
OPEN

ORIGINAL ARTICLE

Therapygenetics in mindfulness-based cognitive therapy: do
genes have an impact on therapy-induced change in real-life
positive affective experiences?
JM Bakker1, R Lieverse1, C Menne-Lothmann1, W Viechtbauer1, E Pishva1, G Kenis1, N Geschwind2, F Peeters1, J van Os1,3 and
M Wichers1

Positive affect (PA) has an important role in resilience against depression and has been shown to increase with mindfulness-based
cognitive therapy (MBCT). To elucidate the underlying mechanisms of change in PA as well as develop insights that may benefit
personalized medicine, the current study examined the contribution of genetic variation to individual differences in change in PA in
response to MBCT. Individuals (n= 126) with residual depressive symptoms were randomized to either an MBCT group or treatment
as usual. PA was assessed using experience sampling methodology (ESM). Single-nucleotide polymorphisms (SNPs) in genes known
to be involved in reward functioning were selected. SNPs in the genes for brain-derived neurotrophic factor (BDNF), the muscarinic
acetylcholine receptor M2 (CHRM2), the dopamine receptor D4 (DRD4) and the μ1 opioid receptor (OPRM1) significantly moderated
the impact of treatment condition over time on PA. Genetic variation in the genes for CHRM2 and OPRM1 specifically had an impact
on the level of PA following MBCT. The current study shows that variation in response to MBCT may be contingent on genetic
factors associated with the regulation of PA. These findings contribute to our understanding of the processes moderating response
to treatment and prediction of treatment outcome.
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INTRODUCTION
A stronger capacity to experience positive affect (PA) is associated
with resilience against major depressive disorder (MDD)1–4 as well
as against general negative emotional experiences5–7 and other
forms of psychopathology.8–10 Therefore, recent studies have
examined to what degree non-pharmacological interventions are
able to modify the experience of PA. Several therapies that aim at
enhancing PA have been developed. Indeed, randomized
controlled trials of mindfulness-based cognitive therapy (MBCT)
and Loving Kindness Meditation show increases of positive
emotional experience in a variety of samples.11–14 However, the
underlying mechanisms of how psychotherapy elevates PA remain
unknown.
Therapygenetic approaches aim to investigate the impact of

specific genetic variants on differences in the level of success of
psychological therapies.15,16 Studies investigating PA have yielded
heritability estimates between 30 and 50%,17,18 suggesting that
genetic factors underlie, at least in part, individual differences in
the ability to experience PA. It can therefore be hypothesized that
heterogeneity in treatment outcome in terms of PA can be traced
to genetic individual differences in biological systems regulating
positive emotional experience.19,20 Investigating the role of
genetic variation in treatment outcome may elucidate the
underlying mechanism of change in PA and enhance a
personalized medicine approach in treatment.21

Two brain reward pathways are considered to be essential for
the experience of PA. First, the mesolimbic dopaminergic pathway

appears to be at the heart of the brain reward system.22–25

Second, the opioid pathway is also believed to be associated with
reward.26–28 The opioid system strongly influences dopaminergic
reward circuitry as the latter is heavily innervated by endogenous
opioid peptide (endorphin and enkephalin) circuits.29,30 As the
brain reward system depends on dopamine and opioid neuro-
transmission in mesolimbic and frontal areas, we hypothesize that
genetic variations of genes coding for dopamine and opioid
regulation may contribute to individual differences in the impact
of MBCT on positive affective experiences.
Psychotherapy–genetic studies, as opposed to pharmacoge-

netic studies, constitute a relatively novel area of research that
needs further exploration.31 Furthermore, recommendations for
gene–environment interaction studies (G × E) suggest that
improvements in the chosen outcome measurement—using
intermediate phenotypes instead of clinical outcome measures-
—may reduce noise and thereby inconsistencies in results.32 This
is because affective disorders are heterogeneous disease classifi-
cations and specific representations are likely associated with
interactions between polygenetic clusters and the environment.33

The current study is the first to relate genotype to change in an
underlying intermediate phenotype—the experiential expression
of PA—which, in addition to reducing noise, may furthermore
shed light on the mechanisms by which genes relate to treatment
outcome.33,34

To elucidate these mechanisms, the current study aimed to
examine which genetic variants have an impact on MBCT
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outcome—that is, which genotype is associated with a larger
increase in PA following MBCT (boosting effect) compared with
other genotypes within several single nucleotide polymorphisms
(SNPs). To investigate which SNPs had an impact on MBCT
outcome, we performed a randomized controlled trial in which
individuals with residual depressive symptoms were randomized
to either an 8-week intensive MBCT training group or a control
group, and assessed genetic profiles in relation to modification of
real-world PA experience. PA was assessed prospectively, repeti-
tively and in-the-moment using experience sampling methodol-
ogy (ESM),35 thus avoiding recall bias in the assessment of affect.

