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Translational utility of rodent hippocampal auditory gating in
schizophrenia research: a review and evaluation
J Smucny1,2,3, KE Stevens3, A Olincy2,3 and JR Tregellas1,2,3

Impaired gating of the auditory evoked P50 potential is one of the most pharmacologically well-characterized features of
schizophrenia. This deficit is most commonly modeled in rodents by implanted electrode recordings from the hippocampus of the
rodent analog of the P50, the P20–N40. The validity and effectiveness of this tool, however, has not been systematically reviewed.
Here, we summarize findings from studies that have examined the effects of pharmacologic modulation on gating of the rodent
hippocampal P20–N40 and the human P50. We show that drug effects on the P20–N40 are highly predictive of human effects
across similar dose ranges. Furthermore, mental status (for example, anesthetized vs alert) does not appear to diminish the
predictive capacity of these recordings. We then discuss hypothesized neuropharmacologic mechanisms that may underlie gating
effects for each drug studied. Overall, this review supports continued use of hippocampal P20–N40 gating as a translational tool for
schizophrenia research.
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INTRODUCTION
Development of translational assays that accurately predict
drug response from animal models to human patients is one of
the most pressing needs for research in psychiatric diseases,
including schizophrenia. The purpose of these assays is to provide
low-cost screening tools for investigational compounds to
increase the probability of success for new drugs as they
proceed through the drug development pipeline. Indeed, high
failure rates for investigational compounds (95% or greater for
neuropsychiatric diseases)1 has led to many pharmaceutical
companies either downsizing or dropping research platforms
altogether,2 highlighting the need for an effective translational
toolbox.
Schizophrenia research has been plagued by problems in

developing animal models that predict clinical efficacy, in large
part due to the fact that no single animal model is able to
recapitulate the complex symptomatology of schizophrenia.
Researchers have therefore attempted to develop models that
show abnormalities in its neurophysiological features. These
include deficits in prepulse inhibition,3 neuronal synchrony4 and
auditory (P50) gating. P50 gating deficits are among the most
thoroughly examined features of schizophrenia, with well-studied
genetic bases (for example, reduced nicotinic α7 receptor
signaling)5,6 and many studies examining the effects of ther-
apeutic manipulation. Importantly, P50 gating has also been
extensively studied in the rodent using implanted electrode
recordings in the hippocampus. Accordingly, this review includes
an introduction to P50 gating in schizophrenia, followed by an
evaluation of the translational predictive power of studying this
electrophysiological deficit.

SCHIZOPHRENIA AND P50 GATING
The study of P50 gating impairment in schizophrenia has its
origins from work in the 1960s by McGhie and Chapman7 as well
as Venables,8 who published extensive patient case reports of
perceptual abnormalities. Many of these reports described a
‘hypervigilant’ state in which patients were unable to ignore
persistent distracting noises in the environment. As a result,
patients found it hard to concentrate on any one stimulus in a
noisy environment, such as the voice of a single person in a
bustling crowd. Hypervigilance was later hypothesized to have a
role in the emergence of positive symptoms. For example,
increased salience of the sounds of squealing tires may cause
the noises to be reinterpreted as a screaming baby.9

The ‘hypervigilant’ state found in schizophrenia led Adler et al.10

to postulate that patients may show a deficit in the ability of
the brain to physiologically decrease, or ‘gate,’ its response to
repeated stimuli. This brain response is postulated to have a major
role in the ability of healthy subjects to subconsciously ignore
irrelevant, incessant stimuli in the environment such as a clock
ticking.9 On the basis of electroencephalographic methods
developed in the 1960s for studying repetitive auditory stimuli,11

Adler et al.10 observed reduced capacity in schizophrenia to
diminish early (50 ms post stimulus, or P50) responses to the
second of a pair closely spaced identical (~0.5 s) clicks (Figure 1a).
This phenomenon has since been replicated in many laboratories,
is predictive of cognitive function in several domains including
attention12–15 and is one of the most frequently investigated
electrophysiological phenotypes in schizophrenia. The relation-
ships between P50 gating and positive and negative symptoma-
tology are unclear and an important area for future investigation
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(reviewed by Potter et al.13). As discussed later in this review,
studies have found that this phenotype can be normalized by a
number of compounds, either by increasing the physiological
response to the first click (relative to the second) and/or
decreasing the response to the second click (relative to the first;
Figure 1b).
A remarkable aspect of P50 gating is the simplicity behind the

neuronal circuitry that may underlie the phenomenon.16 In its
most basic form, this process can be accomplished with only three
neurons: two excitatory neurons and an intermediate inhibitory
neuron (Figure 2). In the paired-click paradigm, the first,
‘conditioning’ stimulus (S1) excites Neuron 1, which in turn excites
inhibitory Neuron 2 and excitatory pyramidal Neuron 3 (Figure 2a).
Activation of Neuron 2, in turn, induces release of the inhibitory
neurotransmitter GABA. GABA release causes fast inhibition of
Neuron 3 via postsynaptic GABA-A receptors as well as slow,
persistent inhibition of glutamate release onto Neuron 3 from
Neuron 1 (via presynaptic GABA-B receptors17). Persistent inhibi-
tion in particular diminishes the response of Neuron 3 for up to 8 s
(Figure 2b).9 Consequently, if the second, ‘test’ stimulus (S2)
arrives o1 s after S1, S2 event-related potential amplitude is
reduced compared with S1 (Figure 2c). A reduction of the ability of
Neuron 2 to modulate this circuit (for example, by reduced α7
nicotinic receptor expression on inhibitory Neuron 2) is postulated
to underlie gating deficits in schizophrenia (Figure 2d).16 These
deficits are maximal when stimuli are spaced 0.5 s apart, as
typically presented in sensory gating paradigms.10,18

