
OPEN

ORIGINAL ARTICLE

Locomotor hyperactivity in 14-3-3z KO mice is associated with
dopamine transporter dysfunction
H Ramshaw1,4, X Xu1,4, EJ Jaehne2, P McCarthy1, Z Greenberg1, E Saleh1, B McClure1, J Woodcock1, S Kabbara1, S Wiszniak1,
Ting-Yi Wang3, C Parish3, M van den Buuse3, BT Baune2, A Lopez1 and Q Schwarz1

Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine
exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved
through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and
in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric
disorders. We recently identified 14-3-3z as an essential component of neurodevelopment and a central risk factor in the
schizophrenia protein interaction network. Our analysis of 14-3-3z-deficient mice now shows that baseline hyperactivity of
knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3z KO mice displayed enhanced locomotor hyperactivity
induced by the DA releaser amphetamine. Consistent with 14-3-3z having a role in DA signalling, we found increased levels of DA in
the striatum of 14-3-3z KO mice. Although 14-3-3z is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme,
tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3z
KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein
levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3z controls DAT stability, we found a physical
association between 14-3-3z and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3z in DA
neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related
disorders.
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INTRODUCTION
Schizophrenia and related neuropsychiatric disorders are widely
believed to arise from neurodevelopmental defects that affect
synaptic transmission.1 Indeed, neuropharmacological studies
with antipsychotic drugs suggest that many of the positive symp-
toms associated with schizophrenia arise from increased
dopamine (DA) signalling.2,3 Neuroimaging studies following
amphetamine treatment add strong support to this notion4,5

and further implicate the mesolimbic pathway in the hyper-
dopaminergic hypothesis. Within the mesolimbic pathway, DA is
produced by neurons predominantly located in the ventral
tegmental area (VTA) and the substantia nigra (SN) of the
midbrain. Central to the function of these neurons is the expres-
sion and activity of the rate-limiting catecholamine biosynthesis
enzyme, tyrosine hydroxylase (TH), which catalyses the synthesis
of DA from its precursor L-tyrosine. Following exocytosis from
presynaptic neurons, DA binds to G-protein-coupled DA receptors
D1–D5 to initiate signalling cascades in postsynaptic neurons. The
activity of DA is tightly regulated by the DA transporter (DAT) that
mediates reuptake of DA by presynaptic neurons where it is either
recycled to the vesicular pool or degraded.6,7

Recent studies have shown that the family of 14-3-3 regulatory
proteins bind to TH to enhance phosphorylation of serine 31
(Ser-31) and Ser-40 to positively regulate its enzymatic activity.8,9

Indeed, 14-3-3 proteins were originally identified as archetypical
TH co-factors.10,11 The 14-3-3 family comprises seven isoforms in
mammals (b, z, e, g, Z, t and s) that bind to phospho-serine/
threonine residues on target proteins to modify their function
and/or localization. In this manner, 14-3-3 proteins have been
described to mediate a range of cell functions including cell cycle
regulation, proliferation, migration, differentiation and apop-
tosis.10,12–14 Although multiple 14-3-3 isoforms have the ability
to bind TH in vitro, knockdown studies in midbrain-derived MN9D
cells suggest that 14-3-3z is the major isoform involved in DA
synthesis.15 In support of these findings, 14-3-3z is also the major
isoform expressed in regions containing termini of dopaminergic
neurons such as the striatum.16 However, the role of 14-3-3z in TH
activity in vivo, or in other stages of DA neurotransmission, has not
been explored.
We recently reported that 14-3-3z knockout (KO) mice have

schizophrenia-like behavioural deficits such as hyperactivity and
disrupted sensorimotor gating that are accompanied by aberrant
neuronal migration and axonal guidance defects in the hippo-
campus.17 14-3-3z KO mice therefore represent a novel neuro-
developmental model of schizophrenia and associated disorders.
In strong support of this notion, 14-3-3z is downregulated in
post-mortem schizophrenia brain samples at the mRNA level18,19

