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A common molecular signature in ASD gene expression:
following Root 66 to autism
L Diaz-Beltran1,2,3, FJ Esteban3 and DP Wall1,2,4

Several gene expression experiments on autism spectrum disorders have been conducted using both blood and brain tissue.
Individually, these studies have advanced our understanding of the molecular systems involved in the molecular pathology of
autism and have formed the bases of ongoing work to build autism biomarkers. In this study, we conducted an integrated systems
biology analysis of 9 independent gene expression experiments covering 657 autism, 9 mental retardation and developmental
delay and 566 control samples to determine if a common signature exists and to test whether regulatory patterns in the brain
relevant to autism can also be detected in blood. We constructed a matrix of differentially expressed genes from these experiments
and used a Jaccard coefficient to create a gene-based phylogeny, validated by bootstrap. As expected, experiments and tissue
types clustered together with high statistical confidence. However, we discovered a statistically significant subgrouping of 3 blood
and 2 brain data sets from 3 different experiments rooted by a highly correlated regulatory pattern of 66 genes. This Root 66
appeared to be non-random and of potential etiologic relevance to autism, given their enriched roles in neurological processes key
for normal brain growth and function, learning and memory, neurodegeneration, social behavior and cognition. Our results suggest
that there is a detectable autism signature in the blood that may be a molecular echo of autism-related dysregulation in the brain.
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INTRODUCTION
Autism is regarded as one condition among a genetically
heterogeneous group of neurodevelopmental syndromes with
high prevalence1 that has a wide range of phenotypes, collectively
grouped together as autism spectrum disorder (ASD). The unifying
clinical features across the spectrum involve fundamental
impairments in social interaction, communication deficits and
highly restrictive interest and/or repetitive behaviors.2,3 Although
there is no unifying hypothesis about the molecular pathology of
autism, it is clear that the disorder is highly heritable and results
from the combination of genetic, neurologic, immunologic and
environmental factors. However, it remains unclear whether its
genetic component stems from the combination of a few
common variants or of many rare variants.4,5

Recent advances in genetics, genomics, developmental
neurobiology and systems biology have offered important insights
into the molecular agents and biological mechanisms responsible
for ASD. Microarray technologies and next-generation sequencing
have enabled high-throughput discovery of genes likely to be
involved in the molecular pathology of autism.5–8 However, as the
success in discovery has risen, the number of candidate genes
with associated risk for ASD has also stretched well into the
hundreds.9,10 As of December 2014, 667 genes have been
implicated in autism (https://gene.sfari.org/autdb/HG_Home.do).
Despite the large amounts of data now available, the general lack
of replication across studies suggests that more data will be
needed to fully characterize the genetic models responsible for
the various forms of autism.

These high-throughput and large-scale efforts have confirmed
that autism is a multisystem and heterogeneous condition. Thus,
understanding the complex genetic architecture of ASD must
involve, among other things, the study of autism gene expression
across different tissues using integrative approaches. The majority
of gene expression experiments conducted so far have been on
blood-derived cells and to a lesser extent postmortem brain tissue
from autism cases and matched controls. More recent approaches
have examined regulatory patterns in induced pluripotent stem
cells forming neurons from individuals with autism. Individually,
these studies have advanced our understanding of molecular
systems involved in either the cause or effect of autism. We
propose and test here the notion that together these experiments
may help refine our understanding of genes and pathways
important in onset and maintenance of autism. Specifically, we
perform an integrated systems biology analysis of all published
autism gene expression studies to test whether a common
signature representative of ASD exists and ultimately if it can be
detected in both blood and brain.