MODELING P50 GATING IN THE RODENT HIPPOCAMPUS
The first human and animal studies examined P50 gating and its
rodent analog (the P20, N40 and P20–N40) from cortical surface
recordings at the center of the skull or vertex.10,19 Although this
technique provided a straightforward method of measuring
gating in single subjects, it did not provide information as to
where gating occurs in the brain. The first attempt at localizing
gating was conducted in anesthetized rats using depth
electrodes.20 This study found that the hippocampus CA3 subfield,
relative other areas in the auditory processing pathway (medial
geniculate, auditory cortex) showed robust gating that was
sensitive to amphetamine-induced impairment, consistent with
previous findings in rats using a cortical surface electrode.19

The results of this study became the basis for using depth
electrode recordings from the hippocampus (CA3 region, Figure 3)
to study auditory gating in mouse and rat models of schizo-
phrenia. Hippocampal localization of gating and its schizophrenia-
associated deficit in humans has since been supported in studies
using implanted electrodes from epileptic patients21 and non-
invasive techniques such as electroencephalography combined
with functional magnetic resonance imaging.22,23

Representative P50 and P20–N40 waveforms taken from the
vertex electrode of a human subject and from an electrode
implanted in the hippocampus of a mouse (respectively) are
shown in Figure 4.

HIPPOCAMPAL GATING AS A TRANSLATIONAL TOOL: A
REVIEW AND EVALUATION
Although hippocampal depth recordings are the most commonly
used method for examining auditory gating in the rodent,
methodological discrepancies between animal and human P50
gating studies challenge the translational utility of the technique.
The majority of rodent studies differ from human studies in regard
to mental state (anesthetized in rodents vs awake in patients),
treatment duration (acute in rodents vs chronic in patients) and
route of drug administration (intraperitoneal/subcutaneous in
rodents vs oral in patients; see Methodological effects and
considerations). The hippocampal location of the electrode is also
disputed, as functional imaging studies in humans and animals
have found many gating generators in addition to the
hippocampus.
To that end, the following sections evaluate hippocampal

auditory gating as a translational tool in schizophrenia research.
The primary measure of interest is the correspondence between
drug effects on rodent hippocampal gating and human P50
gating. As part of this analysis, we examine the qualitative effects
of drug dose and anesthesia, and focus on gating (the ratio of S2
to S1 amplitude) as well as the relative contribution of changes in
S1 and S2 amplitude to drug effects. As the focus of this review is
schizophrenia, we primarily report on studies that examined
rodent models of schizophrenia (see Box 1) and human patients
with the disease. These studies are grouped by drug and
summarized in Table 1a–c.

Correspondence between rodent and human studies
As a whole, hippocampal findings from rodent models matched
very well with scalp recordings of P50 gating in human subjects
(Table 1a–c). Across similar dose ranges, drugs generally had
comparable effects on not only gating, but also S1 and S2
amplitudes. For example, 3-2,4 dimethoxybenzylidene anabaseine
(DMXB-A) had remarkably consistent effects on gating that
showed a similar dose-dependent mechanism (S2-driven) across
species. Mental status, frequency of dosing or route of drug
administration did not qualitatively alter the overall effect or dose
dependence on these results. Although some discrepancies were
noted, we believe that they may be readily explained by
differences in the pharmacologic background and/or dose(s) used
between studies. Comparisons between rodent and human
findings for each drug are summarized in the following sections,
which have been divided into three subsections based on their
primary pharmacologic mechanisms of action during gating
paradigms: nicotinic, dopaminergic and serotonergic.

Nicotinic-based treatments—nicotine, varenicline, DMXB-A,
tropisetron, donepezil, perinatal choline
Interest in nicotinic receptor-based treatments for schizophrenia is
primarily due to high rates (70–80%) of nicotine self-admini-
stration (for example, cigarette smoking) in patients compared
with the general population (20–30%).83,84 Smoking patients also

Figure 1. Representative P50 event-related potentials illustrating
P50 gating deficits in schizophrenia. (a) In a healthy subject (left pair
of traces), the brain inhibits its response to the second (S2) of a pair
of repeated stimuli. A patient with schizophrenia (right pair of
traces) is unable to inhibit response to this stimulus. (b) This effect
can be normalized by treatments that increase response to the first
stimulus (S1, left pair of traces) or decrease response to second
stimulus (S2, right pair of traces). S1, first stimulus; S2, second
stimulus; SZ, schizophrenia.
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consume more cigarettes and intake more nicotine on average
than other smokers.85 Patients are hypothesized to smoke for
several reasons, including (1) having ‘nothing better to do’84 as a
consequence of being unemployed or otherwise leading an
inactive lifestyle, (2) relieving dopaminergic inhibition caused by
antipsychotic medication and (3) ‘self-medicating’ in an attempt to
correct an intrinsic deficit in nicotinic signaling.84,86