and is one of only 24 proteins downregulated across multiple
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neuroproteomic studies on schizophrenia patient samples.20–22 In
addition, significant linkage to 14-3-3z has been identified
through analysis of single-nucleotide polymorphisms from
control and schizophrenia patient samples.23 Further support for
a role in schizophrenia is derived from the recent finding that
14-3-3z is represented as a central hub within the schizophrenia-
specific interaction network.24 At the molecular level, 14-3-3z
interacts with several proteins essential for neuronal development
that are also implicated in the pathogenesis of schizophrenia,
including DISC1, NUDEL, LIS1 and TH.17,25

Here we have explored the physiological and molecular basis of
schizophrenia-like behavioural deficits by analyzing locomotor
hyperactivity in 14-3-3z KO mice. We found that baseline
hyperactivity of KO mice is rescued by the antipsychotic drug
clozapine and that KO mice are hypersensitive to the DA releaser
amphetamine. In strong support of DA underpinning some of the
schizophrenia-like behavioural defects, in this model we found
that total tissue DA levels were increased in KO mice. Our analysis
of the dopaminergic signalling pathway indicates that 14-3-3z has
an essential role in modulating protein levels of DAT. Our finding
that 14-3-3z interacts with DAT provides insight into the molecular
regulation of DAT stability. Unexpectedly, TH-positive neurons,
TH expression and TH activation were unaffected in KO mice.
Moreover, DA receptors were also expressed at similar levels to
wild-type (WT) mice. Our results therefore implicate 14-3-3z as an
essential component in the DA neurotransmission pathway by
modulating the abundance of DAT.

MATERIALS AND METHODS
Mice
14-3-3zGt(OST062)Lex (or 14-3-3z KO) mice on a SV129 background carrying a
gene trap construct that contains the bGeo reporter gene disrupting
14-3-3z expression, have been described previously.17 14-3-3z Genotype
was determined by PCR amplification of genomic tail DNA as described.17

Animal experiments were conducted in accordance with the guidelines of
the Animal Ethics Committee of the Institute of Medical and Veterinary
Sciences, the University of Adelaide and the Florey Institute for
Neuroscience and Mental Health, University of Melbourne.

Behavioural assays
All procedures were carried out under normal light conditions (60–100 Lux)
between 0800 and 1200 hours. Behavioural phenotyping was performed
on the 14-3-3z KO line as previously described.26–28 One cohort of mice
was used for the psychotropic drug-induced open field test at 30 weeks of
age (11 WT, 5 females and 6 males; 11 KO, 5 females and 6 males).
A separate cohort of mice was used at the age of 35 weeks for clozapine
treatments and locomotor function tests (12 WT, 8 males and 4 females;
12 KO, 8 males and 4 females).

Clozapine treatment and locomotor function test
Clozapine was obtained from Sigma Aldrich (St Louis, MO, USA) and was
dissolved in 10mM HCl and diluted in sterile water.29 Vehicle was prepared
in an identical manner without the addition of clozapine. Concentrated
aliquots of both clozapine and vehicle were stored at � 20 1C. Aliquots
were thawed and diluted to their final concentration in sterile saline on the
day of dosing. Solutions were buffered with NaOH to achieve a final pH of
6.5–7.5. Mice were given clozapine (5mg kg–1) or vehicle daily for 14 days
before behavioural testing. Dosing was continued for a further 11 days
throughout the behavioural testing period, with dosing always conducted
between 1530 and 1700 hours, following any behavioural testing. In all, 10
WT (3 malesþ 7 females) and 9 KO (3 malesþ 6 females) mice were given
vehicle, whereas 10 WT (4 malesþ 6 females) and 8 KO (4 malesþ 4
females) mice were given clozapine. Mice were tested in a brightly lit
square arena, 40� 40 cm (Stoelting, Wood Dale, IL, USA), with clear walls
35 cm high for 5min according to published protocols.30,31 The floor was
divided into inner and outer zones. Time spent in each zone was measured
and total distance travelled was measured as an indication of baseline
locomotor activity. An imaging program (ANY-maze, Wood Dale, IL, USA)
was used to track movements and measure time in zones.