MATERIALS AND METHODS
Participants
Participants with residual depressive symptoms and at least one prior
episode of MDD were recruited through outpatient mental health-care
facilities in Maastricht (The Netherlands) as well as via posters in public
places. Residual symptoms were defined as a score⩾ 7 on the 17-item
Hamilton Depression Rating Scale for Depression (HDRS36). Exclusion
criteria included the following: fulfilling criteria for a current depressive
episode, schizophrenia or psychotic episodes in the past year, and recent
(past 4 weeks) or upcoming changes in on-going psychological or
pharmacological treatment. Currently depressed individuals were excluded
since, at trial preparation, no evidence existed that currently depressed
individuals were able to participate in, or benefit from, MBCT. All study
procedures were approved by the Medical Ethics Committee of Maastricht
University Medical Centre, and all participants signed an informed consent
form. The trial was registered at the Dutch Trial Register (number
NTR1084).

Procedure
Potential participants were screened by phone to check for availability
during the study period along with the likelihood of meeting inclusion and
exclusion criteria. During a second screening, the Structured Clinical
Interview for DSM IV-Axis I37 and HDRS36 were administered by trained
psychologists. All eligible participants were invited for a one-on-one
explanation of the ESM procedure followed by saliva collection for DNA
extraction, after which they participated in baseline assessment. The
baseline assessment consisted of 6 days of ESM in the individual’s own
environment (see ESM below) and administration of the HDRS interview.
Participants were then randomized to either the experimental (MBCT) or
control (wait list) arm of the trial (for specific randomization and
stratification procedures see Geschwind et al.13).
After 8 weeks of MBCT (see Intervention section), or equivalent waiting

time, participants once more participated in a 6-day ESM assessment
phase and administration of the HDRS. Assessment periods of control
participants were matched to those of MBCT participants. All participants
received compensation in the form of gift vouchers worth 50 euros.
Participants in the control condition were given the opportunity to
participate in an MBCT training after post-intervention assessment.

Intervention
The content of the MBCT training sessions followed the protocol of Segal
et al.38 The training consisted of eight weekly sessions of 2.5 h each,
involving groups of 10–15 participants. Sessions included guided
meditation, experiential exercises and discussion. In addition to the weekly
group sessions, participants received CDs with guided exercises and were
assigned homework exercises (of 30–60min daily). Sessions were taught
by experienced trainers in a centre specialized in mindfulness trainings.
Trainers were supervised by an experienced health-care professional who
trained with Teasdale and Williams (co-developers of MBCT).39

ESM
ESM is a momentary assessment method to assess participants in their
daily living environments, thus providing repeated in-the-moment
assessments of affect in a prospective and ecologically valid manner with
several advantages over retrospective questionnaires.40 In the current
study, participants received both a digital wristwatch and a set of ESM self-
assessment forms, the latter organized in six booklets—one for each day.
The wristwatch was programmed to emit a signal (‘beep’) at unpredictable

moments, but certainly once every 90min between 0730 and 2230 hours,
on six consecutive days, resulting in 60 beeps per assessment period. After
each beep, participants were asked to fill out the ESM self-assessment
forms. The forms included reports on current mood and context, all given
on a 7-point Likert scale. All reports that were not filled out within 15min
after the beep, and all participants who were with less than 20 valid reports
at baseline, were excluded from the analysis because these have been
shown to be less reliable.35

Measures
PA. At each beep, several ESM mood adjectives were assessed on 7-point
Likert scales ranging from 1 (not at all) to 7 (very). Adjectives were selected
based on previous experience of our research group within this field41,42 in
combination with the following considerations: they should reflect state
(rather than trait) measures and should show intra-individual variation.
Items should, furthermore, preferably load on the same latent factor (PA).
Consistent with previous work,3,13 principal component analysis with
oblique rotation was used to generate a factor representing PA. The mood
adjectives ‘happy’, ‘satisfied’, ‘strong’, ‘enthusiastic’, ‘curious’, ‘cheerful’, and
‘inspired’ loaded on the PA factor. The mean levels of PA were then
computed by averaging the above items per participant and beep
moment, yielding a total of 11 513 PA observations in this sample.

