in vivo data. Given a − log10(P-value) = 299 in
the RRHO analysis, the accuracy of predictions was estimated to be 496%.
The effect of time on CoNTeXT scores for each stage and region and for
each data set were tested using linear regression models. Details on the
algorithms and accuracy estimation are published elsewhere.9

Data sets used for comparison of SH-SY5Y differentiation
protocols: Raw data were downloaded from the gene expression
omnibus GEO database (http://www.ncbi.nlm.nih.gov/geo/). The RA-only
data set (Korecka data set) included transcription signatures of cells
cultured for 8 days with and without all-trans RA only;15 GEO Acc Nr:
GSE43368. The sRA-BDNF data set (Nishida data set) included the ECACC-
derived SH-SY5Y cell line treated with RA and BDNF for 5 and 3 days
subsequently;16 GEO Acc Nr: GSE9169. All data sets were log2-transformed
and quantile-normalised as described above.
Identification of differentially expressed genes: In this analysis
only the expressed gene set (N= 11 392) was used. We applied linear
fixed-effect models ('nlme' package in R) accounting for random effects
between the three replicates with the two dichotomized time points (for
example, 0 DIV vs 3 DIV) predicting expression values. Only differentially
expressed (DEX) genes with (Benjamini–Hochberg) false discovery rate
(FDR)o0.05 (accounting for N= 11 392 tests) were included in GO term
analysis.
Dynamic time warp analysis: Wexler et al.20 have successfully adapted
Dynamic time warp (DTW) analysis to identify time-dependent gene
activation. The authors provided evidence that the DTW distance increases
linearly with background noise. DTW analysis was performed using the
‘dtw’ package in R. All expressed genes were analysed (N=11 392) and
compared with a noise matrix (Supplementary Methods). We defined the
maximum DTW distance (DTW dissimilarity score) as the intercept of a
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linear model predicting the DTW distance in dependence of background
noise for each gene in our cell line model (Supplementary Figure 4).
Genes with a DTW distance larger than 2 × noise intercept (upper 95%

boundary) were considered for further analysis. Genes with similar
regulatory patterns were grouped by k-means cluster analysis on the
Euclidean distances. Optimal number of clusters was defined applying the
‘elbow criterion’ based on the Scree-plot of within-cluster sum of squares
around cluster means (Supplementary Figure 4) as suggested.21

Parallel independent component analysis: Parallel independent
component analysis (pICA) analysis is an exploratory approach based on
blind source separation techniques to identify regulatory genes contribut-
ing to biological processes.20,22 Here, we used the ‘fastICA’ package in
R-program and iterated the pICA 250 times extracting two to eight
components, respectively (Supplementary Methods). A total of four
components was extracted with a mean correlation coefficient r40.999
of all gene loads (first principle component) over all iterations. Genes were
considered as significant if their load within the components was above
the conservative cutoff20 of score43 (gene load; Supplementary Figure 5).
The analysis was performed using the whole neuronal transcriptome
(N= 11 392).
Weighted gene co-expression network analysis: Weighted gene co-
expression network analysis (WGCNA) analyzes co-expression patterns
between genes and identifies gene sets (modules) based on their
topological overlap (Supplementary Methods). WGCNA was performed
using the ‘WGCNA’ package in R as recommended.23 Here, to identify
network modules of regulatory genes only, we used the neuronal
transcriptome gene set (N= 11 392) and calculated a topological overlap
matrix based on a signed adjacency (Supplementary Methods and
Supplementary Figure 6).
Network analysis and hub gene identification: Genes with a high
functional impact within a network are hypothesized to be highly
connected and members of several regulatory pathways (that is, hub
genes). The connectivity of a gene is defined by the sum of its weighted
correlation with the other genes as defined through the adjacency
measure in the WGCNA. We also defined network centrality (Degree) of a
node (number of connections a gene has) and Betweenness (that is, the
number of shortest connections across all nodes passing through the node
of interest). To reduce hyperconnectivity, we only considered two genes to
be connected (Degree) if their expression correlated with a Spearman
cor40.90. All calculations were performed using the ‘igraph’ package.
GO-term enrichment analysis: GO-term enrichment was performed
with the ‘topGO’ package using the weight01 algorithm, where the
significance of a GO-term is weighted by the enrichment score of related
GO terms in combination with a bottom-up elimination algorithm,24