Amphetamine-induced locomotor hyperactivity
Baseline locomotor activity and amphetamine-induced locomotor activity
were assessed using a TruScan Photobeam Activity system (Coulbourn
Instruments, Whitehall, PA, USA). This system consists of a mouse enclo-
sure (25.4� 25.4� 40.6 cm) surrounded by a sensor-ring that included a
16� 16 array of photobeams and a computerized data acquisition system.
After 30min of baseline locomotor activity and habituation to the test
environment, the animals received either saline or 5mg kg–1 of amphet-
amine by intraperitoneal injection and activity was monitored over a
subsequent 90-min period.

Production of 14-3-3z monoclonal antibodies
Anti-14-3-3z monoclonal antibodies were generated in a female BALB/c
14.3.3z KO mouse, which was injected three times, each with 10mg purified
recombinant 14.3.3z protein, over a period of 6 weeks. Enzyme-linked
immunoassay of serum was performed to verify immunoreactivity to
14-3-3z. Splenocytes were isolated and fused with NS1 myeloma cells.
Hybridomas were selected by incubating the cells at 37 1C with humidified
5% CO2 atmosphere in hypoxanthine–aminopterin–thymidine containing
media. Immunoreactivity of these hybridomas was determined using a
modified enzyme-linked immunoassay in which recombinant 14-3-3z was
adsorbed to the surface of 96-well tissue culture plates. Positive lines were
then clonally expanded. From this screen, we identified 35 positive
hybridoma cell lines. Monoclonal antibodies were purified from eight lines
detailed in Supplementary Figure S1. Purified antibodies were tested by
western blot against each 14-3-3 isoform obtained from overexpression of
His-tagged pGEX-expression constructs in bacteria in comparison with a
commercially available 14-3-3z polyclonal antibody (C-16, Santa Cruz, CA,
USA). Antibodies M6 (for western blots) and G1-7 for immunoprecipitation
(IPs) were grown up and purified by the Walter Eliza Hall Institute Antibody
facility for use in this study.

Histology and immunohistochemistry
For all anatomical analyses, postnatal mice were perfuse fixed with fresh
4% paraformaldehyde dissolved in phosphate-buffered saline as previously
described.32 Brains were rapidly dissected free from other tissue and post
fixed in 4% paraformaldehyde for an additional 24 h at 4 1C. Tissue was
cryopreserved in 20% sucrose at room temperature (RT) overnight and
frozen in Tissue-Tek OCT (Sakura Finetek, Torrance, CA, USA). Sections were
cut at a thickness of 10 mm on a CM1850 cryostat (Leica, North Ryde,
Australia) and air-dried for 60min before staining.
For immunohistochemistry, sections were blocked in 10% non-immune

goat serum or 1% bovine serum albumin in PBST (0.1 M phosphate-
buffered saline, 0.3% Triton X-100, 1% bovine serum albumin) for 1 h at RT
and subsequently incubated with primary antibodies for 1 h at RT. Primary
antibodies and dilutions: rabbit polyclonal to TH (1:200; Millipore, Billerica,
MA, USA), rat monoclonal to DAT (1:20, Santa Cruz). Sections were washed
several times with PBST and then incubated with 1:200 dilution of Alexa
Fluor-labelled secondary antibodies (Molecular Probes, Mullgrave, VIC,
Australia) or streptavidin-labelled secondary antibodies (Jackson Labora-
tories, Bar Harbor, ME, USA) for 1 h at RT. After three washes in PBST,
fluorescent sections were mounted in Prolong Gold antifade reagent with
4,6-diamidino-2-phenylindole (Molecular Probes) and streptavidin-labelled
sections were developed with DAB substrate (Sigma, Castle Hill, NSW,
Australia).