17-Item Hamilton Depression Rating Scale. The HDRS36 was administered
by two trained research assistants with master degrees in psychology. The
HDRS is a semistructured interview designed to assess depressive
symptoms over the past week. Internal, interrater and retest reliability
estimates for the overall HDRS are good.43

Genotyping. Genomic DNA was obtained from saliva samples. Saliva was
collected in Oragene-DNA Self Collection Kits (DNA Genotek, Ottawa,
Ontario, Canada), and DNA was isolated using the AutoGenFlex DNA
isolation system (Autgen, Hilliston, MA, USA) according to the manufac-
turer’s instructions. SNPs were determined with Sequenom (Hamburg,
Germany) using the Sequenom MassARRAY iPLEX platform at the facilities
of the manufacturer. SNPs with a call rate of lower than 90% or that show
violation of Hardy–Weinberg equilibrium (GENHWI command in STATA 12.
1,44 Po0.01) were excluded from analyses.
A selection of genetic variations (see Table 1) under study was made

based on (i) their involvement in dopamine and/or opioid regulation and/
or (ii) previous literature showing associations between the selected
variations and mental disorders associated with a deficient reward system,
such as MDD.45–53 Of the selected 32 SNPs,

● Three SNPs could not be included in any of the multiplex assays due to
neighbouring SNPs or overlapping sequences (rs11030103 and
rs568201086 in the brain-derived neurotrophic factor (BDNF) gene
and rs1799732 in the dopamine receptor D2 (DRD2) gene);

● One SNP was excluded because according information from the
Database of Single Nucleotide Polymorphisms (dbSNP; http://www.
ncbi.nlm.nih.gov/SNP/) its variation was suspected to be false positive
due to artifacts of the presence of paralogous sequence in the genome
or because evidence suggested sequencing error or computation
artifacts (rs28722151 in BDNF);

● One SNP was excluded because it was a multivariate SNP which was
unknown at the time of genotyping (rs1799836 in the monoamine
oxidase B (MAO-B) gene);

● Three SNPs were excluded because they showed no, or minimal,
variation: rs12273539 and rs57083135 in BDNF; rs6267 in the catechol-O-
methyltransferase (COMT) gene);

● One SNP was excluded because of genotyping failure (that is, call rate
o0.90; rs747302 in the dopamine receptor D4 (DRD4) gene).

We furthermore decided not to run genetic analyses on genotypes
present in just a small proportion of the sample. We used the cutoff of
n= 30 as the minimum number of individuals for a genotype to be
included in the analyses. Owing to this, five further SNPs were excluded
(rs 1800955 in DRD4, rs1799971 and rs563649 in the μ1 opioid receptor
(OPRM1) gene, and rs 6350 and rs6413429 in the dopamine transporter
(SLC6A3) gene), resulting in a final set of 18 SNPs. An overview is provided
in Table 1. Table 2 shows the correlations between SNPs, indicating that
the effects of SNPs are mostly independent. Of the SNPs that did correlate
highly (that is, r⩾ 0.70) only one SNP was analysed to avoid finding several
significant effects that actually come down to one single effect as well as
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to avoid overcorrecting for multiple testing problems. This decision
influenced the analyses of the following SNPs: rs4633, rs4680, rs4818,
rs6269 in COMT (all rs⩾ 0.85); rs1824024 and rs206174 in CHRM2 (r= 0.86);
rs6276 and rs6277 in DRD2 (r= 0.71); and rs495491 and rs3823010 in
OPRM1 (r= 0.79). For the COMT gene, only the most well-known functional
SNP (rs4680) was analysed. From the other highly correlated SNPs only the
one with the lowest rs number was analysed. All in all 14 SNPs were
analysed. SNPs were coded in 0,1,2 format with 0 being the most frequent
homozygous genotype unless it involved a functional SNP, of which the
non-risk allele (according to dbSNP) was coded 0.

