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Aggrecan and chondroitin-6-sulfate abnormalities in
schizophrenia and bipolar disorder: a postmortem study on the
amygdala
H Pantazopoulos1,2, M Markota1,2, F Jaquet1, D Ghosh1, A Wallin1, A Santos1, B Caterson3 and S Berretta1,2,4

Perineuronal nets (PNNs) are specialized extracellular matrix aggregates surrounding distinct neuronal populations and regulating
synaptic functions and plasticity. Previous findings showed robust PNN decreases in amygdala, entorhinal cortex and prefrontal
cortex of subjects with schizophrenia (SZ), but not bipolar disorder (BD). These studies were carried out using a chondroitin sulfate
proteoglycan (CSPG) lectin marker. Here, we tested the hypothesis that the CSPG aggrecan, and 6-sulfated chondroitin sulfate
(CS-6) chains highly represented in aggrecan, may contribute to these abnormalities. Antibodies against aggrecan and CS-6 (3B3
and CS56) were used in the amygdala of healthy control, SZ and BD subjects. In controls, aggrecan immunoreactivity (IR) was
observed in PNNs and glial cells. Antibody 3B3, but not CS56, also labeled PNNs in the amygdala. In addition, dense clusters of CS56
and 3B3 IR encompassed CS56- and 3B3-IR glia, respectively. In SZ, numbers of aggrecan- and 3B3-IR PNNs were decreased,
together with marked reductions of aggrecan-IR glial cells and CS-6 (3B3 and CS56)-IR ‘clusters’. In BD, numbers of 3B3-IR PNNs and
CS56-IR clusters were reduced. Our findings show disruption of multiple PNN populations in the amygdala of SZ and, more
modestly, BD. Decreases of aggrecan-IR glia and CS-6-IR glial ‘clusters’, in sharp contrast to increases of CSPG/lectin-positive glia
previously observed, indicate that CSPG abnormalities may affect distinct glial cell populations and suggest a potential mechanism
for PNN decreases. Together, these abnormalities may contribute to a destabilization of synaptic connectivity and regulation of
neuronal functions in the amygdala of subjects with major psychoses.
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INTRODUCTION
Chondroitin sulfate proteoglycans (CSPGs) are one of the main
components of the brain extracellular matrix (ECM). Emerging
evidence from human postmortem, animal model and genetic
studies points to their involvement in the pathophysiology of
schizophrenia (SZ).1–7 Postmortem studies show abnormalities of
CSPG-enriched perineuronal nets (PNNs), specialized ECM aggre-
gates enveloping distinct neuronal populations, in subjects with
SZ. Specifically, PNNs labeled with a lectin CSPG marker, that is,
Wisteria floribunda agglutinin (WFA), are decreased in the
amygdala, entorhinal cortex and prefrontal cortex, but not visual
cortex, of subjects with this disorder.3,4 In the amygdala and
entorhinal cortex, WFA-positive PNN decreases were accompanied
by sharp, widespread, increases of WFA-positive glial cells.3

Together with reduced CSPG expression in the olfactory
epithelium,1 these findings suggest that CSPG abnormalities
may be region-selective but inclusive of a wide range of neural
structures in SZ. Rodent studies are consistent with a role of PNNs
in SZ. Models of oxidative stress relevant to this disorder show
reductions of PNNs,8 whereas localized PNN destruction repro-
duces functional abnormalities reminiscent of SZ.9 Finally, poly-
morphisms of genes encoding for several CSPGs have been
associated with SZ.5–7

ECM/CSPG functions resonate with key pathophysiological
aspects of SZ, such as anomalies affecting neuronal migration,

neural connectivity, synapses, glia, glutamatergic transmission and
inhibitory intrinsic circuitry.2,10–26 During development, the ECM,
and CSPGs in particular, regulate neuronal migration, axon
outgrowth, synaptogenesis and synaptic maturation.23,27–31

CSPG-enriched PNNs form in an activity-dependent manner
during late postnatal development, completing neuronal
maturation.32–34 This process is critically dependent on glial cells,
which secrete and organize CSPGs and other ECM molecules.35–37

Once formed, and throughout adulthood, PNNs control neuronal
access to growth and transcription factors, stabilize synaptic
connectivity and compartmentalize the neuronal surface, regulat-
ing the availability of glutamatergic receptors to postsynaptic
specializations and, thus, neuronal firing properties.23,25,38 Among
several neuronal populations enveloped by PNNs, GABAergic
interneurons are one of the largest and most extensively
investigated.39–41 The function and plasticity of these neurons is
thus intrinsically linked to their association with PNNs. Together,
these considerations raise the possibility that CSPG abnormalities
in SZ may contribute to, and potentially represent a unifying factor
for, key aspects of the pathophysiology of this disorder.
Because they serve specialized roles during brain development

and adulthood, it is crucial to assess which specific CSPGs are
altered in SZ. CSPGs are composed of specific core proteins to
which chondroitin sulfate (CS) chains are attached42 (Figure 1).
Numbers of CS chains and their patterns of sulfation fundamen-
tally affect their functions, such as their ability to interact with
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other molecules including growth factors and cytokines.43

Chondroitin-4-sulfation (CS-4) and chondroitin-6 sulfation (CS-6)
are the two most common sulfation patterns in the brain, with
several variations depending on the position of the sulfation on
the CS chains43,44 (Figure 1). For the present investigations, we
focused on the CSPG aggrecan and the CS-6 sulfation pattern.
Aggrecan is a major component of the brain ECM and of at least a
subgroup of PNNs, and contains numerous CS chains with a
predominant CS-6 representation.45,46 In parallel to PNN develop-
ment, aggrecan expression coincides with the maturation of
electrophysiological properties of neurons and the formation of
synapses during late stage developmental periods.47,48 Further-
more, aggrecan and CS-6 expression in glial cells are involved in
the regulation of astrocyte maturation, which, in turn, has a key
role in PNN formation and maintenance.35,49 With the present
postmortem study, we tested the hypothesis that aggrecan and
CS-6 patterns contribute to PNN and glia abnormalities in SZ.
Subjects with bipolar disorder (BD) were included in these

investigations to assess whether these abnormalities are specific
to SZ or instead shared across major psychotic disorders.