Image analysis
Low-resolution images were recorded on an SZX10 stereo microscope
(Olympus, Edwardstown, SA, Australia) equipped with a Micropublisher 3.3
digital camera (Q-Imaging, Waltham, MA, USA) and processed with
OpenLab 2.2 software (Improvision, Waltham, MA, USA). High-resolution
images were recorded on an IX81 inverted microscope (Olympus)
equipped with an OCRA-ER digital CCD camera (Hamamatsu, Hamamatsu,
Japan) and processed with CellR software (Olympus). DAT and TH
immunofluorescence was captured on a LSM700 confocal microscope
(Zeiss, North Ryde, NSW, Australia). All figures were constructed in Adobe
Photoshop CS3 (Adobe Systems, San Jose, CA, USA). Quantitation of DAT
and TH expression from confocal immunofluorescence images was
completed as described previously.33 Briefly, images were split into
separate channels for TH or DAT, converted to binary images and used for
fluorescence intensity calculations with an Image J area calculator macro
designed to detect staining in confocal image slices.
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Cell culture
The dopaminergic neuronal progenitor cell line, SN4741,34 was maintained
in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum
(HyClone, South Logan, UT, USA), 1% glutamine and antibiotics. FLAG-His-
DAT (generously provided by Alexander Sorkin) and Myc-14-3-3z
(generously provided by Joanna Woodcock) were transiently transfected
into cells with Lipofectamine 2000 (Life Sciences, Mullgrave, VIC, Australia)
and allowed to grow for 48 h before extracting protein lysates.

Immunoprecipitation
All protein extracts were prepared by lysis in NP40 lysis buffer composed of
137mM NaCl, 10mM Tris-HCl (pH 7.4), 10% glycerol, 1% Nonidet P-40, and
protease and phosphatase inhibitors (4.5 U of aprotinin per ml, 1 mg of
leupeptin per ml, 1mM phenylmethylsulfonyl fluoride, 10mM sodium
fluoride, 10mM b-glycerol phosphate, 10mM sodium pyrophosphate and
10mM sodium vanadate). Samples were lysed for 60min at 4 1C, then
centrifuged at 10 000 g for 15min. The supernatants were precleared with
mouse Ig-coupled Sepharose beads for 30min at 4 1C. The precleared lysates
were incubated for 2 h at 4 1C with 2mgml–1 of anti-TH antibody (Millipore),
monoclonal anti-1433z antibody (G1-7), anti-DAT (6-5G10, Santa Cruz; and
MAB369, Millipore), anti-Flag (Sigma) and control immunoglobulin G (Sigma)
absorbed to protein G-Sepharose (Amersham Biosciences, Amersham, UK).
The sepharose beads were washed three times with lysis buffer before being
boiled for 5min in sodium dodecyl sulphate–polyacrylamide gel electro-
phoresis sample buffer. The immunoprecipitated proteins and lysates were
separated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis,
electrophorectically transferred to a polyvinylidene difluoride (Hybond-P,
Amersham, UK) membrane (GE Health, Rydalmere, NSW, Australia) and
analysed by immunoblotting.

Immunoblotting
Polyvinylidene difluoride membranes were blocked with 5% skim milk
powder in TBST and immunoblotted with polyclonal rabbit anti-14-3-3z
C-16 (Santa Cruz) at 1:1000, rabbit anti-TH (Millipore) at 1:1000, rabbit anti-
phospho-serine-31 TH (Cell Signalling Anibodies, Danvers, MA, USA) at
1:1000, rabbit anti-phospho-serine-40 TH (Cell Signalling Anibodies) at
1:1000, rat anti-DAT (6–5G10; Santa Cruz) at 1:200, mouse anti-Flag-M2
(Sigma-Aldrich) at 1:1000, mouse anti-Myc (9B11; Cell Signalling Technol-
ogies) at 1:1000 and mouse anti-HA (6E2; Cell Signalling Technologies) at
1:1000. Rabbit polyclonal against b-actin (1:5000, Millipore) was used as a
loading control. Bound antibodies were detected with horseradish
peroxidase-conjugated secondary antibody (1:5,000, Pierce-Thermo Scien-
tific, Rockford, IL, USA). Immunoreactive proteins were visualized by ECL
(Luminescent Image Analyzer LAS-4000, Fujifilm, Tokyo, Japan). The images
were analysed with Multi Gauge Ver3.0 (Fujifilm).