Statistical methods
ESM data have a hierarchical structure. Thus, multiple observations (Level
1) are clustered within participants (Level 2). Multilevel analyses take the
variability associated with each level of nesting into account.54 The
XTMIXED command in STATA 12.144 was used to perform multilevel linear
regression analyses. The large amount of observations of the outcome
measure per participant increases the effective sample size.55,56 Owing to
the multilevel structure of the data, the effective sample size depends on
the size of the ICC. For the current data, the ICC is around 0.07, implying
that the effective sample size is about 11 513/(1+0.07 × 99) = 1451.
To test whether the effect of MBCT on PA depends on genotype,

fourteen three-way interactions between SNP, time (baseline vs post
assessment) and group (control vs MBCT) on PA were performed, yielding
a total of 16 analyses (three analyses for the SNPs rs4633/rs4680, as all
three genotypes were included for analysis, and one analysis per SNP for
the other SNPs). The MARGINS command44 was used to calculate

estimated marginal means to plot PA levels at baseline and post
assessment per combination of genotype and group. For all the SNPs
that returned a significant interaction effect, the TEST command, which
uses a Wald test,57 was used to analyse whether (and if so, in which
direction) the change in PA within a group differed per genotype.
All analyses were controlled for age and gender. Furthermore, to avoid

between-person differences in average set-point of the subjective ratings,
analyses were corrected for individual baseline average of PA. In addition,
all multilevel models included a random intercept, covariance was set to
unstructured. To correct for multiple testing problems, Holm’s
procedure58,59 was used. Finally, in order to graphically display the clinical
effect associated with the impact of genotype on PA experience,
differences in change in HDRS scores as a function of genotype and
treatment arm were shown for each significant finding.

RESULTS
Participants
At baseline, there were no significant differences between
treatment groups with respect to sociodemographic and clinical
characteristics: age, gender, full-/part-time work, illness/unemploy-
ment benefits, living with partner/own family, HDRS score,
comorbid past/present anxiety disorder, current use of antide-
pressants or benzodiazepines (all P-values >0.05). Furthermore,
MBCT compared with CONTROL was associated with significant
increases in PA (for details of sociodemographic and clinical

Table 1. Overview of selected SNPs

SNP Genotypes (n) or reason of
exclusion

Gene Location Function Alleles Alternative name(s) Inclusion reference Callrate HW χ2

rs6265 G/G (78); A/G (43); A/A (5) BDNF 11p13 Missense G/A Val66Met Licinio et al.44 1.00 0.262
rs11030101 A/A (36); T/A (63); T/T (27) BDNF 11p13 UTR-5 A/T Licinio et al.44 1.00 0.109
rs11030102 C/C (76); G/C (43); G/G (7) BDNF 11p13 NearGene-5 C/G Licinio et al.44 1.00 0.004
rs11030103 Design failure BDNF 11p13 NearGene-5 G/A Licinio et al.44 / /
rs12273539 No variation BDNF 11p13 Intronic T/C Licinio et al.44 1.00 /
rs28722151 *Suspected* BDNF 11p13 UTR-5 C/G Licinio et al.44 / /
rs56820186 Design failure BDNF 11p13 UTR-3 G/T Licinio et al.44 / /
rs57083135 Too little variation BDNF 11p13 NearGene-5 C/T Licinio et al.44 1.00 0.031
rs4633 C/C (31); C/T (63); T/T (32) COMT 22q11.21 Synonymous C/T Diatschenko et al.51 1.00 0.009
rs4680 G/G (31); G/A (63); A/A (32) COMT 22q11.21 Missense G/A Val158Met Diatschenko et al.51 1.00 0.009
rs4818 C/C (41); C/G (64); G/G (21) COMT 22q11.21 Synonymous C/G Diatschenko et al.51 1.00 0.362
rs6267 No variation COMT 22q11.21 Missense G/T Ala72Ser Diatschenko et al.51 1.00 /
rs6269 A/A (39); A/G (65); G/G (22) COMT 22q11.21 NearGene-5 A/G Diatschenko et al.51 1.00 0.479
rs324650 A/A (36); T/A (68); T/T (22) CHRM2 7q31-q35 Intronic A/T Wang et al.45 1.00 0.762
rs1824024 T/T (56); G/T (50); G/G (20) CHRM2 7q31-q35 Intronic G/T Wang et al.45 1.00 1.649
rs2061174 T/T (58); T/C (51); C/C (17) CHRM2 7q31-q35 Intronic C/T Wang et al.45 1.00 0.717
rs6276 A/A (63); G/A (54); G/G (9) DRD2 11q23 UTR-3 A/G A1385G Kraschewski et al.46 1.00 0.188
rs6277 T/T (38); C/T (63); C/C (25) DRD2 11q23 Synonymous C/T C957T Kraschewski et al.46 1.00 0.002
rs1799732 Design failure DRD2 11q23 NearGene-5 − /C − 141C del Kraschewski et al.46 / /
rs747302 Genotyping failure DRD4 11p15.5 NearGene-5 C/G C616G Ben Zion et al.43 0.06 /
rs936461 G/G (58); G/A (53); A/A (15) DRD4 11p15.5 NearGene-5 A/G A809G Ben Zion et al.43 1.00 0.048
rs1800955 Too little variation DRD4 11p15.5 NearGene-5 C/T C521T Ben Zion et al.43 0.93 5.165
rs1799836 Multivariable SNP MAO-B Xp11.23 Intronic A/G B-SNP 13 Balciuniene et al.47 / /
rs495491 T/T (65); T/C (48); C/C (13) OPRM1 6q24-q25 Intronic C/T Zhang et al.48 1.00 0.938
rs609148 C/C (75); C/T (44); T/T (7) OPRM1 6q24-q25 Intronic C/T Zhang et al.48 1.00 0.068
rs648893 T/T (75); C/T (44); C/C (7) OPRM1 6q24-q25 Intronic C/T Zhang et al.48 1.00 0.068
rs1799971 Too little variation OPRM1 6q24-q25 Missense A/G Asn40Asp 118 A/G Zhang et al.48 1.00 0.004
rs3823010 A/A (83); A/G (37); G/G (6) OPRM1 6q24-q25 Intronic A/G Zhang et al.48 1.00 0.484
rs563649 Too little variation OPRM1 6q24-q25 UTR-5 A/G Shabalina et al.49 1.00 0.038
rs6347 A/A (68); A/G (49); G/G (9) SLC6A3 5p15.3 Synonymous A/G Ex2+159 C>T Azzato et al.50 1.00 0.006
rs6350 Too little variation SLC6A3 5p15.3 Synonymous C/T − 3714G>T Azzato et al.50 1.00 0.607
rs6413429 Too little variation SLC6A3 5p15.3 NearGene-5 G/T Ex9–55A>G Azzato et al.50 1.00 0.853