MATERIALS AND METHODS
Human subjects
Tissue blocks containing the whole amygdala from a cohort of normal
control donors (n=29), and donors with SZ (n=24) or BD (n=20) and were
used for histochemical and immunocytochemical investigations
(Supplementary Tables 1–3). A sub-cohort of these subjects, that is,
normal control (n= 12), SZ (n=12) and bipolar disorder (n= 13) donors,
was used for the aggrecan study. This sub-cohort overlapped to a great
extent to the one used for the WFA study previously published,3 that is, 12
out of 12 controls, 10 out of 12 subjects with SZ and 9 out of 13 subjects
with BD were included in both studies. The sub-cohorts included in the
CS56 (control, n=13; SZ, n=14; BD, n=8) and 3B3 (control, n=14; SZ,
n=13; BD, n=8) studies largely overlap with each other, but only minimally
with that used for aggrecan and WFA (Supplementary Tables 1–3).
Additional tissue blocks from 14 normal controls and 14 SZ subjects were
used for quantitative PCR with reverse transcription (Supplementary
Materials; Supplementary Tables 2–3). All tissue blocks were obtained from

Figure 1. CSPG structure and aggrecan and CS-6 labeling in the normal human amygdala. Chondroitin sulfate proteoglycans (CSPGs) are
composed of core proteins with covalently attached chondroitin sulfate (CS) glycosaminoglycan chains. (a) A schematic representation of
aggrecan, with its core protein and polysaccharide chains, shown in more detail in (b). These chains consist of pairs of glucuronic acid (GlcA)
and N-acetyl-galactosamine (GalNAc). This latter can be sulfated in position 6 (CS-6) or 4 (CS-4) (c). The antibody 3B3 detects a non-reducing
terminal end saturated CS disaccharide consisting of glucuronic acid N-acetyl-galactosamine-6-sulfate (CS-6).50,51 The antibody CS56 detects
an A–D sequence in reducing octasaccharide units on both CS-C (CS-6) and CS-D (CS-2,6) chondroitin sulfate.52,53 Photomicrographs in (d–i)
depict immunolabeling with 3B3, CS56 and antibodies raised against aggrecan. Aggrecan-IR PNNs (d) and aggrecan-IR glial cells (e), detected
with the antibody cat-301 in the amygdala of a control subject. Shown in (f–h) are 3B3-IR PNNs and glial clusters, respectively. 3B3-IR PNNs
were often found in close contact with 3B3-IR glial cluster. Antibody CS56 labeled exclusively glial clusters (i). Scale bar, 50 μm. IR,
immunoreactivity; PNN, perineuronal net.
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the Harvard Brain Tissue Resource Center (HBTRC), McLean Hospital,
Belmont, MA, USA. Diagnoses of SZ and BD were made by two psychiatrists
on the basis of retrospective review of medical records and extensive
questionnaires concerning social and medical history provided by the
family members. Several regions from each brain were examined by a
neuropathologist. The cohort used for this study did not include subjects
with evidence for gross and/or macroscopic brain changes, or clinical
history consistent with cerebrovascular accident or other neurological
disorders. Subjects with Braak stages III or higher (modified Bielchowsky
stain) were not included. None of the subjects had significant history of
substance dependence within 10 or more years from death, as further
corroborated by negative toxicology reports. Absence of recent substance
abuse is typical for samples from the HBTRC, which receives exclusively
community-based tissue donations.

Tissue processing
Tissue blocks for immunohistochemistry were dissected from fresh brains
and post-fixed in 0.1 M phosphate buffer containing 4% paraformaldehyde
and 0.1 M Na azide at 4 °C for 3 weeks, then cryoprotected at 4 °C for
3 weeks (30% glycerol, 30% ethylene glycol and 0.1% Na azide in 0.1 M
phosphate buffer), embedded in agar and pre-sliced in 2 mm coronal slabs
using an Antithetic Tissue Slicer (Stereological Research Lab, Aarhus,
Denmark). Each slab was exhaustively sectioned using a freezing
microtome (American Optical 860, Buffalo, NY, USA). Sections were stored
in cryoprotectant at − 20 °C. Using systematic random sampling criteria,
sections through the amygdala were serially distributed in 26 compart-
ments (40 μm thick sections; 10–12 sections per compartment; 1.04-mm
section separation within each compartment). All sections within one
compartment per subject were selected for each marker (that is, cat-301,
3B3, CS56), thus respecting the ‘equal opportunity’ rule.54,55 Tissue blocks
for RNA analysis were dissected from fresh brains and quickly frozen in
liquid nitrogen vapor. Ten-micrometer thick sections were cut on a
cryostat, dissected into distinct amygdala nuclei and placed into miRVana
RNA lysis/binding buffer for RNA extraction.