MATERIALS AND METHODS
Experiments and gene lists
To compile a complete set of published and publically available gene
expression experiments we used Nextbio,11 an ontology-based platform
that provides global collections of high-throughput public data that meet
four criteria: broad coverage of genes, existence of a control group, access
to raw or normalized data and supply of sample annotations. We
downloaded gene expression data and derived lists of differentially
expressed genes from 27 case–control biosets of 9 independent
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experiments covering 657 autism, 9 mental retardation and developmental
delay, 566 control samples: GSE37772, GSE25507, GSE7329, GSE28475,
GSE38322, GSE6575, GSE18123, GSE28521 and GSE39447.7,12–19 Nextbio
employed Welch or Standard t-test, paired and unpaired, as appropriate, to
statistically analyze these case–control experiments and established a
nominal, unadjusted P-value significance cutoff of 0.05 and a minimum
absolute fold-change cutoff of 1.2 (the lowest sensitivity threshold of
commercial microarray platforms) to select the differentially expressed
genes for each bioset. The statistical threshold method used by Nextbio for
gene selection aimed to maintain the balance between sensitivity and
specificity across all experiments; these cutoffs were deliberately less
stringent to guarantee the inclusion of all potentially interesting genes,
and have been commonly used for this purpose in the literature.20–26 We
then filtered each list of differentially expressed genes obtained from
Nextbio to save just the unique gene symbol identities assigned from The
Hugo Gene Nomenclature Comittee.27 A description and content of each
bioset can be found in Supplementary Table S1a. It is important to clarify
that, although important covariates exist across these experiments, age
and gender were well-matched across a majority of the samples, with most
of the mixed-gender biosets having roughly four males to one female
(consistent with the male bias of autism). The studies whose data we used
were careful to match the age and sex of their control groups to their case
population (GSE18123, GSE28475, GSE38322, GSE6575 and GSE37772). In
addition, studies with differences of age and/or gender between cases and
control groups independently performed statistical analyses to confirm
that neither age nor sex impacted the pattern of differential gene
expression exhibited between control and case individuals (GSE28521,
GSE25507); GSE7329 and GSE39447 studies examined only males,
although matched for age. More information regarding number of
subjects, age, gender, ethnicity and relationship among the individuals
in each original study can be found in Supplementary Table S1b.

Cluster analysis
We then converted the transcriptional probe lists into a matrix of binary
gene presence/absence with respect to each experimental case. We
analyzed the matrix using the Jaccard coefficient in MATLAB (www.
mathworks.com) to construct a gene-based dendrogram for all 27 biosets
with the aim of determining the relatedness among them. This statistic
measures the similarity and diversity among sample sets and is defined by
the size of the intersection divided by the size of the union of sample sets.
We elected to use this distance coefficient as it was originally developed
for pattern discovery with binary matrices and does not treat the shared
absence of a characteristic as evidence for relatedness, a valuable
characteristic in the context of identifying similarity across gene expression
experiments.

Cluster bootstrap validation
We utilized an integrated function of the ‘fpc’ package28 in R (http://www.
R-project.org/), clusterboot(), for the assessment of clusterwise stability and
validity of the clusters within the gene expression tree. We used a
non-parametric bootstrapping procedure (B= 1000 runs) to resample from
the original data with replacement to construct bootstrap matrices and
clusters, and iteratively used the Jaccard coefficient to compute the
structural similarity of the resampled trees with the tree derived from the
original data. We treated the mean of the Jaccard coefficients computed
per permutation as the overall similarity between the original and
permuted data, therefore an index of a cluster's stability. For each
permutation, we set the paremeter k, the number of subsets, to 14 to
match the total number of clusters obtained in the observed gene
expression tree. Clusters supported by a Jaccard coefficient above 0.6 were
treated as robust and stable, with values closer to 1.0 having the highest
stability. Values ⩽ 0.5 were not stable and not considered in our analysis.
A more detailed explanation of the approach and justification for the

cutoffs used here can be found in the study by Hennig.29 These cluster
stability analyses were complemented with a classical multidimensional
scaling approach that projects our dissimilarity data onto its first two
principal dimensions, generated by the ‘showplots’ argument of Cluster-
boot() function. This resulted in a series of clusters including a collection of
66 genes that form the root of a statistically significant cluster involving
both blood and brain experiments, and that we hereafter refer to as
Root 66.

Gene annotation
To assess the biological context and potential significance of the Root 66
cluster, we used a manually curated database of genes linked to ASD,
SFARI Gene30 and a systems medicine tool, Autworks,31 to extract
information of autism candidate genes and candidate genes of related
neuropsychiatric diseases together with an updated set of predicted gene
interactions.
We also conducted a manual search for lists of variants that have been

associated with autism candidate genes to increase coverage and
reliability of the variant data used for validation of the biological
significance of the Root 66 gene set.32–36