Abbreviations: BDNF, brain-derived neurotrophic factor; CHRM2, cholinergic receptor muscarinic 2; COMT, catechol-O-methyltransferase; DRD2, dopamine
receptor D2; DRD4, dopamine receptor D4; ESM, experience sampling methodology; OPRM1, μ1 opioid receptor; SLC6A3, dopamine transporter; SNP, single
nucleotide length polymorphism; UTR, untranslated repeat. Note: call rates and Χ2 values of Hardy–Weinberg (HWχ2) equilibrium (both calculated on n= 131;
including five participants without ESM data) are indicated. SNPs with a callrate o0.90 (genotyping failure); no or too little variation (two or more genotypes
with less than 30 subjects); or a Χ2 value above 10.83 (marked with *, corresponding with a P-value o0.001) were excluded from analyses.
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characteristics as well as PA levels per group and Participants flow
see Geschwind et al.13). Of the 130 subjects included, one subject
had to be excluded from analysis for not meeting the prespecified
number of experience sampling entries for baseline assessment,
and three subjects were excluded due to low call rate (that is, call
rate o0.90), resulting in a final sample of 126 participants.

Gene x intervention interactions
PA levels did not differ per genotype at baseline (main effect of
SNP on PA; all P-values >0.05). When correcting for multiple
testing with Holm’s method,58,59 5 of the 16 SNP× time(base-
line−post) × group(MBCT− control) analyses were significant (see
Table 3). These were SNPs in BDNF, the muscarinic acetylcholine
receptor M2 (CHRM2) gene, DRD4 and OPRM1. For each of these
significant results, two follow-up analyses (to further examine how
change in PA within a group differed per genotype) were
performed (see Figure 1).
Prominent effects on change in PA in response to MBCT were

found for SNPs in OPRM1 (rs495491, rs609148/rs648893). Com-
pared with the reference genotype, the heterozygotic variant of
these SNPs was consistently associated with larger boosts in PA
from baseline to post assessment in the MBCT group. For the latter
two SNPs (rs609148/rs648893), the same heterozygotic variant,
compared with the reference genotype, was furthermore asso-
ciated with a decrease in PA in the control group. For one SNP
(rs1824024 in CHRM2), the boosting effect in PA from baseline to
post assessment appeared to be greater, compared with the
reference genotype, in the MBCT group with the homozygotic
variant. Two more SNPs were in significant interaction with group
and time: rs11030101 in BDNF and rs936461 in DRD4. However,Ta
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Table 3. Unstandardized effect sizes (s.e.) of the group× time× SNP
interaction and their P-values