increasing the efficiency in detecting relevant associated terms. Individual
tests are not independent, and therefore multiple testing does not apply.
P-values extracted thus can be considered as corrected for multiple testing.
The gene universe was defined as the 11 392 genes significantly
expressed.
Risk gene enrichment analysis: In total, we tested the following 14
gene lists: gene counts refer to genes targeted on our chip:’ 01_AutismKB’:
genes (N=3 050), non-syndromic and/or syndromic, listed in AutismKB;
‘02_AutismKB_core’: genes (N= 170) included in the high reliability core
data set of the AutismKB database (for details on these two lists see http://
autismkb.cbi.pku.edu.cn).25 ‘03_SFARI_all’: all 341 genes listed in the SFARI
Gene Autism database,26 excluding non-supported genes. ‘04_SFARI_scor-
e4plus’: all 250 genes listed in the SFARI Gene Autism Database with a
score ⩾ 4, that is, genes with minimal evidence in at least one candidate
gene study. ‘05_Voineagu_M12’: N= 443 genes within a network module
(M12) identified to be differentially regulated in post-mortem brains of
ASD individuals.27 ‘06_Voineagu_M16’: genes (N=386) also reported by
Voineagu et al.27 ‘07_Gilman_Netbag’: ASD-risk genes (N= 72) identified
through a network-based analysis of ASD associated rare de novo CNVs.28

‘08_Iossifov_RDNV’: genes (N= 672) targeted by rare de novo likely gene-
disrupting variants identified through exome sequencing.29 ‘09_DeRu-
beis_RCV’: genes (N= 100) recurrently targeted by rare coding variants.30

‘10_Darnell_FMRP’: genes (N=837) whose mRNAs are directly bound by
the FMRP gene.1 ‘11_Parikshak_ID_genes’: genes (N=388) implicated in ID
retrieved from multiple publications.7 ‘12_Pinto_ID_genes’: manually
curated list of genes (N= 252) implicated in monogenic ID.5 ‘13_Fro-
mer_SCZ_allRNDV’: genes (N= 676) targeted by rare de novo variation in
SCZ.31 ‘14_Cocchi_Pruning’: a manually curated list of (N=117) genes
involved in pruning.32 For detailed information on all gene lists see
Supplementary Table 3 and Supplementary Figure 7).

Enrichment testing was performed applying Fisher’s exact test.
Benjamini–Hochberg correction for multiple testing (number of risk-gene
lists times number of clusters identified in each analysis) was applied. As
the reference genome, the list of all 20 318 Entrez Genes targeted on the
chip was used.

RESULTS
Basic confirmation of neuronal differentiation
SH-SY5Y cells continuously exposed to RA and BDNF (cRA-BDNF)
for 11 days yielded a stereotypical multipolar neuronal morphol-
ogy with one to two long axon-like processes and several shorter
dendrite-like processes as reported in the original publication by
Encinas et al.19 Robust differentiation was confirmed by known
markers for cell cycle (CDK1) and axonal outgrowth (MAPT), which
were down-regulated and up-regulated, respectively
(Supplementary Figure 1a). Microarray expression data of ASD
risk genes (SHANK3, NRXN1, CNTNAP2, DHCR7, GABRB3 and GRIK2),
glutamatergic receptors (GRIN1, GRIA2, GRM1 and GRM4) and
dopaminergic markers (TH and DRD4) that were previously
reported to be regulated during neuronal differentiation,33

showed high correlation with expression levels assessed by real-
time RT-PCR demonstrating technical reproducibility of microarray
data (correlation coefficients ranging from 0.561 (GRIA2) to 0.984
(NRXN1); Supplementary Figure 1b). Markers for neuronal sub-
types, including cholinergic, dopaminergic, serotonergic, GABAer-
gic and glutamatergic neurons were expressed (Supplementary
Figure 2). The dopamine transporter (DAT1) was strongest
expressed at undifferentiated stages and down-regulated during
differentiation. The dopaminergic marker TH (Supplementary
Figure 2) was not regulated, whereas cholinergic markers (ACHE,
SLC18A3) were up-regulated. We also observed a modest up-
regulation of glutamatergic (SLC17A7) and GABAergic (SLC32A1)
transporters. Markers specific for motor neurons were expressed
but not regulated during differentiation. The implemented
differentiation protocol thus yielded an unspecific mixture of
neurons.