Functional and gene-network analyses
We performed biological pathway analysis using Ingenuity Pathway
Analysis (IPA) software (Ingenuity Systems, www.ingenuity.com) to explore
gene connectivity and related biological functions both within and across
the disorders. IPA functional analysis associates biological functions and
diseases with experimental results, including differentially expressed genes
selected from microarray experiments. It leverages the biological interac-
tions deposited in the manually curated Ingenuity Pathways Knowledge
Base and organizes this information to provide statistical support for gene-
to-gene associations. We imported corresponding Root 66 gene symbols
into the Ingenuity Pathways Knowledge Base and generated networks
using an edge rank score (P-score =− log10(P-value)) that indicated the
likelihood of the genes co-occurring or interacting by random chance. A
score 43 (Po0.001) suggested with more than 99.9% confidence that an
edge between two genes was non-random. Finally, we carried out a
‘disease and function’ analysis to test whether the Root 66 genes had
overrepresentation in specific human diseases and to explore the role(s) of
the Root 66 genes in the context of statistically relevant biological
processes pathways, and networks; IPA implemented a Fisher’s exact test
to generate P-values to determine whether a biological process was
enriched with genes of interest.

Comparison with other human disease gene expression
All RNA human expression disease vs normal experiments from Nextbio
were manually curated for further analysis. In all, 1047 biosets were
selected from 450 different experiments to perform pairwise intersections
of the differentially expressed genes obtained in each experimental case–
control comparison. We generated a matrix of the number of Root 66
genes present in each pairwise comparison using a custom Python script,
and used RStudio37 to statistically explore the data sets and to build a
distribution showing the frequency of Root 66 overlap for each bioset
intersection.

Comparison with patterns of gene expression in normal tissue
We conducted a manual literature search to collect and annotate major
gene expression studies38–42 of normal human tissues with the aim of
investigating evidence of genes in the Root 66 gene set being involved in
normal blood and/or brain transcriptional patterns. In addition, we
assembled a manually curated list of 408 housekeeping genes from
Reactome and KEGG pathway annotations43 to test whether Root 66 genes
have previously been found to be widely expressed across normal tissue
and involved in housekeeping roles.

RESULTS
Comparative analysis of gene expression studies
We generated lists of differentially expressed genes from ASD
gene expression data analyses of 27 case–control biosets
spanning 9 independent experiments: GSE37772, GSE25507,
GSE7329, GSE28475, GSE38322, GSE6575, GSE18123, GSE28521
and GSE39447,7,12–19 available via Nextbio.11 Supplementary Table
S1a provides a description of all biosets and Supplementary Table
S1b contains information regarding number of subjects used in
the experiments along with their age, gender and ethnicity. To
determine relatedness across biosets, we converted the lists into a
binary matrix of gene presence/absence and performed distance-
based clustering with pairwise similarity measured via the Jaccard
coefficient. As expected, the majority of the 27 biosets clustered
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together by experiment first and tissue type second (Figure 1, also
Supplementary Figure S1), suggesting that the likely cause of the
significant clustering of these biosets was variation related to the
experimental design and nature of the samples. However, one
subgroup of the tree deviated from this expectation and included
biosets from three different experiments (GSE18123, GSE38322
and GSE28475) involving both brain and blood tissue (Figure 1).
This subgroup was rooted by a collection of 66 genes (see Table 1
and Supplementary Table S2) and was statistically supported by
bootstrap resampling (see Figure 2, also Supplementary Figure S2
and Supplementary Table S3). It is important to note that this Root
66 cluster was the only one that achieved statistical significance
that integrated 3 different experiments from different tissues
(brain and blood) across 3 independent expression platforms
(GPL570 from Affymetrix (Santa Clara, CA, USA) and GPL6883 and
GPL10558 from Illumina (Hayward, CA, USA)) and a diversity of
subjects included (ASD and control males and females with
different ages). This suggested that the source of the clustering
was not co-variables but instead the regulatory patterns
represented by these 66 genes.
To evaluate the hypothesis that this Root 66 could represent a

common signature in blood and brain indicative of autism, we
examined the genetic network formed by these genes, their
implication in other autism-related neurological conditions and
their mutational burden as reported by recently published exome-
sequencing studies.32–36

Links to autism
Four genes in our candidate list for autism (MAP1LC3B, PDE4B,
TCF4 and UPF2) have already been associated with ASD.