SNP Gene Effect size (s.e.) P-value

rs6265 BDNF − 0.067 (0.082) 0.415
rs11030101 BDNF 0.274 (0.089) 0.002a

rs11030102 BDNF 0.128 (0.081) 0.112
rs4680b COMT (a) 0.204 (0.097)

(b) − 0.049 (0.110)
(c) − 0.254 (0.092)

0.036
0.656
0.006

rs4818 COMT − 0.063 (0.085) 0.461
rs6269 COMT − 0.104 (0.086) 0.229
rs324650 CHRM2 − 0.206 (0.087) 0.018
rs1824024c CHRM2 − 0.259 (0.083) 0.002a

rs6276 DRD2 − 0.206 (0.079) 0.010
rs6277 DRD2 − 0.156 (0.090) 0.082
rs936461 DRD4 0.426 (0.082) 0.000a

rs495491d OPRM1 0.372 (0.081) 0.000a

rs609148e OPRM1 0.647 (0.083) 0.000a

rs6347 SLC6A3 −0.209 (0.081) 0.009

Abbreviations: BDNF, brain-derived neurotrophic factor; CHRM2, cholinergic
receptor muscarinic 2; COMT, catechol-O-methyltransferase; DRD2, dopa-
mine receptor D2; DRD4, dopamine receptor D4; OPRM1, μ1 opioid
receptor; SLC6A3, dopamine transporter; SNP, single nucleotide length
polymorphism. Note: the most common homozygotic genotype is the
reference category (except for rs4680, of which the homozygote of the
non-risk allele is the reference category); (a) tests group 1 to 0
(heterozygotic genotype to homozygote of non-risk allele), (b) tests group
2 to 0 (homozygote of risk-allele to homozygote of non-risk allele), (c) tests
group 2 to 1 (homozygote of risk-allele to heterozygotic genotype).
aIndicates a significant result, that is when P-values are ordered from
smallest P1 to largest Pn, Pi ⩽ α/(n− i+1), following Holm’s method for
correcting for multiple testing.54,55 brs4680 is perfectly correlated with
rs4633 and highly correlated with rs4818 and rs6269. crs1824024 is highly
correlated with rs2061174. drs495491 is highly correlated with rs3823010.
ers609148 is perfectly correlated with rs648893.
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the effect in these SNPs was driven by differences in the control
group rather than the MBCT group. In the control group the
heterozygotic variants of these SNPs were associated with a
decrease in PA from baseline to post assessment, compared with
stable or increasing PA levels from baseline to post assessment in
participants with the homozygotic variant. The increase in PA in
the MBCT group for these two SNPs was similar for heterozygotic
and homozygotic genotypes. This indicates that people with a
certain genotype would show a decrease in PA (that is,
deteriorate) if left untreated, and that this deteriorating effect
could be prevented with MBCT.

In order to visually relate these findings to clinical changes in
depressive symptoms, Figure 2 shows, for each of these SNPs, the
HDRS total score per combination of SNP genotype and group
over time. Findings show that the difference between genotypes
in change in HDRS scores is on average about 2 points. Change in
HDRS scores, furthermore, generally mirrors the change in
PA—that is, whenever the average PA increases in the MBCT
group for a certain genotype, the average HDRS total score
decreases as well.
A post hoc analysis was conducted to investigate whether the

differential effect of the significant SNPs on PA might be mediated

Figure 1. Standardized predicted vales of PA (y axis) per combination of group (control/MBCT), assessment time (baseline/post) and SNP
genotype for significant interaction effects only; controlled for the mean baseline PA, gender and age. Follow-up analyses were performed to
test whether the change in PA from baseline to post intervention within a group (control/MBCT) differed per genotype: *P⩽ 0.05; **P⩽ 0.01;
***P⩽ 0.001. CB, baseline measurement in control group; CP, post assessment in the control group; MB, baseline measurement in the MBCT
group; MP, post assessment in the MBCT group; PA, positive effect.
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by differences in behavioural engagement during the MBCT
training. The analysis revealed that, after correction for multiple
testing, none of the SNPs significantly predicted the total amount
of minutes that participants practiced. Therefore, it does not seem
likely that the effect of SNPs is transferred through differences in
behavioural engagement during the MBCT training.