Primary antibodies—histological markers
Aggrecan (cat-301): Cat-301 (MAB5284, lot# LV1353393, Chemicon
International, Temecula, CA, USA) is a monoclonal antibody raised against
feline spinal cord gray matter. This antibody recognizes a distinct
glycosylated form of the aggrecan core protein in human and primate
brain tissue,56,57 and was chosen over other antibodies raised against
aggrecan, such as cat-315 and cat-316, which detect oligosaccharides on
the aggrecan CS chains instead.56

CS56: CS56 is a mouse monoclonal IgM (Sigma-Aldrich, St Louis, MO,
USA; C8035, lot# 056K4804) made using vertebral membranes from
chicken gizzard fibroblasts as an immunogen. The CS structure immuno-
reactive for CS56 has been identified as an A–D sequence in reducing
octosaccharide units on both CS-C (CS-6) and CS-D (CS-2,6) chondroitin
sulfate.52,53 CS56 has been reported to specifically label CS-6 in brain
tissue.43 CS56 immunolabeling is virtually absent in CS6ST-1-deficient mice
that do not produce CS-6 (personal communication, Dr Hiroshi Kitagawa,
PhD, Kobe Pharmaceutical University).
3B3: 3B3 is a mouse monoclonal antibody developed by Dr Bruce
Caterson, PhD. If used without pre-incubation with chondroitinase ABC, as
in this study, it detects a saturated CS glycosaminoglycan disaccharide
consisting of a non-reducing glucuronic acid N-acetyl-galactosamine-6-
sulfate (CS-6) on the terminal end of CS chains.50,51

GFAP: Rabbit polyclonal anti-GFAP was generated using full-length
recombinant human GFAP (Abcam ab7260, lot# GR20948-7). Western blot
assay shows that this antibody detects a 55 kDA band in western blots
corresponding to GFAP (Abcam, Cambridge, MA, USA).
Wisteria floribunda agglutinin: WFA, a lectin isolated from the seeds of
Wisteria floribunda, binds specifically to N-acetyl-D-galactosamine on the
terminal end of CS chains, with a preference for beta glycosidic linkage.58

The specificity of WFA as a marker for these macromolecules is supported
by extensive literature, including ablation of labeling following CS
enzymatic digestion.3,59–61

Immunocytochemistry
Antigen retrieval was carried out by placing free-floating sections in citric
acid buffer (0.1 M citric acid, 0.2 M Na2HPO4) heated to 80 °C for 30min.
Sections were then incubated in primary antibody (cat-301, 2 :1000 μl;
CS56, 0.25:1000 μl; 3B3, 10:1000 μl) for 48–72 h at 4 °C, and then in

biotinylated secondary serum (cat-301, horse anti-mouse IgG; 3B3 and
CS56 goat anti-mouse IgM; 1: 500 μl; Vector Labs, Burlingame, CA, USA).
This step was followed by streptavidin conjugated with horse-radish
peroxidase for 2 h (1:5000 μl, Zymed, San Francisco, CA, USA) and, finally,
nickel-enhanced diaminobenzidine/peroxidase reaction (0.02% diamino-
benzidine, Sigma-Aldrich, 0.08% nickel-sulfate, 0.006% hydrogen peroxide
in phosphate buffer). All solutions were made in phosphate-buffered saline
with 0.5% Triton X unless otherwise specified.
All sections were mounted on gelatin-coated glass slides, coverslipped

and coded for quantitative analysis blinded to diagnosis. Sections from all
the brains included in the study were processed simultaneously within the
same session to avoid procedural differences. Each six-well staining dish
contained sections from SZ, BD and normal control subjects and was
carried through each step for the same duration of time, so as to avoid
sequence effects. Omission of the first (cat-301, 3B3 or CS56) or secondary
antibodies did not result in detectable signal.

Quantitative PCR with reverse transcription
Frozen tissue samples were processed for total RNA isolation and
purification and transcript variants 1 and 2 of the human aggrecan gene
(ACAN) were detected by quantitative PCR with reverse transcription using
the Taqman gene expression assay Hs00153936_m1 and GAPDH, RPII and
HPRT1 as reference genes. Normalization of aggrecan gene expression to
GAPDH, RPII and HPRT1 gene expression and comparison of gene
expression between diagnosis groups was calculated according to the
2−ΔΔCt method by Livak and Schmittgen62,63 (for more details, see
Supplementary Materials).

Data collection
A Zeiss Axioskop 2 Plus interfaced with StereoInvestigator 6.0 (Micro-
brightfield, Willinston, VT, USA) was used for the analysis. The borders of
the lateral (LN), basal (BN), accessory basal (AB), cortical (CO), medial (ME)
and central (CE) nuclei of the amygdala (Figure 2) were identified
according to cytoarchitectonic criteria as described by Sims and Williams64

and Amaral et al.65 The nomenclature adopted was that used by Sorvari
et al.66 The intercalated cell masses were not included within the borders
of these nuclei. The paralaminar nucleus could not be distinguished
reliably from the ventral basal nucleus and was thus included within its
borders. A × 1.6 objective was used to trace the borders of amygdalar
nuclei. Each traced region was systematically scanned through the full x, y
and z axes using a × 40 objective to count each immunoreactive (IR)
element within the traced borders over complete sets of serial sections (6–
10 sections) representing the whole extent of the amygdala from each
subject, with a section interval of 1040 μm. This method has the advantage
of minimizing the risk of errors in estimating poorly represented and/or
unevenly distributed elements, such as those investigated in this study.41,67

Numerical densities and total numbers estimates. Numerical densities (Nd)
were calculated as Nd= ∑N / ∑V, where N is the sum of cells within a region
of interest, and V is the total volume of the region of interest. Total number
(Tn) of IR elements (PNNs, glia, glial cell clusters) was calculated as
N= i× Σn where Σn= sum of the cells counted in each subject, and i is the
section interval (that is, number of serial sections between each section
and the next within each compartment = 26), as described previously in
detail.68