Evaluation and comparison of the improved neuronal
differentiation method
Similar to findings in the human brain,34 the SH-SY5Y neuronal
transcriptome, that is, the genes expressed above microarray
background in our cell model included 11 392 out of 20 318 genes
targeted on the microarray.
The CoNTExT framework9 was used to estimate differentiation

stage and brain-regional identity of our cell model. Expression
signature of cRA+BDNF SH-SY5Y cells was reminiscent of brain
tissue developed for at least 15–19 weeks post conception (Stages
5–8; accuracy496%) and was most likely to be of a cortical
identity (accuracy490%; Figure 1a). In contrast, the two published
data sets on SH-SY5Y neurodevelopment that differentiated cells
either by RA treatment-only (RA-only)15 or by sRA-BDNF16 did not
show a transcriptional phenotype as mature as cells differentiated
by the continuous exposure to RA and BDNF as used here.
Regression analysis of CoNTeXT scores confirmed this observation:
changes in our data set for stages 1, 2, 4–10, 12 and 15 were
significantly depending on time (Supplementary Table 4), whereas
no significant association between differentiation over time and
CoNTeXT scores was identified for the Korecka data set. Only
scores for Stage 1 of sRA-BDNF-treated SH-SY5Y were significantly
altering over time. In summary, RA-only cells were least mature,
followed by sRA-BDNF cells.
cRA+BDNF and sRA-BDNF cells matched cortical regions with

no significant changes over time, whereas RA-only were striatal at
the beginning of differentiation and turned more cortical at later
stages. However, changes were not significant. Co-regulatory
network modules (Figure 1b) were specifically preserved in the
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sRA-BDNF and cRA+BDNF, but not the RA-only-treated cells. This
included preservation of mitosis, neuronal development, gluta-
matergic and GABAergic transmission, but not modules related to
synaptogenesis, glia-genesis or immune response (for details see
Supplementary Table 4 and previous publications by Stein et al.9).
In the RRHO maps (Figure 1c), only our improved model showed
similarities with the transition from early stages 1 or 2 to stage 5
and beyond, including both down and up-regulated gene sets.
Mapping of transcriptional signatures of mid-fetal cortical layers
from gestational stage 5–6 (ref. 18) revealed that sRA-BDNF and
cRA+BDNF treatments can model the transition of cells from the

ventricular layers to the subplate layer, where the cRA+BDNF
system showed highest significance and accuracy of prediction
(96% for stage and above 85% for regional identity; for details
see Materials and Methods section and original CoNTeXT
publication9).

Identification of genes implicated in neuronal differentiation
To robustly identify the subset of genes regulated during neural
development, we implemented three complementary statistical
approaches: DEX analysis identifies genes by comparing two time

Korecka Nishida Chiocchetti
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points, DTW analysis identifies genes that are regulated across a
temporal trajectory and ICA extracts individual processes and
underlying genes. Similar to a recent publication,35 a total of
N= 6 049 genes were DEX with a FDRo0.05 at least at one time
point compared with undifferentiated cells (Figure 2a and
Supplementary Table 5). N= 3 169 genes were up-regulated and
N= 2 894 genes down-regulated, of which 14 genes were up-
regulated at one time point and down-regulated at another
(ALDH9A1, BCL11A, CNDP2, CTSF, EPHB4, GREM2, KCNG1, MRAP2,
NET1, PHKB, SCAND1, TEAD2, TRAM2 and ZNF217). No gene was
significantly (FDRo0.05) regulated after 1 day of differentiation.
However, a total of 3 387 genes were regulated with nominal
significance at that time point. Most of the transcriptional
regulation occurred during the first week. In accordance, we
observed higher similarities between later time points than earlier
time points (Supplementary Figure 3). GO-term analysis attributed
up-regulated DEX genes to synaptic exocytosis and transmission
and extracellular matrix re-organization, whereas genes down-
regulated belonged to GO-terms mitosis or DNA replication
(all weighted P-values o10E− 4; Figure 2b and Supplementary
Table 5). A similar pattern was observed when analyzing regulated
genes of each time point individually, linearly with the expected
induction of neuronal differentiation and the cessation of cell
division.
The DTW approach identified 509 genes with continuous or

dynamic changes over time (Figure 2c, Supplementary Table 6
and Supplementary Figure 4). All but four of these genes were a
subset of the DEX gene set. Consequently, 8.3% of the total DEX
genes were also dynamically regulated during neuronal
differentiation.
The DTW genes clustered into five trajectories or stimulatory

responses (Figure 2c); three showed a positive response (coral,
lavender and skyblue clusters) and two a negative response
(yellow and aquamarine clusters). The cluster with the strongest
positive regulation (skyblue) comprised 18 genes significantly
enriched for RA response (Figure 2c and Supplementary Table 6).
The coral (low-positive responder) and lavender (intermediate-
positive responder) were enriched for genes related to develop-
mental processes (GO-terms extracellular matrix disassembly and
developmental growth) and neuronal signaling, respectively. The
down-regulated clusters were associated with cell division and cell
cycle transition (yellow) or autonomic nervous system develop-
ment and ventricular septum development (aquamarine). The
yellow cell cycle cluster showed an initial weak positive response
after induction of differentiation before changing to the inhibitory
response.