In addition, 32 interact directly with genes that have been
associated with autistic disorder. An additional 19 are directly
involved in or have links with genes associated with related
neurological conditions, including schizophrenia, epilepsy, intel-
lectual disability, seizures, attention deficit and disrupted behavior
disorders, Angelman syndrome, bipolar disorder, mental retarda-
tion, developmental disabilities, sleep disorders and Alzheimer's
disease, among others (Table 1). Supplementary Table S2 details
the Root 66 genes including links to neurological disorders and
interaction with known autism genes. Triangulating with recently
published exome-sequencing studies, nine of the Root 66 genes
have had variants reported as de novo or elevated risk for
autism,32–36 and Table 2.

Pathway enrichment
Using IPA, we determined that the Root 66 gene set was enriched,
with IPA edge rank scores 43, in a total of 3 biological networks
related to neurological function. These are detailed in the three
sections below:

Neuroendocrine and normal development network (IPA score = 27,
P≪0.01). The first network (Supplementary Figure S3) included
15 Root 66 genes, 2 of them already associated with autism
(MAP1LC3B and PDE4B), that interact in neurological processes
involved in normal brain growth and function, such as formation
of astrocytes, proliferation of cortical neurons, sorting of axons
and myelination. Dysregulation of Root 66 genes may affect
relevant brain processes such as learning and memory, as they
were found to be linked to relevant nodes in the network (PI3K
and NFKB complexes) that are implicated in postsynaptic density

Figure 1. Gene-based clustering of the 27 biosets (see Supplementary Table S1). The majority clustered together by experiment first and tissue
type second, with the exception of the Root 66 subgroup (highlighted in purple).

Table 1. Root 66 genes (1) with known links to autism, (2) known to be interacting with high priority autism candidates or (3) associated with other
autism-related neurological disorders

Root 66 genes already
associated to autism

Root 66 interacting with ASD candidate genes Root 66 directly involved or interacting with genes linked to
related neurological conditionsa

MAP1LC3B, PDE4B, TCF4,
UPF2

ACSL4, ASAH1, BAX, BCL6, CAPZA2, CNOT4, COL4A3BP, CSF2RA,
CUL4A, EIF4E3, GMPR2, HNRNPC, HSPD1, ITGB1, LAMP2, LYST,
NFE2L2, PCNP, PFDN5, PPM1B, RBM39, RBMX, RHEB, SEPT2,
SIRPA, SVIL, TDP2, TIMP2, TPM1, TXN, UBE2D3, ZNF644

AGTPBP1, ARID4B, CPD, DSE, KIF1B, LAMTOR3, OCIAD1,
PHF20L1, PNKD, RAB24, RAB2A, RBM25, SLC44A2, SORL1,
SUPT4H1, TNRC6A, VMP1, WIPF1, WLS

Abbreviation: ASD, autism spectrum disorder. aSchizophrenia, epilepsy, intellectual disability, seizures, attention deficit hyperactivity disorder, Angelman
syndrome, bipolar disorder and Alzheimer's disease
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and glutamatergic synapses, and, therefore, in synaptic plasticity.
This network also showed an interesting connection between
genes associated with ASD and other related neurological
disorders, and endocrine hormones of the hypothalamic–pitui-
tary–gonadal axis, such as follicle-stimulating hormone, luteinizing
hormone and gonadotropin-releasing hormone.

Neurodegeneration network (IPA score = 24, P≪0.01). A second
network (Supplementary Figure S4) included 14 Root 66 genes
(UPF2 already linked to autism) that have been shown to interact
with molecules involved in mechanisms responsible for nervous
system inflammation, loss of neurological function and abnormal
morphology of the brain. Several genes central in the network,
such as APP, PTGS2, ERG and YWHAG were found to be linked to

Root 66 genes, and have been implicated in processes such as
amyloid plaque formation, astrocytosis and gliosis, cognitive
degeneration and neurological dysfunction typical of neurological
diseases including Parkinson's, Alzheimer's and Schizophrenia.

Neurodegeneration and tumor network (IPA score = 22, P≪0.01).
Thirteen Root 66 genes were found to be interacting in this
network (Supplementary Figure S5). Three genes involved in
cancer appeared to be the most connected nodes: TP53, PTEN and
AGTR1. The network was enriched in biological processes such as
neurodegeneration, abnormal morphology and damage of the
nervous system, likely caused by tumorigenesis.
While the above 3 networks showed potentially independent

roles of smaller sets of genes contained with the Root 66, we also

Figure 2. Jaccard clustering of the 27 biosets generated by bootstrap with replacement (k= 14). The Root 66 subgroup, highlighted in purple,
presented a stability index value of 0.617, suggesting that it was a non-random group of probable biological significance.