Statistical analysis
Differences between groups relative to the main outcome measures in
each of the regions examined were assessed for statistical significance
using an analysis of covariance stepwise linear regression process. Effect
sizes were calculated according to Hedges’ g. A logarithmic transformation
was uniformly applied to all original values because the data were not
normally distributed. Statistical analyses were performed using JMP v5.0.1a
(SAS Institute, Cary, NC, USA). BD and SZ were compared separately with
normal controls. Age, gender, postmortem time interval, inflammation
(classified as positive or negative for inflammatory condition at the time of
death), hemisphere, cause of death, brain weight, exposure to alcohol,
nicotine, electroconvulsive therapy, and lifetime, as well as final 6 months’,
exposure to antipsychotic drugs, exposure to selective serotonin reuptake
inhibitors classified as positive or negative for exposure, and lithium
treatment were tested systematically for their effects on the main outcome
measures, and included in the model if they significantly improved the
model goodness of fit. Values relative to the t ratio and P-value for main
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outcome measure differences found to be statistically significant are
reported in Supplementary Tables 4–6. Any and all covariates found to
affect an outcome measure significantly are also reported.
Cause of death was categorized as acute (for example, myocardial

infarction) or chronic (for example, cancer). Data on nicotine and alcohol
exposure were only available for subjects with SZ or BD; on the basis of the
subjects’ record, exposure was considered as high, moderate, low and
absent, as well as present or absent during the last 10 years of life. We
analyzed the medical records for exposure to various classes of
psychotropic and neurotropic drugs. Estimated daily mg doses of
antipsychotic drugs were converted to the approximate equivalent of
chlorpromazine as a standard comparator,69 and corrected on the basis of
a qualitative assessment of treatment-adherence based on taking
prescribed psychotropic medicines more or less than approximately half
of the time, as indicated by the extensive antemortem clinical records.
These values are reported as lifetime, as well as last 6 months’ of life, grams
per patient (Supplementary Table 3). Exposure to lithium salt was
estimated in the same manner (Supplementary Table 3). Exposure to
other classes of psychotropic drugs was reported as present or absent
(Supplementary Table 3). These variables, as well as subtypes of SZ (for
example, paranoid, catatonic, disorganized) and measures of life quality
(for example, dependent/independent), could not be tested reliably
because the number of subjects in each category was too low. However,
these variables were taken into account as a possible explanation when
apparent clustering of subjects was observed. In addition to testing the
potential effects of exposure to antipsychotics and lithium salt within our
stepwise linear regression process, the effects of these variables, together
with other psychotropic and neurotropic drugs, adherence to pharmaco-
logical treatment (good or poor), age of onset of the disease and duration
of the illness, were tested directly in separate analyses of variance.

RESULTS
Aggrecan and CS-6 expression in the normal human amygdala
PNN. Aggrecan IR was observed in PNNs predominantly located
within the LN. A large number of 3B3-IR PNNs were detected
throughout the amygdala, outnumbering by far aggrecan-IR PNNs
(Supplementary Tables 4 and 5) as well as WFA-positive PNNs,3,67

particularly within the BN, ABN, CO and CE/ME (Supplementary
Tables 4 and 5). Within the LN, approximately half (54%) of the
aggrecan-IR PNNs and over 80% of the 3B3-IR PNNs are also
labeled with WFA (see Supplementary Materials for details). CS56
did not label PNNs.

Glia. A small number of aggrecan-IR glia were scattered in all the
amygdala nuclei examined. These cells were not labeled by WFA
and did not show GFAP-IR (see also Supplementary Materials).
Numerous clusters of dense CS56- and 3B3-IR product, encom-
passing CS56- and 3B3-IR cells, respectively, morphologically
identifiable as glia and showing faint GFAP-IR, were detected in all
the amygdala nuclei examined (Figures 1 and 3). WFA labeling was
not detected in these clusters. We refer to these structures, that is,
CS-6-IR glia surrounded by diffuse CS-6-IR, as ‘glial clusters’.
Quantitative analysis for normal and comparison studies (below)
focused on the number of glial clusters because under light
microscopy the intensity of the diffuse immunolabeling did not
allow clear identification of individual CS-6-IR glial cells (Figures
1g-i), and the large majority of these cells are contained within the
clusters. We estimate that each glial cluster may contain
approximately two to seven CS-6-IR glial cells. Notably, several
3B3-IR PNNs were observed in close contact with 3B3-IR glial

Figure 2. Distribution of aggrecan, 3B3 and CS56-IR PNN (black dots) and glia/glial clusters (gray dots) in the normal human amygdala. (a)
Aggrecan-IR PNNs and glial cells were located mainly in the lateral (LN) and basal (BN) nuclei of the amygdala, whereas smaller numbers were
observed in the accessory basal (AB), cortical (CO), medial (ME) and central (CE) nuclei. 3B3-IR PNNs and glial cell clusters (b) were more
numerous than aggrecan or CS56-IR elements, but similarly distributed across the amygdala nuclei. CS56-IR was observed only in glial clusters
(c), broadly distributed across the amygdala nuclei, and less numerous than 3B3-IR glial clusters. CS, chondroitin sulfate; IR, immunoreactivity;
PNN, perineuronal net.
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clusters (Figures 1g and h), suggesting functional relationships
between the two elements.

Decrease of aggrecan-IR PNNs and glia, but increased aggrecan
mRNA expression, in schizophrenia
In subjects with SZ, Tn and Nd of aggrecan-IR PNNs were
significantly decreased in the LN (Tn, Po0.03, g=− 0.95; Dn,
Po0.04, g=− 0.93; adjusted for cause of death, Po0.003;
Figure 4, Supplementary Table 4). Aggrecan-IR glia (Tn) were
significantly decreased in the LN (Po0.01, g=− 1.11), BN
(Po0.01, g=− 1.19) and ABN (Po0.005, g=− 1.28); significance
values adjusted for the effects of PMI (P= 0.01; Figure 4,
Supplementary Table 4). Aggrecan mRNA expression was sig-
nificantly increased in the LN of SZ subjects (Po0.03; g= 0.90; see
Supplementary Figure 3).
In subjects with BD, aggrecan-IR PNNs (Tn, but not Nd) were

decreased in the LN (Po0.04, g=− 0.88; Figure 4, Supplementary
Table 4). Tn and Nd of aggrecan-IR PNNs were decreased in the
ABN (Tn, Po0.04, g=− 0.92; Dn, Po0.03, g=− 1.37; corrected for
lifetime exposure to lithium, Po0.01; Figure 4, Supplementary
Table 4). No changes in aggrecan-IR glia were observed in BD
(Figure 4, Supplementary Table 4).