DISCUSSION
To the best of our knowledge, this is the first study combining
assessment of DNA and ESM in a randomized controlled trial with
MBCT. The study aimed at investigating the impact of SNPs on
MBCT outcome in terms of PA. It was hypothesized that genetic
variations in a selection of genes related to dopamine and opioid

regulation and/or that have associations with mental disorders
that have been linked with a deficient reward system may
contribute to individual differences in the impact of MBCT on
positive affective experiences. The results suggest that SNPs in
CHRM2 and OPRM1 moderate the positive impact of MBCT in the
sense that change in PA was on average more pronounced in
participants with certain variants of these SNPs (boosting effect).
An additional effect that was not hypothesized, but revealed to be
associated with SNPs within BDNF and DRD4, can best be
described as a deteriorating effect in the control group. The
average increase in PA in participants in the MBCT group did not
vary with variations within these SNPs. The MBCT intervention
therefore can be conceived as counteracting a natural liability to
worsen.

Figure 2. Standardized predicted vales of 17-item Hamilton Depression Rating Scale (HDRS) score (y axis) per combination of group (control/
MBCT), assessment time (baseline/post) and SNP genotype; controlled for gender and age. CB, baseline measurement in control group; CP,
post assessment in the control group; MB, baseline measurement in the MBCT group; MP, post assessment in the MBCT group.
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The impact of genetic variation in the context of previous
literature
One SNP in OPRM1 that showed a boosting effect in the MBCT
group additionally showed the deterioration effect in the control
group, thus showing that this SNP moderates susceptibility to
environmental influences in a for-better-and-for-worse manner.60

Indeed, it has been found previously that another SNP in the
OPRM1 gene was associated with differential susceptibility to the
environment, with one genotype making individuals simulta-
neously more vulnerable to the negative consequences of lower
levels of maternal care (as reflected by highest levels of fearful
attachment) and more responsive to the benefits of higher levels
of maternal care (as reflected by lowest levels of fearful
attachment).61

It is noteworthy that the interaction effect between MBCT and
both analysed SNPs in the OPRM1 gene on PA turned out to be
very significant, despite the fact that these SNPs were not highly
correlated. Hence, the opioid system may be strongly involved in
reward expression in the flow of daily life. Initially, ‘reward’ was
conceptualized as if it were a single psychological process or a
unitary feature of a reinforcing stimulus, and dopamine in the
nucleus accumbens was nominated as the ‘pleasure neurotrans-
mitter’.62,63 However, with the separation of component processes
of reward (‘liking’ and ‘wanting'),64 a more complex model was
debated.63,65,66 Our results coincide with recent literature showing
that the perception of hedonic properties of rewards (‘liking’) may
be mediated more by opioids rather than dopamine.64,67

Previous literature showed that BDNF has an important role in
the mesolimbic system and specific areas that are centrally
involved in the regulation of reward, such as the Ventral
Tegmental Area and the Nucleus Accumbens.68–70 In line with
this research, the current study found a significant effect of
variation in BDNF. This effect was not characterized by a boosting
effect in the context of MBCT but was brought about by
differential ability to maintain stable levels of PA in the waiting
list control group.
The significant interaction of rs1824024 in CHRM2 in the current

study is in line with a study replicating the finding of our inclusion
article that this SNP was one of the most important susceptibility
SNPs for alcohol dependence and affective disorders.71 Cohen-
Woods et al.72 could not replicate this association in a sample of
participants with recurrent unipolar depression not comorbid with
substance misuse. Nevertheless, the SNP was found to be
significantly associated with the severity of alcohol dependence
in a Korean population,73 and more generally muscarinic receptor
binding in the frontal cortex was found to be decreased in MDD
subjects.74 Even though rs1824024 and CHRM2 have not been
investigated extensively, their reported association with reward-
related disorders is in accordance with our finding.
Significant associations have also been found between several

functional polymorphisms in DRD4 genotypes and reward-
associated outcomes, such as heroin addiction and
schizophrenia,75 and smoking, alcohol use and food craving, as
reviewed in Stice et al.76 These findings coincide with our
significant result regarding variation in DRD4. However, the
specific SNP in DRD4 that we found to significantly moderate
the effect of MBCT on PA (rs936461) has not specifically been
investigated with regard to reward.