Table 2. Root 66 genes with SNVs or de novo ASD risk-contributing mutations in ASD probands from several recently published exome-sequencing
efforts

Study Source Gene/type mutation

Iossifov et al.32 Complete list of SNVs detected on 343 SSC families PDE4B: autism F, synonymous
RAB2A: autism M, synonymous
BCL6: autism M, synonymous

Neale et al.33 Validated de novo events and mutations SVIL: autism, nonsense
ASD genes ACSL4, LAMP2
O’Roak et al.34 Top de novo ASD risk-contributing mutations CNOT4
De novo mutation sites CNOT4: missense

TCF4: synonymous
ZNF644: missense, severe

O’Roak et al.35 ASD candidate loci targeted by MIPs-
inherited truncation/splice events identified in ASD probands

CNOT4

Sanders et al.36 Loss-of-function mutations in probands RAB2A

Abbreviations: ASD, autism spectrum disorder; MIP, molecular inversion probe; SNV, single nucleotide variant; SSC, Simons Simplex Collection.
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queried the global connectivity among member genes of Root 66.
To do so, we merged the three networks into a single global gene
network (Figure 3). The merged network connected 42 of the Root
66 genes (Figure 3) and revealed direct links between these Root
66 genes and genes participating in pathways related to
neurological processes, such as synaptic transmission, neuro-
degeneration, learning and memory, as described above in the
independent networks and labeled in Supplementary Figures as
provided by IPA. Several autism-related diseases and functions
were statistically enriched in this global network; gene names and
corresponding P-values can be found in Table 3. We found
evidence to support the role of the Root 66 network in biological
mechanisms that cause alteration of the nervous system, and,
therefore, neurological disorders, and also involvement in
morphologic and molecular alterations of normal brain develop-
ment that may underlie the etiology of ASD. While this global
network was statistically significant, more testing will be required
to confirm its biological significance and potential role in autism.

Root 66 expression in non-autism disease and normal tissue
We manually selected 1047 biosets from Nextbio11 containing
genes differentially expressed between disease and normal tissue
from 450 independent RNA expression experiments. These
experiments contained a diversity of tissue types roughly
comparable to the experiments used in our primary analysis. We
then computed pairwise intersections between these biosets to
assess the frequency of appearance of our Root 66 in each
overlap. The distribution displayed in Supplementary Figure S6
details the number of Root 66 genes found in each pairwise bioset
intersection. The overlap was negligible and not statistically
significant. The average number of genes found in the intersection
among these biosets was 6.15 compared with the 66 genes
obtained in individuals with autism. In addition, we found five
relevant studies38–42 where hierarchical clustering of normal
tissues was made using different approaches; none of these
showed a grouping between brain and blood samples. Instead,
these two tissue types segregated separately into unconnected

Figure 3. Biological network formed by the Root 66 gene set. Forty-two Root 66 genes (highlighted in purple) are tightly connected and
interact in biological processes related to neurological conditions indicated in synaptic transmission, neurodegeneration, abnormal brain
morphology, and learning and memory (Table 3). Interactions with any of the Root 66 genes are highlighted in blue.
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branches within the dendrogram. In addition, only 3 Root 66
genes (RBMX, SUPT4H1 and UBE2D3) intersected with our list of
408 experimentally confirmed housekeeping genes.43 These
findings collectively lend support to the hypothesis that the
genes in the Root 66 cluster play unique roles in autism.

DISCUSSION
In this study, we compared a large set of published and openly
available gene expression experiments from different tissue types
performed in individuals with autism, with the goal of testing the
hypothesis that a signature of autism can be found in the blood
that might be a molecular echo of autism-related regulatory
impairment in the brain.
We discovered a statistically significant subgroup that deviated

from expectation and included biosets from three independent
experiments involving both brain and blood tissue. This subgroup
was significantly statistically supported by a subset of 66 genes
that we termed Root 66. Four of the Root 66 genes (MAP1LC3B,
PDE4B, TCF4 and UPF2) have previously been associated with
autism, and 56 either have been shown to interact directly with
known autism candidates or have been implicated in other
autism-related neurological disorders.
To better understand the biological significance of Root 66, we