Decreased 3B3-IR PNNs and glial clusters in schizophrenia and
bipolar disorder
In subjects with SZ, 3B3-IR PNNs were decreased in the LN (Tn,
Po0.01, g=− 1.37; Dn, Po0.03, g=− 0.87), BN (Tn, Po0.002,
g=− 2.12; Nd, Po0.006, g=− 1.49), ABN (Tn, Po0.002, g=− 1.68;
Nd, Po0.009, g=− 1.44), CO (Tn, Po0.001, g=− 1.88; Nd,
Po0.003, g=− 1.65), and ME (Tn, Po0.04, g=− 1.04). In the CE,
3B3-IR PNN decreases did not reach statistical significance,
although the effect sizes were very large (Tn, Po0.06, g=− 0.91;
Nd, P= 0.07, g=− 1.02; Figure 5, Supplementary Table 5).
Significance values for each nucleus were adjusted for the effects
of cause of death (Po0.03), PMI (Po0.15), included a priori due to

its significant positive effect on PNN Tn and Nd in SZs (Po0.01),
and VPA (Po0.03). Decreases were also observed for 3B3-IR glial
clusters in LN (Tn, Po0.0003, g=− 1.93; Nd, Po0.0007, g=
− 1.74), BN (Tn, Po0.0006, g=− 1.77; Nd, Po0.002, g=− 1.53),
ABN (Tn, Po0.001, g=− 1.63, Nd, Po0.005, g=− 1.40), CO (Tn,
Po0.02, g=− 1.12; Nd, Po0.04, g=− 0.95), CE (Tn, Po0.03,
g=− 0.98; Nd, P= 0.06, g=− 0.9) and ME (Tn, Po0.005, g=− 1.36;
Nd, Po0.03, g=− 1.09). Significance values for each nucleus were
adjusted for effects of age (Po0.001) and cause of death
(Po0.002; Figure 5, Supplementary Table 5).
In subjects with BD, 3B3-IR PNNs were decreased in the LN (Tn,

Po0.002, g=− 2.14; Nd, Po0.002, g=− 2.00), BN (Tn, Po0.01,
g=− 1.01; Nd, Po0.005, g=− 1.93), AB (Tn, Po0.05, g=− 0.94;
Nd, Po0.004, g=− 1.97) and ME (Tn, Po0.007, g=− 2.16; Nd,
Po0.03, g=− 1.32). Significance values for each nucleus were
adjusted for effects of lifetime lithium (Po0.05; Figure 5,
Supplementary Table 5). Decreases in 3B3-IR glial clusters were
observed only in the ME (Tn, Po0.03, g=− 1.05; Figure 5,
Supplementary Table 5).

Decreased CS-6 (CS56) glial clusters in schizophrenia and bipolar
disorder
In subjects with SZ, CS56-IR glial clusters were significantly
decreased in the LN (Tn, Po0.0004, g=− 2.09; Nd, Po0.002,
g= − 1.80), BN (Tn, Po0.0005, g=− 2.00; Nd, Po0.002, g=
− 1.74), ABN (Po0.01, g=− 1.39; Nd, Po0.02, g=− 1.21), CE (Tn,
Po0.007, g=− 1.64; Nd, P= 0.04, g=− 1.17) and ME (Tn, Po0.04,
g=− 1.08; Nd, Po0.06, g=− 0.98; Figure 5, Supplementary Table
6). Decreases in the CO did not reach statistical significance,
although the effect size was relatively large (Tn, Po0.06,
g=− 0.98; Nd, Po0.06, g=− 0.95). Significance values were
adjusted for exposure to selective serotonin reuptake inhibitors
(SSRIs; Po0.05), which showed positive correlations with CS56-IR
clusters.

Figure 3. CS-6-IR glial clusters contain GFAP-IR astrocytes. Dual-immunofluorescence confocal microscopy was used to investigate the
relationship between CS-6 glial clusters and GFAP-IR astrocytes. (a–c) GFAP-IR cells are shown within, and surrounding, CS56-IR clusters. A
large number of these GFAP-IR cells also show CS56-IR (arrows indicate the location of GFAP/CS56-IR cells within the CS56-IR cluster).
Although CS56 IR was often only faintly detected in GFAP-IR cell bodies, evidence from rodent studies suggests more intense CS56-IR in the
terminal ends of their processes within the clusters.70 Glial clusters immunolabeled with 3B3 showed a similar relationship to GFAP-IR glial
cells ((d–f); arrows indicate the location of GFAP/3B3-IR cells within the 3B3-IR cluster). Scale bar, 50 μm. CS, chondroitin sulfate; IR,
immunoreactivity; PNN, perineuronal net.
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In BD subjects, significant decreases of CS56-IR glial clusters
were observed in the LN (Tn, Po0.002, g=− 2.52; Nd, P= 0.0005,
g=− 2.90), BN (Tn, Po0.0006, g=− 2.19; Nd, Po0.003, g=− 2.33),
ABN (Tn, Po0.009, g=− 1.98; Nd, Po0.004, g=− 2.22), and CE
(Tn, Po0.04, g=− 1.53; Nd, Po0.006, g=− 2.11; Figure 5,
Supplementary Table 6). Significance values were adjusted for
lithium exposure (lifetime; Po0.05), which showed a positive
correlation with CS56-IR clusters.