The latter hypothesis has gained the most traction to date.
Acute nicotine administration reverses sensory processing
abnormalities in schizophrenia, including deficits in prepulse

inhibition,87 eye tracking88–91 and P50 gating (see below). Genetic
studies have linked deficits in P50 gating in the illness to polymor-
phisms on the α7 nicotine receptor gene promoter and a partial
duplication of the α7 gene, possibly contributing to receptor
expression deficits observed in the illness.92–95 The other highly
expressed central nervous system nicotinic receptor subtype,
α4β2, is also abnormally regulated in schizophrenia smokers.96

In regard to P50 gating, early studies in schizophrenia patients
focused on nicotine, a high affinity agonist of α4β2 and low
affinity agonist of α7 receptors.97 From a gating perspective,
nicotine may be expected to affect both S1 and S2 amplitude due
to its ability to activate α4β2 receptors on pyramidal cells and α7
receptors on inhibitory interneurons, respectively. Nicotine may
also influence P50 amplitudes by increasing catecholamine
(dopamine and NE) release in the hippocampus.98 Previous
studies, however, only partially support this hypothesis, as some
studies show S1-driven effects on gating43,45,46 and others show
S2 (or S1 and S2)-driven effects35,44,47 (Table 1a). Studies in
patients suggest that nicotine transiently improves gating by
decreasing S2 amplitude,47 with effects reversing (or not
observed) after 30 min of nicotine deprivation.47–49 We suggest
that inconsistencies in these results may be explained by
differences in pharmacologic background between studies.
Experiments in which nicotine did not increase S1 amplitude
were conducted in the presence of antipsychotic medication
(mostly first-generation drugs).35,47 A consistent effect of first-

Figure 2. Cartoon schematic of the hypothesized neuronal circuit responsible for sensory gating and its deficits in schizophrenia. Waveform
positive polarity is upwards. (a) In a healthy subject, a sound stimulus excites Neuron 1 (for example, the perforant path (PP) input to the
hippocampus), which in turn excites hippocampal pyramidal Neuron 3. Neuron 1 also excites inhibitory Neuron 2. (b) Neuron 2 reduces
glutamate release by Neuron 1 via activation of presynaptic GABA-B receptors (slow inhibition) as well as inhibits Neuron 3 via activation of
postsynaptic GABA-A receptors (fast inhibition). (c) Step 3: a second sound stimulus arrives 500ms later and excites Neuron 1. Unlike the
previous stimulus, Neuron 1 cannot excite Neuron 3 owing to persistent (slow) inhibition from Neuron 2. Signal from the second stimulus is,
therefore, reduced or ‘gated.’ (d) In a patient with schizophrenia, gating deficits may arise from reduced GABAergic signaling caused by
dysfunction of Neuron 2.

Figure 3. Location of CA3 electrodes in the mouse hippocampus
for recording P20/N40 evoked potentials. Figure adapted from Guo
et al.24 ERP, event-related potential.
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generation antipsychotics is increased S1 response (Table 1b),
possibly owing to differences in excitability induced by dopami-
nergic blockade. It is possible that in the presence of these drugs,
S1 has already been increased to its maximal amount, precluding
any further increase by nicotine.
Similar to nicotine, varenicline activates both α4β2 and α7

receptors, where it acts as a partial agonist on the α4β2 subtype
and full agonist on the α7 subtype.99 Its primary indication is for
smoking cessation,100 as the drug is able to potentiate nicotinic
signaling while minimally inducing the nicotine-induced dopa-
mine release associated with addiction.100 In regard to auditory
gating and schizophrenia, the drug has mixed effects (Table 1a). In
DBA/2 mice, the drug improves gating by decreasing S2
amplitude at low doses and increasing S1 amplitude at higher
doses.50 The dose dependence of varenicline may be due to the
observation that α7 receptors desensitize as a function of
increasing agonist concentration,97 reducing S2-mediated effects
at high doses of drug. A pilot human study using a ‘low’ dose
(0.012mg kg− 1), however, showed no significant effects of acute
varenicline administration on gating.51 This negative finding may
be due to the low sample size (n= 6) of the study, as it had to be
ended prematurely due to side effects. A later clinical trial in a
larger sample of patients showed improved gating after chronic
administration of the drug (0.013mg kg− 1).52 Consistent with the
mouse finding near this dose, the effect was driven by a reduction
in S2 amplitude. Similar to their effects in nicotine studies,
antipsychotic medications may have also occluded any effects of
varenicline on S1 amplitude in this study.
To date, the majority of investigational research and develop-

ment into targeting the cholinergic system in schizophrenia has
focused on compounds that activate the α7 receptor. The most
thoroughly investigated α7 compound in P50 gating and other
studies in schizophrenia is DXMB-A (GTS-21), an α7 nicotinic
receptor partial agonist and α4β2 antagonist.101 Tropisetron, a
partial α7 receptor agonist and 5-HT(3) receptor antagonist, has

Figure 4. Comparison of S1 waveforms, S2 waveforms and S2/S1 ratios during placebo/saline and DMXB-A administration as measured by EEG
in a schizophrenia patient (adapted from Olincy et al.25) and an implanted electrode in the CA3 subfield of the DBA/2 mouse hippocampus
(adapted from Simosky et al.26). Positive polarity is downwards. Vertical hash marks denote the P50 in the patient and the P20–N40 in the
mouse. Similar improvements on sensory gating were observed after DMXB-A treatment in both patients and mice. DMXB-A, 3-2,4
dimethoxybenzylidene anabaseine; EEG, electroencephalography.