Detection of DA levels and metabolism
DA, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), levels in
the striatum, prefrontal cortex and hippocampus of 7 WT and 7 KO animals
were determined using reverse-phase high-performance liquid chromato-
graphy (HPLC) as previously described. For tissue preparation, small
biopsies were dissected on a chilled plate, weighed, and stabilized in 200ml
0.4 M perchloric acid (HClO4) containing 0.05% sodium metabisulphate
(Na2S2O5) and 0.01% disodium EDTA. The sample tissue was then
homogenized, cellular and vesicular membranes disrupted using a
sonicator and finally stored at 70 1C. On the day of analysis, all samples
were centrifuged at 10 500 g for 10min and filtered though minispin filters
for additional 3min at 10 000 r.p.m. before being injected into the HPLC.
For each sample, 10 ml was injected by a cooled autosampler (SIL 20A,
Shimadzu, Rydalmere, NSW, Australia) and Shimadzu LC-AT pumpon to a
reverse-phase C18 column (4.6mm diameter, 150mm length; CHROM-
PACK, Croydon, UK) coupled with an electrochemical detector (Decade II,
Antec Leyden, Rydalmere, NSW, Australia). The mobile phase, comprises
the following (mM): (KH2PO4, 70; EDTA di-sodium salt, 0.5; octane-sulphonic
acid, sodium salt, 8; with 17% HPLC grade methanol, pH 3) was delivered at
a flow rate of 500ml min–1. The peaks were processed using LC solutions
software (Antec Leyden). Concentrations of DA and its metabolite DOPAC
were calculated for each sample.

Quantitative reverse transcriptase-PCR
Total RNA was isolated from cells using Trizol (Ambion, Austin, TX, USA)
and single-stranded complementary DNA was synthesized using the

QuantiTect Reverse transcription kit (Qiagen, Frankfurt, Germany). Quanti-
tative PCR was performed with SYBR Green reagent (Qiagen) using the
Rotor-Gene 6000 real-time PCR system (Corbett Life Science, Frankfurt,
Germany). Primers used were: glyceraldehyde 3-phosphate dehydrogenase F:
50-ACCCAGAAGACTGTGGATGG-30 , R: 50-CAGTGAGCTTCCCGTTCA-30 ; DA
receptor D1 F: 50-AACTGTATGGTGCCCTTCTGTGG-30 , R: 50-CATTCGTAGTT
GTTGTTGCCCCG-30 ; DA receptor D2 F: 50-CACTCCGCCACTTCTTGACATA
CA-30 , R: 50-TCTCCTCCGACACCTACCCCGA-30 ; DA receptor D3 F: 50-GTCCT
GCCCTCTCCTCTTTGGTTT-30 , R: 50-AGTCTACGGTGCCCTGTTTAC-30 ; DA recep-
tor D4 F: 50-TGCCCTCAACCCCATCATCTACAC-30 , R: 50-AATACTTCCGAC
CCCCAACCCT-30 ; DA receptor D5 F: 50-GGGAGATCGCTGCTGCCTATGTC-30 ,
R: 50-TTTTAGAGTGGTGAGTGGGGGTTA-30 ; DAT F: 50-ACGCTCAAAATACTCAG
CAG-30 , R: 50-TACCGAGAGGACAGCATTCC-30 . Relative mRNA levels were
quantified using the comparative quantitation method in Rotor-Gene 6000
Series Software. Relative mRNAs levels were then normalized to glyceral-
dehyde 3-phosphate dehydrogenase. Each PCR was performed in technical
triplicates, and each experiment was performed in at least three biological
replicates. Error bars represent s.e.m. between biological replicates.