DISCUSSION
Our results point to marked abnormalities in the expression of
aggrecan and CS-6 in subjects with SZ and subjects with BD
(Table 1). In particular, aggrecan-IR PNNs and glia were decreased
in SZ, whereas only modest aggrecan-IR PNN decreases were
present in BD. Numbers of CS-6 IR glial clusters and PNNs were
markedly reduced in SZ and BD. Changes in BD provide the first
evidence for anomalies of PNNs and CSPG expression in this
disorder, and point to partially overlapping abnormalities of these
elements in SZ and BD. PNN reductions affect neuronal
populations larger than previously demonstrated, encompassing
several amygdala nuclei,3 and suggest altered neuronal matura-
tion and firing properties and instability of neuronal synaptic
connectivity. In sharp contrast to increases of WFA-positive glial
cells reported previously in SZ,3 aggrecan-IR glia and CS-6- (3B3
and CS56)-IR glial clusters were markedly decreased. We suggest
that decreases of CSPG-positive glial cells may provide important
clues on the potential mechanisms of PNN abnormalities, raising
the possibility that distinct glial cell populations may fail to

synthesize and secrete key CSPGs required to maintain PNN
integrity.

Technical considerations
Pharmacological treatment and drugs of abuse. Effects of
pharmacological treatment detected in these studies were limited
to SSRIs and lithium on a small number of outcome variables
(Supplementary Tables 4–6). These effects are consistent with a
corrective mechanism, showing positive correlations with CSPG-IR
PNNs and glia in the face of significant decreases of these
elements in diagnosis groups. SSRI exposure in SZ subjects was
significantly and positively correlated with Tn and Nd of CS56-IR
glial cell clusters (Supplementary Table 6). Records for SSRI
exposure in BD subjects were insufficient to assess these effects.
Lithium exposure correlated positively with CS56-IR glia in
subjects with BD. This effect was somewhat unexpected because
lithium treatment was shown in rodents to facilitate enzymatic
CSPG digestion.71,72 It is possible that chronic exposure to lithium
treatment in BD, species differences, and perhaps the interaction
of lithium with altered CSPG biochemistry in BD may account for
this effect.
The subjects included in this study had no significant history of

substance dependence within 10 or more years from death. Lack
of recent exposure was further corroborated by negative
toxicology reports provided by the HBTRC. In addition, no
significant effects were observed with ethanol or nicotine
exposure on any of the outcome measures tested.

CSPG labeling. In this study, aggrecan was detected using the
antibody cat-301, widely used in investigations on PNNs.56,73,74

Figure 4. Aggrecan-IR PNN and glial cell are decreased in the amygdala of subjects with SZ. Total numbers of aggrecan-IR PNNs were
significantly decreased in the LN of SZ and BD subjects, and in the AB of BD subjects (a). Total numbers aggrecan-IR glia were significantly
decreased in the LN, BN, AB of SZ subjects (b). A decrease in the CE was only significant for numerical densities (Supplementary Table 4). No
changes were observed in BD subjects. Significance values are derived from stepwise linear regression models. Scatterplots show the mean
(histogram) and 95% confidence intervals (black lines). *Adjusted for effect of PMI. **Adjusted for effect of cause of death. ABN, accessory basal
nucleus; BD, bipolar disorder; BN, basal nucleus; CE, central nucleus; CO, cortical nucleus; IR, immunoreactivity; LN, lateral nucleus; ME, medial
nucleus; PNN, perineuronal net; SZ, schizophrenia.
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This antibody labels a distinct glycosylated form of the aggrecan
core protein, whereas other glycosylated forms may be only
partially recognized.56,75 Thus, our results on aggrecan may be
specific to the form recognized by cat-301. This consideration
may, at least in part, explain the discrepancy between aggrecan
mRNA and protein detected in this study (see Supplementary
Materials). Compensatory mechanisms leading to increased mRNA
expression in response to decreased protein availability may also
account for this discrepancy, as observed in other molecular
systems in schizophrenia.76,77

Our results on aggrecan and CS-6, and previous findings using
WFA, are consistent with regard to PNNs, but not with regard to
glial cells.3 Although the specific binding site for WFA is known,58

no data are available regarding which CSPGs and sulfation
patterns WFA detects. Our results show that 3B3 and aggrecan

only partially colocalize with WFA in PNNs, and virtually not at all
in glia (Supplementary Figures 1,2). Together, these findings
indicate that WFA may not detect CS-6 sulfation patterns, at least
not those recognized by 3B3 and CS56, and may label only some
forms of aggrecan (see below).45 The implication is that glial cells
labeled by aggrecan (cat-301), 3B3 and CS56 do not express
CSPGs labeled by WFA. Similarly, discrepancies in the patterns of
3B3, CS56 and aggrecan labeling, that is (i) 3B3- and CS56-IR glia,
but not aggrecan-IR glia, express GFAP (Figure 3 and Supplemen-
tary Figure 2) and (ii) 3B3 and aggrecan label both PNNs and glia
whereas CS56 only labels glia, suggest that each of these
antibodies preferentially recognizes distinct CSPG/CS sulfation
patterns.