tested its member genes’ enrichment in specific biological
processes and whether these genes form an interconnected
biological network. Our analysis revealed that a significant number
of Root 66 genes were interacting in 3 relevant networks, each of
them related to neurological disease in a different but potentially
significant way. The first network was enriched in biological
processes related to brain growth and development that may
affect learning and memory, and also showed some dysregulation
in neuroendocrine activity, particularly an interaction between
Root 66 genes and endocrine hormones of the hypothalamic—
pituitary—gonadal axis. Although the main role of this axis is to
control development, reproduction and aging, it is known that
these hormones affect behavior, as they have been shown to alter
brain structure and functioning including dsyregulation of the
follicle-stimulating hormone, which has known roles in brain

development and neuronal differentiation.44 Moreover, the
activity of gonadotropin-releasing hormone neurons, and thus,
the regulation of gonadotropin release in blood, is stimulated or
inhibited by oxytocin, a neurohypophysial hormone that also acts
as a neurotransmitter in the brain. Several studies45–49 have
revealed that oxytocin is implicated in social behavior, recognition
and bonding, as well as the establishment of trust among people.
Furthermore, there is evidence that alterations in the neuromo-
dulatory role of oxytocin are linked to a variety of mental
disorders, including autism.50–52 Finally, polymorphisms in the
gene that codes for the oxytocin receptor have been associated
with ASD risk.53

The second network showed Root 66 gene enrichment in
nervous system inflammation, loss of neurological function and
abnormal morphology of brain, supporting roles in neurodegen-
eration. There is evidence54,55 of neural cell loss and activation of
microglia and astrocytes in ASD, as well as high levels of APP.56–58

These studies suggested that neurodegeneration may have a role
in autism, as it could explain the loss of previously acquired skills
and abilities indicative of regressive forms of autism. Alterations in
common neurological mechanisms, such as disruption during
synaptogenesis may relate to ASD and other disorders of the
brain, including schizophrenia, epilepsy, Alzheimer's disease and
Parkinson's disease. For example, work has shown evidence for
impaired neural synchrony and neurotransmission systems as
pathophysiological processes involved in onset and/or mainte-
nance of these neurological conditions.59–64

Finally, the third network was enriched in neurodegeneration,
abnormal morphology and damage of the nervous system and
included the known cancer genes TP53, PTEN and AGTR1 as the
top most connected nodes. Mutations in tumor suppressor gene
PTEN, known to be associated with thyroid, breast and colon
cancers, have been found in subgroups of children with autism
who also have comorbid conditions of macrocephaly and/or
epilepsy.65,66 In addition, it has been suggested that PTEN
mutations can have downstream impacts on other autism gene
candidates, perhaps playing a role in the autism phenotype.67

Work has shown that when defective PTEN interacts with TP53 a
decrease in the energy production of neurons occurs, leading to

Table 3. Significant diseases and functions enriched in the Root 66 biological network (Figure 3)

Diseases and function P-value Molecules

Alzheimer's disease 5.66E− 10 APP, BAX, DYRK1A, estrogen receptor, FAM3C, GAK, GAPVD1, HSPD1, miR-19b-3p, mir-34,
NFE2L2, NFkB (complex), PTEN, PTGS2, SOD2, SORL1, TP53, TXN, VPS35

Morphology of nervous system 7.53E− 10 AGTR1, APP, BAX, CCND1, DYRK1A, EGFR, EPB41L3, GAK, HDAC2, ITGB1, KIF1B, MAGI2, mir-34,
NFE2L2, PTEN, SOD2, SORL1, SULF2, TP53

Size of brain 2.58E− 08 BAX, DYRK1A, EGFR, KIF1B, PTEN, SOD2, TP53
Abnormal morphology of nervous
system

3.62E− 08 AGTR1, APP, BAX, CCND1, DYRK1A, EGFR, EPB41L3, HDAC2, KIF1B, MAGI2, NFE2L2, PTEN,
SOD2, SORL1, SULF2, TP53

Morphology of brain 4.45E− 08 AGTR1, APP, BAX, CCND1, DYRK1A, EGFR, GAK, HDAC2, KIF1B, PTEN, SOD2, SULF2, TP53
Differentiation of neurons 9.09E− 08 ACSL4, APP, ASAH1, BCL6, EGFR, HDAC2, HGF, ITGB1, PI3K (complex), TCF4, TIMP2, TP53,