Box 1 Rodent models of schizophrenia that show impaired hippo-
campal sensory gating

α7 Mutants. Schizophrenia is associated with reduced expres-
sion of hippocampal α7 nicotinic receptors that is hypothesized
to contribute to P50 gating deficits. To model this endopheno-
type, mutant mice have been bred to express reduced levels of
α7 protein. Accordingly, null mutant mice express no α7 protein,
and het mice express 50% of normal levels. The het mice most
closely match schizophrenia patients in regard to expression
level.27,28

Psychostimulants. Psychostimulant-based animal models of
schizophrenia have been primarily developed based on the
dopamine hypothesis of the illness, which posits that the
disease is caused by hyperactivity of mesolimbic dopamine
neurons in the brain. Accordingly, stimulants such as amphet-
amine and cocaine induce a rapid and robust increase in
dopamine release in these neurons (first reviewed by Moore
(1977)29). In support of the model, psychostimulant administra-
tion induces psychosis in healthy human subjects30–33 as well as
‘positive symptom’-associated behaviors in animals, such as
hyperlocomotion and stereotypy.34

Bupropion. Bupropion is an antidepressant that has been used
to model gating deficits in mice due to its function as a
dopamine, norepinephrine and serotonin reuptake inhibitor as
well as a nicotinic receptor antagonist. These receptor actions
may pharmacologically mimic some aspects of neurochemical
dysfunction in schizophrenia.35

DBA/2 mouse. The most commonly used rodent model for
gating studies, the DBA/2 mouse effectively recapitulates a
number of symptoms of schizophrenia, including learning and
memory deficits,36,37 attention deficits38,39 and abnormal social
behavior.40,41 Interestingly, DBA/2 mice also show 35% reduced
expression of α7 receptors relative to C3H wild-type strains.42
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also been investigated using P50 gating paradigms in animals and
human patients.
As demonstrated in Table 1a, our review of DMXB-A and

tropisetron studies demonstrated remarkably consistent effects in
both animals and humans, where the drug reliably improved
gating by decreasing S2 amplitude under similar dose ranges
(Figure 4).25,26,44,53–58 Tropisetron also improved gating, an effect
driven by increasing S1 amplitude.55,58 DMXB-A was effective
when administered chronically, despite concerns that prolonged
use may induce receptor desensitization.54 A study that investi-
gates the effects of chronic DMXB-A on gating in smoking
schizophrenia patients is currently ongoing.
Decreased S2 amplitude-driven P50 gating improvement after

DMXB-A administration is consistent with its pharmacology, as
activation of the α7 receptor preferentially increases nicotinic
current on inhibitory interneurons over pyramidal cells in the
hippocampus102 (Figure 2). The dual effect (S1 and S2) observed
with tropisetron may be due to its antagonism of 5-HT(3)
receptors. Blockade of these serotonin receptors may relieve
tonic inhibition of hippocampal acetylcholine release,103 conse-
quently increasing activation of both α7 receptors on inhibitory
neurons (decreasing S2 amplitude) as well as α4β2 receptors on
excitatory pyramidal cells (increasing S1 amplitude; Figure 2).
Another strategy for potentiating nicotinic signaling is to

increase ACh levels by inhibiting its degradation by enzymes.
The acetylcholinesterase inhibitor donepezil (Aricept) is one such
compound. Its primary indication is for the treatment of
Alzheimer’s, as the disease is characterized by the pervasive loss
of cholinergic neurons.104 Research into its effects in schizo-
phrenia was motivated by studies showing a loss of cholinergic
(muscarinic and nicotinic) receptor expression in
schizophrenia94,95,105–108 as well as a negative correlation between
choline acetyltransferase (the enzyme that synthesizes ACh)
activity and cognitive symptom severity.109

The effects of donepezil on sensory gating have been
investigated in one study in rats and one in schizophrenia
patients (Table 1a). Consistent with its hypothesized effects as a
generalized cholinergic enhancer (activating α7 and α4β2 nico-
tinic receptors on inhibitory interneurons and excitatory pyramidal
cells), the drug improved gating in rats by both potentiating S1
amplitude and reducing S2 amplitude.59 Drug effects did not
reach significance in schizophrenia patients (P= 0.14, in the
direction of improved gating).60 Unlike the study in rats, this
result was driven by a small (nonsignificant) reduction in S2
amplitude in patients. Reasons for the discrepancy may be that (1)
the drug was tested in healthy rats and not a schizophrenia model
and (2) dose differences (0.43 mg kg− 1 in rats, 0.13 mg kg− 1 in
patients) between studies. The dose in the schizophrenia patient
study was based on doses that have demonstrated efficacy in
Alzheimer’s while minimizing side effects.110