Figure 5. CS-6-IR PNNs and glial clusters are decreased in subjects with SZ and BD. (a) Total numbers of 3B3-IR PNNs were significantly
decreased in LN, BN, ABN, ME and CO of SZ and BD subjects. (b) Total numbers of 3B3-IR glial cell clusters were significantly decreased in the
LN, BN, AB and ME nuclei of SZ subjects. Decreases of 3B3-IR glial cell clusters in BD were restricted to ME. (c) Total numbers of CS56-IR glial
cell clusters were significantly decreased in the LN, BN, AB and CE nuclei of SZ and BD subjects, whereas decreases in ME were only detected
in SZ subjects. Scatterplots show the mean (histogram) and 95% confidence intervals (black lines). Significance values derived from stepwise
linear regression models. *Adjusted for effects of age and cause of death. ^Adjusted for effects of sex and brain weight. **Adjusted for effects
of cause of death, PMI and VPA. ^^Adjusted for effects of sex and CPZ lifetime in grams. #Adjusted for effect of age and brain weight.
***Adjusted for effect of exposure to SSRIs. #Adjusted for effects of age and brain weight. ABN, accessory basal nucleus; BD, bipolar disorder;
BN, basal nucleus; CE, central nucleus; CO, cortical nucleus; CPZ, chlorpromazine; CS, chondroitin sulfate; IR, immunoreactivity; LN, lateral
nucleus; ME, medial nucleus; PMI, postmortem time interval; PNN, perineuronal net; SSRI, selective serotonin reuptake inhibitor; SZ,
schizophrenia; VPA, valproic acid.
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Decreases of PNN in SZ and BD
In subjects with SZ, robust decreases of aggrecan- and 3B3-IR
PNNs, together with marked decreases of WFA-positive PNNs
previously reported,3 strongly indicate a widespread PNN
pathology. Notably, the subject cohorts used for aggrecan (in this
study) and for WFA,3 overlapped to a great extent. In the LN,
where these three markers, at least in part, colocalize in PNNs, our
findings suggest that PNNs may be lost or at least lack several key
elements. Reports that aggrecan knockout results in loss of WFA-
positive PNNs45,46 support this possibility. In the other amygdala
nuclei tested, where the large majority of PNNs detected were
labeled with 3B3, but not aggrecan or WFA, a similar conclusion
may be premature. However, our results do show a marked
disruption of PNNs containing CS-6 positive CSPGs. Taken
together, these results indicate that PNN abnormalities in the
amygdala of subjects with SZ are widespread, involving the LN as
well as the BN, ABN, CO and ME, and thus a range of neuronal
populations broader than previously thought.
In subjects with BD, marked reductions of 3B3-IR PNNs in LN,

BN, ABN, CO and ME were accompanied by more modest
decreases of aggrecan-IR PNNs in the LN and ABN. These findings
show, to our knowledge for the first time, a disruption of PNNs in
subjects with BD. PNN decreases in this disorder were not
detected using WFA.3 Thus, CS-6 expression in PNNs in BD
subjects may be decreased in the otherwise normal WFA-positive
PNNs, or may reflect loss of a subset of PNNs not detectable
with WFA.
Together, our findings show PNN loss/disruption in the

amygdala of subjects with SZ and, perhaps to a lesser extent,
BD. What may be the potential causes and consequences of the
observed PNN pathology? PNNs are formed during late postnatal
development,4,26 a time period coinciding with the typical onset
of psychoses. Their maturation occurs in an experience-dependent
manner, requiring (i) neuronal activation through glutamatergic
excitation,78 (ii) availability of key PNN components, such as
specific CSPGs, link proteins and tenascin R, (iii) expression on
neurons of ECM surface receptors79,80 and (iv) transcription factors
inducing neuronal maturation.25,38 Given that PNN numbers in SZ
and BD did not correlate with duration of the illness or age at
onset of the disorder, it is plausible that PNN decreases may
already be present during the early phases of illness. Abnormal

glutamatergic transmission, polymorphisms of genes encoding for
some of their components and altered CSPG expression in glial
cells may, independently or in conjunction, cause defective PNN
maturation.3,5–7,59 In addition, genome-wide association studies
show that some of the proteases involved in ECM remodeling,
such as MMP16, are encoded by genes strongly associated with
SZ.81 Thus, it is possible that altered ECM metabolism linked to
genetic vulnerabilities may, at least in part, contribute to PNN
abnormalities in SZ.
PNN maturation during late postnatal development contributes

to the closure of critical periods of development, stabilizing
successful synaptic connectivity and instating a restricted mode of
synaptic plasticity characteristic of adulthood.4,23,82–84 In adult-
hood, mature PNNs regulate synaptic functions representing the
fourth element of what has been termed the ‘tetrapartite’
synapse.85,86 PNNs control the lateral mobility of cell surface
molecules including glutamatergic receptors, thus regulating their
availability on the postsynaptic membrane specialization, mod-
ulate L-type voltage-dependent calcium channels and voltage-
gated potassium channels and affect the local concentration of
calcium ions.30,31,87,88 Relevant to the present results, the role of
CSPGs in these functions depends, at least in part, on their
sulfation pattern; for instance CS-6 and CS-4 impact voltage-
dependent calcium channels in distinct ways.89 Overall, these
functions underlie the role of the adult ECM to neuronal
excitability, receptor desensitization, long-term potentiation and
long-term depression.59,87,88,90–93 A disruption of PNNs may thus
contribute to altered glutamatergic transmission, synaptic con-
nectivity and plasticity in SZ and BD. In particular, in the amygdala,
the process of PNN maturation is necessary to transition from a
juvenile form of plasticity, during which fear conditioning can be
fully erased by extinction, to an adult form of plasticity, drastically
weakening the effects of extinction on fear conditioning.82 Our
findings suggest that PNN abnormalities may impact on emotion
processing and plasticity in major psychoses, potentially con-
tributing to a disruption of fear learning reported in subjects with
SZ.94 In the LN, these changes may directly affect fear condition-
ing, whereas changes in the BN may impact on hippocampal
context learning, and involvement of the CE, ME and ABN
suggests direct effects on the bed nucleus of the stria terminalis,
speculatively impacting on sustained fear mechanisms.95–98

Table 1. Summary of results

Dx Nucleus Aggrecan 3B3 CS56 WFA

Glia (%) PNNs (%) Glia (%) PNNs (%) Glia (%) Glia (%) PNNs (%)