Finally, four components were observed by ICA (Figure 3a) with
a total of N= 699 high loading genes (Supplementary Table 7 and
Supplementary Figure 5). On the basis of GO-term enrichment
analysis (Figure 3b and Supplementary Table 7), the four biological
entities (C1–4) were labeled as differentiation and cellular
organization (C1), developmental processes (C2), cell cycle
regulation (C3) and protein synthesis and modification processes
(C4). In addition, C1 contained several zinc-finger proteins and
DNA-binding proteins supporting the idea that C1 is a transcrip-
tional regulatory process.
Combining all genes identified through DEX, DTW and ICA

analyses yielded 6 262 genes implicated in neuronal differentia-
tion. Of these, 299 were identified in all three analyses (Figure 4a).
This high-confidence gene set was implicated in cell cycle
regulation.

Co-expression network analysis
WGCNA identified 20 regulatory modules (Figures 4b–d and
Supplementary Table 8). As expected, modules up-regulated early
during neuronal differentiation were enriched for processes
needed for membrane remodeling (magenta), protein stabilization
(lightcyan) or axonal guidance (pink). Late activated modules were
associated with synaptic transmission (blue) or dendrite develop-
ment (darkgreen). Modules up-regulated during early phases of
differentiation only were related to inflammatory response (light-
yellow) and cellular fatty-acid metabolism (darkgrey).
In contrast, early down-regulated modules were attributed to

cell division (black) or mitochondrial organization (grey60, brown).
Modules inhibited at later stages also included genes associated
with cell cycle regulation (turquoise) and DNA metabolic
processes (cyan, purple). Modules associated with splicing
(darkturquoise) or cell projection and transcriptional regulation
were undulating over time.

Enrichment of risk genes in regulatory gene modules of neuronal
differentiation
We next tested identified modules and gene sets for enrichment
with genes implicated in either ASD, FXS, SZ or ID using 14
published lists of disorder-specific risk genes (Supplementary
Table 5). We first tested the up- and down-regulated DEX gene
sets and observed a significant (FDRo0.05) enrichment among
the combination of all genes up-regulated at any time point for
risk genes of all four disorders (Figures 5a and b and
Supplementary Table 9). The strongest enrichment (log odds ratio
(OR) = 1.20, FDRo0.01) was observed for genes belonging to a

Figure 1. Evaluation of neuronal differentiation comparing three SH-SY5Y protocols. (a) CoNTExT analysis comparing mRNA signatures
previously published (Korecka; Nishida) and generated here (Chiocchetti). mRNA signature of the cells (Chiocchetti data set) differentiated by
continuous exposure to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) was showing a more mature phenotype than the
other two sets. Our data set was most similar to the cortical area and was reminiscent of 15–19 weeks post conception (Stage 5) or above. In
addition, our data set showed no reminiscence for earlier stages after 11 days in vitro (DIV; see black arrows). Regression analyses testing
association of time with CoNTeXT scores are provided in Supplementary Table 4. (b) Module preservation analysis comparing co-expression
network modules in vivo vs in vitro. Z-scores are plotted against the number of genes within each module. Highest significant preservation (Z-
score) is observed for cell cycle-related (red, magenta) modules in both data sets using BDNF (Nishida and Chiocchetti). In our set-up, neuronal
function modules such as ‘glutamatergic synaptic transmission, axon and dendrite development’ (salmon, green) or ‘GABAergic synaptic
transmission and synaptic vesicle exocytosis’ (lightgreen) were nominally significant, whereas ‘axon guidance, neuronal migration and GTPase
activity’ (purple) show intermediate (Z-score 2–10) preservation. No preservation was observed for modules related to synaptic transmission
(pale-turquoise, yellow), gliogenesis (tan, yellow) or immune response (black, orange) in any data set. Dashed lines mark Z-scores blue= 1.96,
red= 4, green= 10. For details see Supplementary Table 4. (c) Mapping of transitions between stages and cortical layers is shown as rank–rank
hypergeometric overlap (RRHO) maps. Genes were ranked based on signed P-values comparing undifferentiated versus differentiated cells.
These ranks were binned (200 genes each) and respective genes were tested using a hypergeometric test for overlap with the genes in all bins
generated of in vivo comparison of stages (x vs y axis) or cortical layers, respectively. P-values of each comparison are plotted. The coloring of
− log10 (P-values) is scaled to the maximum values observed in the original publication by Stein et al.9 The maximum P-value within each
analysis is shown as a measure for overall accuracy. Simulations performed by Stein et al.9 predict that given a –log10(P-value) ~ 300 in the
stage transition mapping the CoNTeXT algorithm can predict the developmental stage with an estimated accuracy ~ 96% and brain region
accuracy ~ 90%. For details see original publication.9 AMY, amygdala; CBC, cerebellar cortex; HIP, hippocampus; STR, striatum; THAL, thalamus.
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network module (M12) that has previously been identified to be
DEX in ASD brains.36 Among the set of down-regulated genes,
only genes implicated in ID, but not in any of the other
neuropsychiatric disorders, were significantly enriched. When
studying the individual time points, enrichment for ASD risk
genes listed in the Autism knowledgebase (AutismKB) was similar
over all time points. However, genes up-regulated at later time
points (7–11 DIV) were more likely (log OR40.81, all FDRo0.01)