Statistical analysis
All data are presented as mean±s.e.m. Behavioural experiments were
analysed using two-way analysis of variance (ANOVA) with repeated
measures where appropriate (Systat, version 9.0, SPSS software; SPSS,
Armonk, NY, USA). Neurochemical data were analysed using ANOVA and
Student’s t-test. In all studies, a P-value of o0.05 was considered to be
statistically significant.

RESULTS
Baseline hyperactivity of 14-3-3z KO mice is rescued with
clozapine
Our previous studies identified several schizophrenia-like beha-
vioural deficits in 14-3-3z KO mice, including a reduced capacity to
learn and remember, hyperactivity and disrupted sensorimotor
gating. To further test the relevance of this mouse model to
schizophrenia and related disorders, we completed behavioural
analyses with the antipsychotic drug clozapine, an antagonist of
DA and serotonin receptors. Consistent with our previous report,
we found that 14-3-3z KO mice have baseline hyperactivity over a
30-min test period. Following 2 weeks of daily intraperitoneal
injections of 5mg kg–1 clozapine, we found that baseline
locomotor hyperactivity of 14-3-3z KO mice returned to levels
similar to WT mice (Figure 1). ANOVA revealed main effects of
genotype (F(1, 31)¼ 7.2, P¼ 0.012) and of clozapine treatment

Figure 1. Clozapine rescues baseline hyperactivity of 14-3-3z knock-
out (KO) mice. 14-3-3z KO mice (white bar; n¼ 8; 5 males and 3
females) have greater baseline exploratory behaviour than 14-3-3z
wild-type (WT) mice (closed bar; n¼ 10; 6 males and 4 females) in an
open field test. Treatment with the antipsychotic clozapine has no
effect on WT mice (dark grey hashed bar; n¼ 10; 6 males and 4
females) but reduces baseline exploratory behaviour of 14-3-3z KO
mice (light grey bar; n¼ 8; 5 males and 3 females) to levels similar
to WT.
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(F(1, 31)¼ 4.3, P¼ 0.046) and a trend towards a genotype�
clozapine interaction (F(1, 31)¼ 3.3, P¼ 0.078). Further pairwise
comparison confirmed the expected baseline locomotor hyper-
activity in 14-3-3z KO mice compared with controls (F(1, 16)¼ 9.9,
P¼ 0.006) but there was no difference between clozapine-treated
14-3-3z KO mice and WT controls (Figure 1). Distance moved was
significantly reduced in clozapine-treated compared with saline-
treated 14-3-3z KO mice (F(1, 14)¼ 6.4, P¼ 0.024) but there was no
clozapine effect in WT controls (Figure 1). This functional rescue of
hyperactivity was independent of sex.

14-3-3z KO mice are hypersensitive to amphetamine
A defining feature of human psychiatric conditions is enhanced
behavioural effects of amphetamine.35–37 To further validate 14-3-
3z KO mice as a robust schizophrenia-like mouse model, we
completed analysis of amphetamine-induced hyperactivity.
Amphetamine is a potent psychostimulant that enhances the
release of DA from presynaptic dopaminergic terminals.38