Schizophrenia researchers have primarily focused on treatments
for patients already diagnosed with the illness. A complementary
strategy is to develop preventative interventions early in
development—as soon as the prenatal stage—to minimize risk
later in life.111 Due to the complexity of schizophrenia and the
necessity for measuring a physiological component that precedes
diagnosis, Ross and colleagues have focused on an electrophy-
siological endophenotype of schizophrenia (P50 gating), which is
impaired in infants with psychotic parents.112

Choline, a dietary precursor of ACh that is found in eggs and red
meats, has been shown to increase neurogenesis in adult rats after
prenatal administration113 as well as hippocampal dendritic
arborization and soma size.114 Choline is also an important
constituent of cell membranes and is therefore particularly
important during fetal development when new cell membranes
are being rapidly produced.115–118 In addition to inducing ACh
synthesis, choline may potentiate nicotinic signaling through its
selective agonism of α7 receptors.119–121

On the basis of its activity as a cholinergic potentiator and its
role in development, Stevens et al.61 proposed that choline given
to dams would improve P20–N40 gating in their DBA/2 offspring.
Consistent with this hypothesis, Stevens et al.61 found that DBA/2
dams given a supplemental choline diet (5 × normal choline)
produced offspring that showed improved gating. The effect
was driven by decrease in S2 amplitude (Table 1a). Interestingly,
offspring given supplemental choline also demonstrated
increased α7 receptor expression, potentially contributing to the
gating effect. Ross et al.63 extended these findings to human
studies, demonstrating a similar dose regimen of perinatal choline
also improved P50 gating in healthy infants. Akin to mouse
studies, the effect was driven by a decrease in S2 amplitude
(Table 1a). As this preliminary study was in healthy mothers, future
studies may examine the effects of perinatal choline in infant
offspring of patients with schizophrenia.

Dopaminergic-based treatments—haloperidol and amisulpride
As initially postulated, the dopamine hypothesis of schizophrenia
states that symptoms arise from hyperactive dopamine
transmission.122 Indeed, the first antipsychotics (‘first-generation,’
or ‘typical’) were all dopaminergic receptor antagonists. Further-
more, many drugs that increase dopaminergic transmission, such
as amphetamine, induce psychosis in healthy individuals.30,123

This hypothesis has more recently been revised to postulate that
positive symptoms, in particular, arise from hyperactivation of the
dopaminergic D2 receptor subtype in mesolimbic brain regions.122

In regard to P50 gating, the effects of haloperidol (Haldol) and
other first-generation (typical) antipsychotics were first examined
in the 1980s owing to their widespread use in treating schizo-
phrenia at the time. As summarized in Table 1b, the majority of
these and later studies (animal and human) have observed no
effect of dopaminergic drugs on gating.35,65–70 Although the drug
does appear to increase S1 amplitude in some studies, it often
increases S2 amplitude to a similar extent, resulting in a net no
change in gating.35,66,67 The neurobiological mechanisms that
underlie these changes are unclear, but may be related to effects
on hippocampal excitability.66,124,125 The exception to this pattern
is in rat studies in which normal gating was perturbed by
amphetamine; these experiments showed significant reversal of
gating effects by haloperidol.20,64

As a whole, these studies suggest that drugs for which D2
blockade is a primary mechanism of action, such as typical
antipsychotics, are unlikely to improve gating deficits in schizo-
phrenia. Consistent with this view, a genetic linkage study in
schizophrenia patients found no associations between variation of
dopamine receptor genes and P50 gating.126 A later study that
examined the effects of genetic variation in a dopamine transporter
1 gene found that healthy subjects that may have higher dopamine
levels due to hypoexpression of dopamine transporter 1 showed
improved gating, suggesting that dopaminergic blockade may
actually worsen gating in some individuals.127

Serotonergic-based treatments: clozapine, ondansetron,
olanzapine
Beginning with clozapine (Clozaril) in the 1970s, a second class of
antipsychotic medications emerged well after the first-generation
antipsychotic use became widespread. These drugs, called
‘second-generation’ or ‘atypical’ antipsychotics, featured the
ability to treat positive symptoms while minimizing the extra-
pyramidal side effects observed with typical antipsychotics. Unlike
typical antipsychotics, some atypicals (particularly clozapine) may
show small pro-cognitive effects in schizophrenia.128

A feature shared by atypical antipsychotics is relatively higher
antagonism for serotonin (5-HT) receptors relative to D2
receptors.128 In regard to sensory gating, the ability of these
drugs to antagonize the 5-HT(3) receptor subtype is hypothesized
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to have a particularly important role,65,71–73 as blockade of this
receptor may induce ACh release,103 increasing activation of
nicotinic receptors. Activation of pre and postsynaptic nicotinic
receptors on inhibitory neurons may increase release of the
inhibitory neurotransmitter GABA onto excitatory neurons (see
Figure 2) consequently decreasing S2 amplitude (Figure 1b).
Gating may be further improved by increasing S1 amplitude
through cholinergic activation of postsynaptic receptors on
excitatory pyramidal neurons. Some atypicals, however (such as
risperidone), do not improve P50 gating in schizophrenia patients,
suggesting that either additional mechanisms account for the pro-
gating effects of these drugs or that the effect is dependent
on the ability of each drug to affect the activity of various
neurotransmitter systems.
Ondansetron (Zofran) is perhaps the pharmacologically ‘clean-