to be FMRP targets than those at earlier time points (2 DIV: log
OR= 0.32, FDR40.1; 5 DIV: log OR= 0.61, FDRo0.01). In addition,
we observed significant under-representation (log OR o − 0.73,
FDRo0.01) after 5 and 9 DIV of these targets among down-
regulated genes (Figures 5a and b). Genes regulated after 5, 7 and
11 DIV were enriched for ID-implicated genes only.
In addition, enrichment for the ASD-associated module M12,

which is a synapse and neuron function-related gene cluster,
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Figure 2. Genes differentially expressed (DEX) over time during differentiation. (a) Number of genes significantly DEX comparing each time
point (each N= 3) to 0 DIV (day in vitro; N= 3). Most genes are DEX after 7 DIV. Number of genes with an false discovery rate (FDR)o0.05 are
shown in parentheses in a darker shade. No DEX gene at 1 DIV survived correction for multiple testing. (b) GO-term enrichment of DEX genes.
Neuron-related biological processes including synaptic transmission or vesicle exocytosis are enriched in up-regulated gene sets; cell division
and translation-related processes in the down-regulated set, respectively. Weighted P-values of the five most significant terms are shown.
Green line marks the weighted Po0.05 cutoff. (c) Heatmap of 509 genes identified to be dynamically regulated over time (dynamic time warp
(DTW) analysis). Genes were selected based on their DTW distance (DTWdist) score (grey values) when compared with the expected
background noise signal calculated for each gene (Supplementary Figure 4). On the basis of k-means cluster analysis and this heatmap, we
decided to cluster genes into five potential regulatory groups. (d) GO-term enrichment analysis of identified clusters shows up-regulated
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increased over time, whereas enrichment for the glia and ASD-
associated module M16 decreased. SCZ-implicated genes targeted
by de novo mutations showed a weak association (FDRo0.1) with
up-regulated genes after 7 DIV. Genes implicated in synaptic
pruning were, similar to ASD genes, enriched among up-regulated
genes only.
Next, we investigated whether the risk genes implicated in the

neuropsychiatric disorders of interest here were enriched in
dynamically regulated genes (DTW genes; Figure 5c). We report an
association with ASD-risk genes, specifically when testing all DTW
genes (log OR= 0.57, FDRo0.01). FMRP-targeted genes were
enriched among the set of genes associated with extracellular
matrix assembly and developmental growth. ASD genes listed in
the AutismKB database were enriched among the aquamarine
(nervous system development), the lavender (synaptic transmis-
sion) and the coral (development) clusters. No significant
enrichment was identified for SCZ- or ID-implicated genes.
When testing the specific underlying biological processes (that

is, independent components; ICA), only genes listed in AutismKB
and the glia-associated ASD-module M16 were found to be
enriched among genes contributing to developmental processes
(ICA c2) or translational processes (ICA c4; Figures 5d).
ASD genes were predominately enriched among up-regulated

modules identified through WGCNA, that is, the blue, darkgreen,
lightcyan, orange and pink modules (Figure 5e). These modules
refer to synaptic transmission, dendrite development, tissue
remodeling, histone modifications and axon guidance, respec-
tively. The blue and pink modules were also associated with FMRP

targets. One down-regulated module (purple, transcriptional
response to stress) and one up-regulated gene set (royalblue,
branching, cell adhesion and morphological development) were
associated with genes identified in mutation screens of ASD and
SCZ as well as FMRP targets (all log OR40.97, FDRo0.05), but not
with ID-implicated genes. Despite the overlap of risk genes
between ASD and ID, only the darkgreen module was associated
with ID and ASD. Again, for ID genes we observed that the down-
regulated darkturquoise gene set is significantly enriched for ID
genes but not for FMRP targets.
Finally, we constructed a correlation network of the neuronal