Consistent with previous findings, we found that 14-3-3z KO
mice showed hyperactivity relative to WT mice in the 20-min
habituation phase before drug or after saline administration
(Figure 2a; WT, n¼ 12; KO, n¼ 11). Indeed, ANOVA showed a
significant main effect of genotype after injection of saline
(F(1, 22)¼ 11.0, P¼ 0.003). WT and KO mice also demonstrated a
decline in activity with habituation to the test arena. Subcuta-
neous injection of amphetamine-induced (5mg kg–1) hyperactivity
in both 14-3-3zWT and KO mice (WT, n¼ 12; KO, n¼ 11), however,
this effect was significantly enhanced in the KO mice that had
reduced time to become maximally hyperactive and also covered
a greater distance than WT controls particularly in the first 45min
of the 90-min testing period (Figure 2b). The genotype-dependent

difference in amphetamine time-course was reflected by a
significant ANOVA amphetamine� genotype� time interaction
(F(17, 374¼ 2.8, Po0.001). During the first 45min after ampheta-
mine injection, there was also a genotype� amphetamine
interaction (F(1, 22)¼ 6.0, P¼ 0.023), which was absent for the
second 45min after injection (Figure 2b). Induced hyperactivity
was similar for both males and females with no sex bias (P40.05).

DA levels and DA turnover are aberrant in 14-3-3z KO mice
Given the rescue of baseline hyperactivity with clozapine and the
increased hyperactivity to the DA releaser amphetamine, we next
investigated the levels of total tissue DA and DOPAC in the
striatum, cortex and hippocampus by HPLC/EC. Our analysis found
that tissue content of DA was significantly increased by 30% in
the striatum of P100 14-3-3z KO mice when compared with WT
controls (Figure 3a; WT, mean¼ 135 pmolmg–1, n¼ 6; KO,
mean¼ 178 pmolmg–1, n¼ 6; P¼ 0.038). Although not reaching
levels of significance this trend was also observed in the cortex
and hippocampus of 14-3-3z KO mice (Supplementary Figures S1a
and d). We also observed an increase of DOPAC in the striatum of
14-3-3z KO mice when compared with WT controls (Figure 3b; WT,
mean¼ 14.7 pmolmg–1; KO, mean ¼ 20.9 pmolmg–1) that was
not observed in the cortex (Supplementary Figure S1b). This
increase of DOPAC resulted in a similar level of DA turnover
(DOPAC/DA ratio) in 14-3-3z KO and WT mice (Figure 3c).

TH is preserved in 14-3-3z KO mice
Our previous findings raised the hypothesis that DA neurotrans-
mission is affected in 14-3-3z KO mice. DA is produced by
dopaminergic neurons that primarily reside in the VTA/SN and
send their processes to the dorsal and ventral striatum,

Figure 2. 14-3-3z Knockout (KO) mice are hypersensitive to amphetamine. (a) 14-3-3z KO mice (closed square; n¼ 11; 6 males and 5 females)
have greater baseline exploratory behaviour than 14-3-3z wild-type (WT) mice (open square; n¼ 12; 8 males and 4 females) in an open field
test. (b) 14-3-3z KO mice (closed circle; n¼ 11; 6 males and 5 females) have increased hyperactivity in response to amphetamine (5mg kg–1)
than 14-3-3z WT mice (open circle; n¼ 12; 8 males and 4 females) in an open field test. Note difference in vertical scale.

Figure 3. Altered baseline dopamine (DA) in the striatum of 14-3-3z knockout (KO) mice. (a) Baseline DA and 3,4-dihydroxyphenylacetic acid
(DOPAC) levels were measured in the striatum by high-performance liquid chromatography (HPLC)/EC. 14-3-3z KO mice (white bar; n¼ 6; 4
males and 2 females) have increased DA compared with 14-3-3z wild-type (WT) mice (closed bar; n¼ 6; 3 males and 3 females). (b) 14-3-3z KO
mice (white bar) also have increased DOPAC compared with 14-3-3z WT mice (closed bar). (c) DA turnover (DOPAC/DA ratio) is conserved in
14-3-3z KO mice (white bar) compared with 14-3-3z WT mice (closed bar).
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respectively. 14-3-3z Has previously been suggested to have an
essential role in DA synthesis by interacting with TH to promote its
phosphorylation and activity.15 To investigate the interactions and
functions of 14-3-3z, we generated a suite of 14-3-3z monoclonal
antibodies by immunizing 14-3-3z KO mice with recombinant
14-3-3z protein. Western blot analysis of recombinant 14-3-3
proteins expressed in bacteria shows that anti-14-3-3z M6, D1-4
and N4 predominantly interact with 14-3-3z while also recognizing
14-3-3t (Supplementary Figure S2). However, as 14-3-3t is not
expressed in brain tissue16 these antibodies provide an ideal
resource to specifically address the role of 14-3-3z in brain function.
Using anti-14-3-3z M6 on a western blot of proteins co-immuno-
precipitated with anti-TH from P35 mouse brain lysates, we were
able to confirm the interaction of 14-3-3z and TH in vivo (Figure 4a).
We next analysed the abundance of total TH in sagittal and