est’ example of a serotinergic drug with pro-gating effects across
animal and human studies. It is not classified as an antipsychotic,
as it is a selective 5-HT(3) receptor antagonist and therefore does
not block D2 receptors.129 Its selectivity for the 5-HT(3) receptor
allows researchers to isolate pro-gating effects due to blockade of
this particular serotonin receptor subtype.
Consistent with the demonstrated ability of 5-HT(3) receptor

blockade to indirectly activate nicotinic receptors by increasing
ACh release, ondansetron improved gating in DBA/2 mice71 and
schizophrenia patients72 in a manner similar to nicotinic agonists
(Table 1c). These effects were driven by increased S1 amplitude
and decreased S2 amplitudes in mice,71 but only decreased S2
amplitude in patients.72 The dual effect observed in animals may
be due to the ability of ondansetron to induce activation of α7
nicotinic receptors on inhibitory interneurons as well as α4β2-
receptor on excitatory pyramidal cells (Figure 2). The discrepancy
between human and animal studies may be due to the
antipsychotic medications that the patients were taking at the
time of the study (six of the eight subjects were taking typical
antipsychotics), as these drugs have been shown to increase S1
amplitude (Table 1b). A ceiling effect on S1 amplitude may have
therefore been reached, preventing any further increase by
ondansetron.
Olanzapine (Zyprexa) is a second-generation, atypical antipsy-

chotic medication. Like the majority of atypical antipsychotics,
olanzapine is a potent 5-HT receptor antagonist, as well as a low
(er) affinity dopamine receptor antagonist.130 Consistent with its
demonstrated effects on the cholinergic system,131,132 olanzapine
has been shown to enhance auditory gating in the DBA/2 mouse73

and in a pilot sample of six schizophrenia patients (~50%
improvement in P50 suppression; Table 1c).133 The patient finding,
however, was not replicated in later studies.68,69,74 This discre-
pancy may be due to differences in the dose used to examine
effects in the mouse vs human patients. Patient studies have
examined doses up to 10-fold higher than in the mouse study to
maximize clinical stability. Such high doses are necessary to
treat positive symptoms in schizophrenia due to the relatively
lower binding affinity of olanzapine for D2 receptors compared
with 5-HT receptors. High doses, however, may also increase ACh
efflux to the extent that they induce nicotinic receptor desensi-
tization, preventing the improvement in gating observed at lower
doses. Future studies may examine the pro-gating effects of lower
doses on olanzapine in patients treated with an additional
antipsychotic.
Another atypical antipsychotic that has been investigated using

sensory gating paradigms is clozapine (Clozaril). Clozapine has a
complex binding profile. The drug is an antagonist at dopamine
and 5-HT receptors, with relatively low potency (compared with
typical antipsychotics) at D2 receptors.134 Clozapine is also a
muscarinic, histaminergic and adrenergic receptor antagonist.135

As summarized in Table 1c, in gating studies, clozapine has had
variable effects. Most animal and human studies have observed
improved gating with the drug,65,74,76–80,133 possibly due to its

ability to increase ACh release and activate nicotinic receptors.
Two patient studies, in contrast, found no effect of clozapine on
gating.69,81 Importantly, in one of these studies, patients showed
normal P50 gating, potentially occluding any effect of the drug.69

Animal studies have found that low doses of clozapine improve
gating by primarily decreasing S2 amplitude.65,76 Higher doses of
clozapine, however, may improve gating by both decreasing S2
and increasing S1 amplitudes.65,75,76 Human studies have mostly
reported S1 increases after clozapine administration (Becker
et al.;80 Light et al.;133 Nagamoto et al.;78 Nagamoto et al.79)
although one study found that the drug decreased S2 amplitude
(Adler et al.74).
Subtype-specific modulation of S1 and S2 amplitude may help

to explain the dose-dependent effects on each waveform by
clozapine. The α7 receptors display dose-dependent desensitiza-
tion, in which high concentrations of agonist (for example, ACh)
cause receptor inactivation.97 It is possible that a relatively small
increase of ACh release (induced by low concentrations of
clozapine) may favor α7 channel opening over desensitization,
reducing S2 amplitude. The dose-dependent increase of S1, on the
other hand, may be due to dopaminergic antagonism observed at
higher doses, similar to the effect of typical antipsychotics such as
haloperidol.65–67

OTHER DRUGS
In this section, we discuss the effects of other classes of treatments
on auditory gating that have not been tested using identical drugs
across species and/or evaluated from hippocampal electrode-
based rodent recordings, but, nonetheless, support gating as an
effective translational tool for schizophrenia research.