transcriptome to test the hypothesis that genes implicated in
neuropsychiatric disorders are likely to be among the top
connected hub genes, defined as the upper 10% using network
measures for Connectivity, Betweenness and Degree (for details
see Materials and Methods). Here, we showed that ASD and ID
genes are enriched among two different types of hub genes: ID
genes can be found among highly connected genes (Degree,
Connectivity; log OR = 0.79, FDRo0.05), whereas ASD risk genes
were among hubs with high influence on information transfer
within a system (Betweenness, log OR= 0.40, FDRo0.01), that is,
genes that potentially connect networks or modules (Figure 5f
and Supplementary Table 9).
Voineagu’s Module M16 genes (log OR= 1.06, FDRo0.01) and

pruning genes (log OR= 1.21, FDRo0.01) were also enriched
among highly connected genes, whereas genes belonging to
gene set M12 were likely to be among information transfer genes
(Betweenness, log OR= 1.06, FDRo0.01).
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Figure 4. Overlap of results and weighted gene co-expression network analysis. (a) Overlap of gene sets identified through linear regression
(false discovery rate (FDR)o0.05; Figure 2a) DEX, dynamic time warping analysis (DTW; Figure 2c) and parallel independent component
analysis (pICA; Figure 3). (b) Weighted gene co-expression network analysis (WGCNA) module definition based on topological overlap; colors
correspond to modules identified. (c) Module Eigenvalues (that is, first principal component; Eigengene) of log2 fold changes of the respective
modules normalised to time point 0 DIV. (d) GO-term enrichment analysis of identified network modules. Weighted P-values of the five most
significant terms are shown. Green line marks the weighted Po0.05 cutoff.

Neuropsychiatric risk genes during neuronal differentiation
AG Chiocchetti et al

8

Translational Psychiatry (2016), 1 – 12



DISCUSSION
Continuous exposure to RA and BDNF of SH-SY5Y cell line
improves neuronal differentiation
As the utility of the SH-SY5Y model to study neuronal differentia-
tion depends at least partially on how well it models in vivo
development,9 we tried to improve current differentiation
protocols and evaluated the capacity of these differentiated cells
to model cortical development. One major limitation of this model
is its origin from a tumor. The cell line shows several well-
described cytogenetic aberrations including oncogene-spanning
CNVs.37 Tumor-derived cell lines have a highly active, dysregu-
lated cell cycle, which might bias the interpretability of cell cycle-
associated findings. However, to our knowledge, the reported
CNVs do not span major genes associated with neuronal
differentiation and neuropsychiatric disorders under study here.
The result of the CoNTExT algorithm shows that SH-SY5Y cell

lines were differentiated toward developmental stages 5–8, which
is beyond the stages achieved using established protocols.15,16 In
addition, we observed preservation of modules highly relevant for
ASD, that is, glutamatergic and GABAergic pathways. However,
neither the improved cell model nor cells derived from the original
protocols show preservation of modules associated with synaptic
transmission. In line with current discussions about neuronal

differentiation methods,38 we propose that protocols applied to
neuronal in vitro models need to be evaluated in more detail.
Most differentiation protocols for SH-SY5Y cells including either

RA-only or sequential treatment with RA and BDNF report a
dopaminergic phenotype. However, the continuous RA-BDNF
exposure protocol used here does not result in up-regulation of
the rate-limiting enzyme of dopamine, that is, the TH, and leads to
a down-regulation of the dopamine transporter DAT1. A negative
correlation between BDNF levels and dopamine receptors DRD2
and DRD3 expression has previously been reported in rat models
for stress linking the two systems.39 We hypothesize that the
immediate activation of the BDNF/TRK system during differentia-
tion underlies the negative effect on the dopamine system. It is
also interesting to note that the expression of tyrosine receptor
kinase beta in SH-SY5Y cells is activated by RA and reaches its
peaks after 5 days of exposure.12 Thus, in line with previous
publications,12 we emphasize the importance of selecting
differentiation agents and the temporal exposure of cells to these
agents based on the specific research question related to the
cell model.
In summary, it is true that SH-SY5Y cells may not allow