YWHAG
Abnormal morphology of brain 1.82E− 07 AGTR1, APP, BAX, CCND1, DYRK1A, EGFR, HDAC2, KIF1B, PTEN, SOD2, SULF2, TP53
Morphogenesis of neurites 2.00E− 07 APP, DYRK1A, EGFR, EPB41L3, HGF, ITGB1, MAGI2, mir-34, PTEN, RAPH1, SULF2, TP53
Neuritogenesis 3.11E− 07 APP, DYRK1A, EGFR, EPB41L3, ERK1/2, HDAC2, HGF, ITGB1, MAGI2, mir-34, PI3K (complex),

PTEN, RAPH1, SIRPA, SULF2, TP53
Development of neurons 3.23E− 07 ABLIM, APP, DYRK1A, EGFR, EPB41L3, ERK1/2, HDAC2, HGF, ITGB1, MAGI2, mir-34, PI3K

(complex), PTEN, RAPH1, SIRPA, SOD2, SULF2, TP53, YWHAG
Branching of neurites 3.36E− 07 APP, DYRK1A, HGF, ITGB1, MAGI2, mir-34, PTEN, RAPH1, SULF2, TP53
Shape change of neurons 6.27E− 07 APP, DYRK1A, HGF, ITGB1, MAGI2, mir-34, PI3K (complex), PTEN, RAPH1, SULF2, TP53
Morphology of neurons 1.46E− 06 APP, BAX, DYRK1A, EGFR, EPB41L3, HDAC2, MAGI2, mir-34, NFE2L2, SORL1, SULF2
Abnormal morphology of neurons 1.84E− 06 APP, BAX, DYRK1A, EGFR, EPB41L3, HDAC2, MAGI2, NFE2L2, SORL1, SULF2
Proliferation of neural precursor cells 2.41E− 06 APP, DYRK1A, HGF, mir-34, PTEN
Size of dendritic trees 2.47E− 06 BAX, HGF, ITGB1

Abbreviation: IPA, Ingenuity Pathway Analysis. Root 66 genes highlighted in bold. P-values were generated by IPA using Fisher's exact test.
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stress that induces mitochondrial DNA changes and abnormal
levels of energy production in brain regions that are crucial for
social behavior and cognition.68

Merging of these networks revealed that Root 66 genes formed
a tightly connected network enriched in neurological processes
such as synaptic transmission, neurodegeneration, abnormal brain
morphology, learning and memory, supporting its potential role in
neurological impairment, and in particular, autism. We next ran
several tests to determine whether Root 66 represented a unique
signature in autism unlikely to occur by chance or to represent a
more ubiquitous signature of neurological impairment. We
explored the list of differentially expressed genes in 450 disease
vs normal RNA expression experiments for overlap with Root 66.
The mean overlap of 6 genes strongly supported the hypothesis
that the brain–blood cluster formed by Root 66 was unlikely to be
a chance event and may represent a pattern unique to autism.
To further test whether the Root 66 brain–blood cluster

observed in our study could form by chance, we explored the
results from 5 studies38–42 of normal brain and blood gene
expression. These studies showed that although there is overlap in
the genes expressed in normal brain and blood, the different
tissue transcriptomes clustered independently from one another
in all cases, unlike what we observed in the present analysis. We
also tested whether the genes in Root 66 played more generic
roles as housekeeping genes.69 Only 3 of its member genes
overlapped with an experimentally confirmed list of 408 house-
keeping genes manually curated from Reactome and KEGG
pathway databases.43 Both results lend additional support to the
hypothesis that the Root 66 cluster is non-random and likely plays
a role unique to autism.

CONCLUSION
Gene expression studies published to date have had a relatively
limited impact on our understanding of autism’s molecular
pathology. Here we show by integrating and analyzing several
published gene expression experiments a statistically significant
signal between blood and brain rooted by 66 genes. The Root 66
gene set appeared to be non-random and of potential etiologic
relevance to autism, as most of its members have known
association with neurological processes crucial for normal brain
development and function and confirmed roles in neurological
disease. While further independent replication and experimental
validation will be needed to confirm our preliminary findings, the
current results suggest that there is a detectable signature in the
blood of individuals with autism that echoes what might be an
important signature of dysregulation in the brain.
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