Norepinephrine
Interest in the effects of adrenergic modulation of sensory gating
originates from work by Adler et al.19 who demonstrated that
increased arousal/stress associated with new environments
impaired gating in rats as measured by cortical surface electrodes.
Furthermore, acute administration of amphetamine, which
induces NE (and dopamine) release, impairs gating in rats by
reducing S1 amplitude.19 This effect is reversible by the NE-
depleting toxin N-2-chloroethyl-N-ethyl-2-bromobenzylamine
(DSP4).136

Following this initial characterization, later studies focused on
examining the specific receptor basis for NE effects. NE acts on
two main groups of receptors (α and β adrenergic) each of which
has several subtypes that vary in nervous system expression
patterns, subcellular (pre vs postsynaptic) localization and affinity
for NE.137–140 An early cortical surface electrode study by Stevens
et al.141 demonstrated that a nonselective adrenergic α-receptor
antagonist, phentolamine, reversed amphetamine-induced
gating deficits in rats by increasing S1 and decreasing S2
amplitudes. The β-blocker timolol, in contrast, improved gating
by only decreasing S2 amplitude.141 A later study in unmedicated
male rats demonstrated that α-receptor-mediated effects may be
subtype dependent, as in contrast to phentolamine, the α2-
subtype-specific antagonist yohimbine (0.14 mg kg− 1) impaired
gating.142

In support of the translational utility of auditory gating, results
from these studies in rodents are predictive of adrenergic effects
in humans. Akin to its effect in rats, impaired P50 gating
was observed after yohimbine administration (0.40 mg kg− 1) in
healthy human subjects.143 Furthermore, Oranje and Glenthoj144

have recently reported improved gating after acute administration
of clonidine, a selective, anxiolytic α2-agonist. Clonidine, however,
has undesirable sedative effects due to its high affinity for all α2-
receptor subtypes and ability to decrease levels of NE in the
brain.145 An alternative treatment worthy of future investigation

P50 gating in translation
J Smucny et al

8

Translational Psychiatry (2015), 1 – 13



may be guanfacine, an α2A-receptor specific agonist that is 10 ×
less effective at reducing NE release.145

Nicotinic α7-positive allosteric modulators
A property inherent to all nicotinic receptors is their tendency to
desensitize after sufficiently long periods of activation, preventing
calcium influx-induced cytotoxicity during prolonged channel
opening.146,147 This characteristic may explain why nicotine only
transiently improves P50 gating47,147 and is a major concern for
clinical trials that examine the effects of α7-receptor agonists.148

An alternative strategy is to develop drugs that potentiate agonist
activity at sites distinct from the primary active (orthosteric) site.
By definition, these compounds are known as allosteric (from the
Greek allos stereos ‘other solid’) modulators. Two primary types of
modulators exist. Type I positive allosteric modulators (PAMs)
potentiate peak current while preserving desensitization, whereas
type II PAMs potentiate peak current, evoke a weak secondary
current and reactivate desensitized currents. Type II nicotinic
PAMs therefore have received the most interest due to their ability
to reduce desensitization. An optimal PAM, however, must also
not potentiate channel opening to the extent that it becomes
cytotoxic.
Several type II PAMs of the α7-nicotinic receptor have been

developed and are currently being investigated in schizophrenia
and its associated neurophysiological endophenotypes, such as
P50 gating. These compounds have demonstrated efficacy in both
animal models of the illness and human patients. The first α7-PAM
to be tested for gating effects was 1-(5-chloro-2,4-dimethoxy-
phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596). In this
study, 0.14 mg kg− 1 of PNU-120596 significantly reduced
amphetamine-induced hippocampal gating deficits in anesthe-
tized rats.149 The drug was later shown to be cytotoxic, however,
rendering it clinically unfeasible.150 A later study using a less
toxic PAM ((N-(4-chlorophenyl)-α-(((4-chloro-phenyl)amino)methy-
lene)-3-methyl-5-isoxazoleacet-amide), also known as compound
6 or CCMI), found that 0.025mg kg− 1 dose of CCMI was sufficient
to improve gating in DBA/2 mice.150 Another promising com-
pound that has demonstrated preclinical efficacy on sensory
gating is 2-((4-fluoro-3-(trifluoromethyl)phenyl)amino)-4-(4-pyridi-
nyl)-5-thiazolemethanol (JNJ-1930942). Similar to other type II
PAMs, this compound increases peak current and reduces
desensitization. It does not, however, evoke a weak secondary
current.151

To our knowledge, none of the PAMs described above have yet
been clinically evaluated in schizophrenia patients, highlighting
the need for additional research in this area. A different α7-PAM,
JNJ-39393406, recently showed no significant effects on gating (or
any other electrophysiological measure of interest) in patients152

despite improving gating in DBA/2 mice (unpublished data cited
by Winterer et al.). The discrepancy between human and animal
findings may be due to differences in α7-receptor expression
between patients (~50% loss of receptors in hippocampal CA3 on
average)94 and DBA/mice (~35% loss of receptors).42 It is possible
that a more efficacious future treatment strategy will be to use α7-
PAMs in subgroups of patients that have relatively preserved
levels of receptor expression as determined by positron emission
tomography.153

METHODOLOGICAL EFFECTS AND CONSIDERATIONS
Mental status
One concern when comparing results of animal and human
studies on gating paradigms is the effect of anesthesia. The
majority of rodent studies examine gating while the animal is
anesthetized with a high concentration of choral hydrate, whereas
human studies are performed while subjects are awake.

Qualitative examination of the results from studies presented in
this review suggests that anesthesia had no effect on the ability of
drug effects in animal studies to predict results in patients. It
remains possible, however, that anesthesia may affect efficacy
depending on the drug tested. Clozapine, for example, has been
shown to interact with choral hydrate to reduce activity in
serotonergic raphe neurons to a greater extent than either drug
alone.154 Haloperidol may have differential effects on the
inactivation of dopamine neurons depending on whether the
animal is anesthetized or awake.155 Nicotine’s effects of blood flow
in the brain may also be differentially modulated depending on
the type of anesthesia used.156 Overall, however, rodent
hippocampal gating appears to be highly predictive of treatment
effects in the clinic regardless of mental state.