investigating all functional aspects of neurons; the continuous
exposure of SH-SY5Y cells to RA and BDNF improved differentia-
tion and thus allows investigating genes relevant in early cortical
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Figure 5. Risk gene enrichment analysis. Disorder-implicated risk-gene lists were tested for enrichment in (a) up-regulated differentially
expressed genes (DEX), (b) down-regulated DEX genes (no gene survived correction for multiple testing comparing time point 1 DIV; thus,
enrichment testing was not applicable), (c) genes dynamically regulated (dynamic time warp (DTW)), (d) genes contributing to biological
regulatory components (ICA); e) modules identified by the weighted gene co-expression network analysis (WGCNA) and (f) the top 10% of
genes based on Connectivity, Degree and Betweenness. Connectivity is the sum of all adjacencies for a given gene. Degree is defined as the
number of connections and Betweenness centrality is the number of shortest paths in a network passing through a given gene. For details on
the tested gene lists, see Materials and Methods section. Log-transformed odds ratios are shown if the respective false discovery rate (FDR)
o0.1. Asterisks mark significance: *FDRo0.05; **FDRo0.01. Shaded boxes on the left of heatmaps correspond to genes implicated in autism
spectrum disorder (ASD; white), fragile X syndrome (FXS; light grey), intellectual disabilities (ID; dark grey) and schizophrenia (SCZ; black).
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development and exploring regulatory networks associated with
psychiatric disorders.

DEX, ICA and DTW analyses are complementary approaches to
identify differentiation-related gene sets
Following our aim to fully characterize the neurodevelopment of
our cell model, we applied DEX, DTW and ICA. Most of the genes
identified through DTW were overlapping with DEX genes,
identifying the subset of DEX genes that is regulated dynamically.
In all, 70% of all genes identified through ICA were also identified in
the DEX approach. This again shows the usefulness of implement-
ing three complementary approaches20 to identify the whole set of
genes that is implicated in neuronal development. Considering the
GO-term enrichment analysis, we assume that the DTW–ICA-
derived expression signature corresponds to modulatory mechan-
isms regulating growing structures, whereas the short-term (DEX
only) regulatory pattern may imply cellular checkpoint mechanisms
(for example, during cell cycle regulation).

Regulatory mechanisms of neurodevelopment are relevant in
neuropsychiatric disorders
As expected, when analyzing DEX genes, cell cycle regulators were
among the down-regulated, and neuron-related or differentiation-
activating genes among the up-regulated set. When testing for
risk gene enrichment we need to consider the overlap of gene lists
across disorders. Specifically, genes implicated in ASD and FXS
showed a strong overlap. This fact may in part explain the
overlapping pattern of enrichment for these gene lists. However,
despite the overlap between SCZ and ASD risk genes or between
SCZ and SCZ-associated synaptic pruning genes, the enrichment
signature was different between the lists. Additional complexity is
added by the differing lengths of the disorder-specific gene lists,
which results in differential power to detect a significant
enrichment. Finally, it is to be expected that module-specific
gene enrichment observed for a short list is even more easily
observed for a long gene list. This, however, is not the case.
Therefore, we are confident that our conclusions with respect to
disorder-specific risk gene enrichments are valid.
In our hypothesis-free approach, we confirmed the association

of ASD-, FXS-, ID- or SCZ-implicated genes with regulation of
neuronal differentiation. In contrast to the other disorders, only
the ID-implicated genes were enriched among down-regulated
sets, pointing to a major difference in the underlying pathome-
chanisms despite the genetic overlap.
Our findings confirm a previous prediction of a computational

study reporting that variants associated with ASD specifically will
disrupt genes that are positive regulators of biological processes.40

This can now further be complemented by the finding that this
does not apply to variants causing ID, as these also affect negative
regulators. It has to be considered here that rare deleterious de
novo CNVs detected in ASD patients are enriched for ID-implicated
genes.5 Thus, to understand whether disruption of negative
regulators of neurodevelopment induces a specific subtype of ID
even in ASD individuals, we propose testing whether loss of
function mutations or gene-dosage reductions of negative or
positive regulators are specific to subgroups of patients with ID or
with ASD and ID.
The specific analysis of dynamically regulated gene sets further

suggests that ASD- and FXS-implicated genes, but not ID and SCZ-
risk genes ,are indeed expressed during the full trajectory of early
neuronal differentiation. The overlapping genetic enrichment of
ASD- and FMRP-targeted genes in the extracellular matrix-related
cluster may be driven by the overlap between the gene lists.
Interestingly, in this cluster we also observed enrichment for
genes of functional networks targeted by rare de novo CNVs in
ASD and genes belonging to the synaptic M12 ASD-associated
module identified in a post-mortem study.