SZ LN ⇓−42.9 ⇓−48.6 ⇓−38.4 ⇓−30.1 ⇓−50.5 ⇑794.4 ⇓−61.8
BN ⇓−37.9 − 27.6 ⇓−33.7 ⇓−38.5 ⇓−37.5 ⇑1162.0 − 37.7
AB ⇓−45.1 − 25.3 ⇓−56.7 ⇓−49.9 ⇓−13.0 ⇑990.9 36.4
CO 0.3 − 2.2 ⇓−24.4 ⇓−48.1 − 8.1 ⇑418.9 38.0
ME − 11.6 NA ⇓−32.0 − 28.9 − 22.7 NA NA
CE ⇓−63.4 NA − 31.9 − 8.4 ⇓* 63.3 NA NA

BD LN 114.5 − 8.5 − 5.9 ⇓−35.4 ⇓−65.0 ⇑112.2 − 39.2
BN 88.4 13.2 15.5 ⇓−32.0 ⇓−74.8 337.5 − 18.7
AB 52.6 ⇓−34.8 − 4.4 ⇓−42.4 ⇓−37.1 103.8 − 23.8
CO 248.3 0.2 20.0 ⇓−53.2 − 32.5 77.9 13.8
ME 318.3 NA 13.4 ⇓−72.9 − 66.5 NA NA
CE 17.8 NA 13.8 − 58.7 ⇓−39.9 NA NA

Abbreviations: ABN, accessory basal nucleus; BD, bipolar disorder; BN, basal nucleus; CE, central nucleus; CO, cortical nucleus; Dx, diagnosis; LN, lateral nucleus;
ME, medial nucleus; NA, not available; PNN, perineuronal net; SZ, schizophrenia. Percent differences for numerical densities in disease groups with respect to
the controls. Bold values and arrows indicate statistically significant changes (analysis of covariance (ANCOVA) on log-transformed values; see also
Supplementary Tables 4–6). Note that percent changes included in this Table were calculated on raw values (before log transformation), and do not reflect
effects of covariates included in ANCOVA models (see Results and Supplementary Tables 4–6), thus explaining some discrepancies. For instance, ANCOVA
analysis for CS56-IR glial cells in the CE of subjects with SZ shows a significant decrease once exposure to SSRI is included in the model (see Results and
Supplementary Table 6; marked in this Table with ⇓*); however, if SSRI exposure is not taken into account, the numerical density of CS56-IR glial cells in the CE
of SZ appears to be increased (that is, 63.3%).
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Aggrecan- and CS-6 (3B3 and CS56)-IR glia: decreases in SZ and BD
We have previously shown robust increases of WFA-positive glial
cells in the amygdala of subjects with SZ, but not BD.3 As virtually
all WFA-positive glial cells were found to express GFAP, and
numbers of GFAP-IR cells in the same SZ subjects were normal, the
observed changes are interpreted as increased CSPG expression.
These findings are not easily reconciled with sharp reductions of
WFA-positive PNNs, because glial cells represent a main source of
CSPGs and other PNN components.35,37,99 The present results help
shed light on this apparent contradiction. We show that each of
several glial subpopulations expresses a distinct array of CSPGs
(see Supplementary Materials). Therefore, increased expression of
WFA-labeled CSPGs in a subpopulation of GFAP-IR glial cells may
coexist with abnormalities in other, distinct, glial populations in
which CSPGs, including aggrecan and CS-6 sulfated CSPGs, are
instead decreased. In turn, CSPG decreases in these cells may
contribute to PNN reductions.
We report, for the first time, the presence of glial/CSPG clusters

in the human amygdala, and their decreases in subjects with SZ
and BD. These clusters were shown in rodents to surround a small
number of neurons and regulate glutamatergic transmis-
sion.70,100,101 This possibility is in line with growing evidence
indicating that astrocytes form microdomains modulating gluta-
matergic synapses and extrasynaptic glutamate receptors, and
that CSPGs (cell surface bound and as part of ECM) control (i)
lateral diffusion of cell surface receptors, (ii) the extrasynaptic
diffusion of negatively charged transmitters such as glut-
amate and (iii) the expression of glial transmitter transpor-
ters.23,87,88,102–104 Speculatively, the distinctive cellular and mole-
cular composition of glial/CSPG clusters may underlie their role as
specialized islands, perhaps representing glial/CSPG ‘macrodo-
mains’, differentially regulating neuronal activity and glutamater-
gic neurotransmission in particular. Glial/CSPG cluster
abnormalities may thus represent a contributing factor to
dysregulated glutamatergic transmission, and more broadly to
neuron/glia interactions, in major psychoses.15,22,105,106

CONCLUSIONS
Our results show aggrecan and CS-6 sulfation abnormalities in
PNNs and glia within the amygdala of SZ and BD subjects. These
findings indicate that CSPG abnormalities are widespread within
the amygdala, and affect distinct neuronal and glial cell
populations. Notably, differences between the two disorders were
observed. In SZ, reductions of aggrecan and 3B3-IR PNNs in LN,
together with previously reported decreases of WFA-positive PNNs
in the same nucleus, suggest PNN loss. In BD, decreased aggrecan
and 3B3-IR PNNs in the absence of similar changes detected by
WFA labeling suggests anomalous PNN composition. Decreases of
glial cells expressing CS-6 in both SZ and BD indicate that CS-6
sulfation on these cells may differentially contribute to the
changes in PNNs observed in these disorders, and may impact
glutamate reuptake and neurite outgrowth. In SZ and BD, CSPG
abnormalities may critically contribute to a disruption of devel-
opmental and adult neuronal functions such as synaptic plasticity,
glutamate signaling and firing patterns. Speculatively, a disruption
of PNNs in the amygdala may lead to unstable synaptic
connectivity and altered neuronal activity that may destabilize
salience encoding emotion-driven learning.
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