Treatment duration
As illustrated in Table 1, the majority animal studies examined the
effects of acute doses of drug on gating. In contrast, most human
studies have assessed effects after chronic (46 consecutive days)
dosing. Treatment duration did not appear to affect translatability;
a drug that improved gating after an acute dose in animals also
improved gating at a similar chronic dose in patients. Further-
more, the few animal studies that examined drug effects after
acute and chronic dosing demonstrated similar results (for
example, DMXB-A studies).
Lack of a treatment duration effect on drug-induced gating

improvement may be due to the possibility that sensory gating is
an elementary neuronal phenomenon that consequently may be
expected to show relatively time-independent dose–response
relationships. Unlike psychiatric symptoms, which manifest as the
result of countless perturbations in the temporal and spatial
network dynamics of complex systems, gating dysfunction is
hypothesized to arise in part from abnormalities within a simple
neuronal circuit. It is for this reason that clinical trials, for which
clinical symptomology is the primary end point, typically examine
the effects of chronic administration. In contrast, proof-of-concept
and ‘basic’ research studies for which a neurophysiological marker
(for example, P50 gating) is the primary end point usually examine
acute effects.

Route of drug administration
The goal of this review was to compare the effects of drugs on
animal models and schizophrenia patients on gating across similar
dose ranges. A limitation of this approach, however, is that the
actual ‘dose’ of a drug is not only dependent on the amount given
but also the route by which it is administered. Indeed, administra-
tion route may affect both the rate and extent to which a drug is
absorbed, potentially introducing confounding effects due to
differences in receptor activation and desensitization.
The majority of animal studies have used intraperitoneal or

subcutaneous dose routes, whereas patient studies typically
administer drugs orally. Importantly, route of administration does
not appear to significantly affect dose–response relationships, as
similar doses have comparable effects on gating via consistent
mechanisms (for example, ↑S1 and/or ↓S2; Table 1a–c). In addition,
drugs that have been administered by different routes (for
example, DMXB-A, which has been given intraperitoneally,
subcutaneously, intravenously and orally) appear to have qualita-
tively similar effects. To maximize the likelihood that a given dose
will show similar effects in patients, however, future animal studies
may wish to examine drug effects using a variety of administration
routes.

Sensory gating in other brain areas
Sensory gating is primarily measured in the hippocampus in
rodents, in part, due to findings from Bickford-Wimer et al.20 who
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showed greater suppression of S2 in the hippocampus relative to
other areas in the auditory pathway. Human neuroimaging
studies, for the most part, also suggest that the hippocampus
is an important generator of P50 gating and its associated
deficits in schizophrenia.21–23,157–159 These and other studies have
shown, however, that additional brain regions are also significant
sources of P50 gating in the human brain. Gating generators may
include the thalamus,23,158,160 superior temporal gyrus/auditory
cortex,161–166 medial frontal cortex,22,162,163,167,168 dorsolateral
prefrontal cortex,21,158,159,169 ventrolateral prefrontal cortex160 and
insula.22,160,161 Animal studies have found additional gating
generators in the medial septum,170 thalamus,64 striatum,171

amygdala172 and medial prefrontal cortex.173–175 How gating in
these areas is disrupted in animal models of schizophrenia as well
as their ability to predict drug response in patients are important
areas for future research.

Gating of other (mid-latency) potentials
Although the P50 is the most frequently examined potential using
paired-stimulus paradigms in schizophrenia, abnormal gating at
other potentials has also been observed (for example, the N100
and P200).176–178 These ‘mid-latency’ potentials represent later
stages of information processing than the P50, and a complete
understanding of sensory processing dysfunction in schizophrenia
requires thorough examination of how these waveforms are
affected in the illness. It is unclear, however, whether the
hippocampus has a role in these processes. For example, human
electroencephalography studies have primarily localized N100
gating generators to the auditory cortex and association
cortices.179,180 Nonetheless, hippocampal contributions to N100
gating cannot be ruled out until other techniques that have
greater subcortical spatial resolution (for example, functional
magnetic resonance imaging) are used. As functional magnetic
resonance imaging by itself has insufficient temporal resolution to
capture the N100 potential, a combined electroencephalography/
functional magnetic resonance imaging approach may be
necessary to more accurately noninvasively assess the role of
the hippocampus in the gating of this and other mid-latency-
evoked potentials. Once a hippocampal role in N100 gating in
humans has been established, animal studies using hippocampal
recordings may definitively assess its pharmacological
translatability.

CONCLUSION
Development of translational assays that predict drug response
across species is a priority for psychiatry research. Here, we
show that drug effects on auditory P20–N40 gating in rodents
as measured from hippocampal electrodes effectively predict
effects on P50 gating in schizophrenia patients. To our knowl-
edge, unfortunately, pharmaceutical companies that use sensory
gating as a translational screening tool in schizophrenia research
are currently in the minority. To that end, this review supports
expanded use of sensory gating to increase the probability
of success of investigational compounds in therapeutic
development.
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