ASD genes themselves are likely to be associated with
developmental processes as confirmed in the ICA analysis here.
This refines our hypothesis towards an association of ASD with
promoters of developmental processes,40 and in addition suggests
that dynamic regulators of neuronal development are more
vulnerable to genetic variation specifically in ASD.
Network analysis of the neuronal transcriptome identified 20

modules. Again, we observed specific gene-set enrichment for
ASD-, FXS-, ID- and SCZ-related genes. As detailed above, we
exclude potential power issues because we did not observe
enrichment of especially longer lists (that is, ASD_AutismKB). In
addition, despite a significant overlap of the gene lists, enrichment
itself was not overlapping and thus the enrichments were
disorder- and module-specific. An example is the down-
regulated turquoise cell cycle-related module, which was enriched
for genes implicated in ID, but not for ASD-risk genes. Among
these genes are, for example, the X-linked mental retardation
gene UPF3B41 or the CHARGE syndrome-associated gene CHD7
(chromodomain helicase DNA-binding protein 7)42. Similar to the
observations of DEX genes, the FMRP-targeted genes were under-
represented in this ID-gene-enriched cluster.
ASD genes, but not ID-implicated genes, were significantly

enriched in the pink module, which can be labeled as protein
trafficking and signaling response. Both processes have previously
been associated with ASD.43,44 Besides the ASD-associated
trafficking-related gene Neurobeachin (NBEA)45, this module
contains also other several strong ASD-associated genes, that is,
Neuroligin 3 (NGL3)46 or Neurexin 1 (NRXN1)47.
Protein trafficking has already been shown to be affected by

mutations in known ASD-risk genes, for example, Neuroligin 4
(NLGN4) mutations were reported to alter the transport of NLGN4
protein to the synaptic density.48 These findings add to the
hypothesis that axonal pathfinding and protein transport might
be pathomechanisms specific to ASD.49

A specific overlap between ASD and ID was observed for a
module associated with dendritic development (darkgreen),
supporting the assumption that the pathological overlap between
ASD- and ASD-related disorders with ID might originate from
dendritic dysgenesis.50 Among the most prominent genes in this
module is Reelin (RELN). RELN has repeatedly been associated with
ASD51 as well as with lissencephaly52 and mental retardation.53

Another interesting candidate gene is the mitogen-activated
protein kinase 3 (MAPK3/ERK3). This effector kinase mediates
glutamatergic signaling in excitatory synapses, a process highly
discussed in ASD etiological research.54

Our results support the assumption that an overlapping
pathomechanism between SCZ and ASD could be affecting
transcriptional responses to stress and cell morphological
processes. One of the most discussed transcriptional regulators
in ASD, chromodomain helicase 8 (CDH8), is part of the royalblue,
cell morphological module. Indeed, risk variants for CHD8 have
been described for both ASD and SCZ.30,55

ASD-risk genes are modulatory hubs during neuronal
differentiation
To understand the broader functional impact of gene disruptions
at a system's level, the network position of the respective genes
needs to be considered.56 We have previously shown that a rare
ASD variant can alter regulatory networks of oxidative stress,
energy metabolism and translation.57 Here, we show that risk
genes for ASD are likely to be modulatory hubs central in
information transfer during neuronal differentiation and thus
confirm that hubs are more likely to be affected by genetic risk
variants for ASD.58 Interestingly, ASD genes, but not ID-implicated
genes, were likely to be within the shortest paths between genes
(information transfer hubs), whereas ID genes but not ASD
genes were among the highly connected genes. This general
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observation is in line with the genetic model strongly discussed in
ASD research,59,60 where variants causing monogenetic disorders
show a high penetrance (that is, potentially affect central
regulators) and variants involved in complex disorders show low
penetrance (that is, modulatory variants).61 We thus suggest that
rare highly penetrant variants affect genes of high connectivity
disrupting larger parts of the network leading to a more severe
phenotype such as ID, whereas variants affecting informational
regulators can be bypassed and thus are of low penetrance such
as in ASD without ID. This supports a recent publication reporting
that common variants explain more of the ASD risk than rare
variants.62 We hypothesize that a mutation can cause ID in ASD
depending on the network position of the gene within a
regulatory network. Interestingly, the observed enrichment for
gene-disrupting mutations in ASD cohorts was driven by low IQ
individuals.29 Thus, in complex disorders, the network position of
an affected gene is a central parameter when estimating the
pathological effect of a variant.

CONCLUSION
Our work takes an unbiased view on an optimized SH-SY5Y
neuronal differentiation model. Although these cell lines do not
model neurodevelopment as well as organoids, iPSC or primary
progenitor cultures,63,64 transcriptome analysis indicates that
when optimized they do capture early cortical development with
high fidelity. Further, they have the advantages of ease and low
cost; therefore, in some circumstances, especially molecular and
drug screening, they provide a valuable model system. The
profound translational analysis of the developmental trajectory
showed that the genetic networks differ across related disorders
and thus encourages future genetic studies that integrate genetic
network structures to stratify neuropsychiatric patients for
personalised interventions.
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