Therapygenetics
Therapygenetics is a relatively new continuation of the more
established research area of pharmacogenetics.77 Although the
field is still in its infancy, the initiative of previous studies (see
Lester and Eley31 for an overview of therapygenetic research in
affective disorders) to extend the examination of the moderating
role that genetic variations have in therapeutic outcome to non-
pharmacological therapies is promising. Some of the previous

work concurs in providing evidence that interactions between
genetic variation and directly manipulated (positive) environ-
mental experiences (G × E) can influence remission of mental
disorder outcomes.15,78–80

Overall, however, previous therapygenetic results have been
somewhat mixed.31,81 As discussed in the introduction, the
specific approach in the current study aimed to continue and
extend methodological developments within this field. In using PA
as the main outcome measure, instead of clinical outcome
measures, we directly tapped into the expression of reward, an
important underlying intermediate phenotype for depression. This
approach helped to reduce noise and increase power to detect
G× E effects.33,34 Several significant interactions were found.
Furthermore, to examine how clinically relevant the current
results were, HDRS total scores were rendered visually. The
finding that changes in PA indeed coincided with changes in
HDRS validates and supports the current approach. Future
research may adopt similar approaches to examine whether the
current results will be more consistent than previous findings.
Even though it has been suggested that treatment research

identifying genetic variants that predict therapeutic outcome may
advance personalized treatment in psychiatry,33,82 to date no
genetic predictor examined has sufficient predictive power to
warrant their use as a clinical biomarker.31 This may change once
there is more knowledge about specific networks of genetic
variants that correlate with treatment outcome and more
complicated statistical analytical methods, such as gene-network
analysis83 are applied. In addition, machine-learning algorithms in
which (epi-)genetic predictors are combined with clinical, demo-
graphic, neuroimaging and other predictors may be valuable to
aid clinical judgement in the future. However, until all the relevant
data for these options are available, it is important to system-
atically specify the mechanisms of recovery. The experience of PA
during the flow of daily life has been shown to have a central role
in the recovery of depressive symptoms.84–86 Our results add to
these findings in that the effect of experiential PA in recovery
seems to be associated with biological mechanisms associated
with reward-processing. These biological mechanisms need
further examination, as they will provide us with a deeper
understanding of biological processes underlying resilience and
recovery, which eventually may aid in the improvement of
therapeutic interventions.

Methodological issues
One possible limitation of the current study is the relatively small
number of participants for testing genetic variants. However,
given that we used ESM to assess our outcome variable (PA), we
could collect many observations per participant, yielding an
effective sample size55 of about 1451 rather than 126, which is
considerable. Nevertheless, replication of these findings in further
studies is important.
Furthermore, the current study did not differentiate between

high and low motivational intensity of PA items. Harmon-Jones
et al.87 show that only affective states low in motivational intensity
(that is, the urge to move toward/away from a stimulus) broaden
cognitive scope. This suggests that only affective states low in
motivational intensity could attribute to a positive upward spiral
as described in the broaden-and-build theory.88 However, in the
data of the current study the positive emotional states all loaded
on one factor. Empirically, therefore, we have no argument to
separate the two constructs in our analyses. Future research may
look into what the inclusion of additional PA items such as
‘relaxed’ or ‘calm’ would do to the factor structure of PA as well as
the effect of a potential ‘low-motivational intensity PA factor’ on
the results as described in the current paper.
In addition, it is important to appreciate that the homogeneity

of the sample in this study imposes limitations on the
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generalizability of the findings. Replication in other—for example,
more severely depressed—samples is required in order to
determine whether the effects of SNPs is in the same direction
as well as large enough to be picked up in these samples as well.
Furthermore, the current study is limited by the fact that

included SNPs were selected in 2009 based on available
information at that time. Research in and knowledge about
genetics, however, is evolving rapidly. Therefore, we were not able
to examine newly discovered SNPs with relevance to reward
functioning in this paper (for example, PER2 or GABRA289,90). In
addition, as the majority of our selection of SNPs is either non-
coding or non-functional, biological plausibility at the level of
molecular mechanisms cannot be offered. Future research can
elucidate the role of genetic variations in the genes that were
currently under investigation.
Lastly, the importance of gene–gene interaction (epistasis) in

predisposing toward complex syndromes, such as MDD, has been
emphasized previously91 and may very well account for some
impact on reward-processing and changes herein following
treatment. Unfortunately, this area of research is still in progress
and up to now no clear a priori hypotheses for specific gene–gene
interactions in this respect could be formulated. Future research
might be able to explicate these mechanisms.
In conclusion, the current results indicate that changes in daily

life-positive affective experiences through a non-pharmacological
intervention may be moderated by individual differences in
biological mechanisms regulating reward. These findings con-
tribute to our understanding of the processes underlying response
to treatment.
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