coronal brain sections by immunohistochemistry. Our analysis
identified similar levels of expression in the striatum, VTA and SN
and further showed that 14-3-3z KO mice have an equivalent

number of TH-positive dopaminergic neurons as WT controls
(Figure 4b; WT, n¼ 4; KO, n¼ 4). As TH activity is controlled through
the phosphorylation of Ser-31 and Ser-40, we next explored the
abundance of active TH with phospho-specific antibodies. Our
immunoblotting analysis was unable to identify any significant
differences in the levels of total or active TH in 14-3-3z KO brains
(Figure 4c and Supplementary Figure S3; WT, n¼ 6; KO, n¼ 6).

DAT density is reduced in 14-3-3z KO mice
Following release of DA into the synaptic cleft it initiates signalling
cascades in postsynaptic neurons by interacting with the
G-protein-coupled DA receptors D1–D5. Regulation of this
interaction is primarily achieved through the reuptake of DA by
presynaptic neurons with DAT. Given the distinct possibility of a
DA signalling dysfunction in 14-3-3z KO mice, we therefore
explored the abundance of DA receptors and DAT in 14-3-3z KO
brain samples. Quantitative reverse transcriptase-PCR analysis
from P35 whole-brain RNA shows that each of these receptors is
expressed normally at the transcript level (Figure 5a). Furthermore,
analysis of the DA receptors by immunoblotting of P35 whole-
brain lysates shows that the major isoforms of D1–D5 are present
at normal levels in 14-3-3z KO mice (Figure 5b and Supplementary
Figure S4; WT, n¼ 4; KO, n¼ 4).
We next analysed the localization and abundance of DAT by co-

labelling sagittal brain sections with anti-DAT and anti-TH
antibodies. In comparison with 14-3-3z WT mice, we observed a
reduction in DAT within the SN-VTA of KO mice (Figure 6a). Upon
closer examination, 14-3-3z WT showed evenly distributed DAT
staining throughout the cell body and neurites of dopaminergic
neurons within the midbrain, whereas KO neurons had sparse
staining in neuronal processes and irregular localization within the
cell body (Figure 6b). Within these KO mice, DAT localization was
predominantly polarized to one side of the nucleus (Figure 6b).
Expression of DAT was quantified by measuring the fluorescence
intensity of anti-DAT in SN-VTA neurons relative to that of anti-TH
antibodies. Our analysis shows that DAT levels are reduced by
approximately 30% in the SN-VTA of 14-3-3z KO mice (Figure 6c;
WT, n¼ 4; KO, n¼ 4; P¼ 0.043). Using the same immunostaining
method, we also found a significant reduction of DAT in the
striatum (Figure 7). Analysis of low magnification images shows
that DAT is uniformly reduced across the entire striatum
(Figure 7a). Higher magnification further identifies distinct TH-
positive fibres within the striatum that lack DAT (arrowheads,
Figure 7b). Quantitation of this staining shows that DAT levels are

Figure 4. Tyrosine hydroxylase (TH) is activated normally in 14-3-3z
knockout (KO) mice. (a) TH was precipitated from P35 whole-brain
lysates with anti-TH antibody. TH immunoprecipitates were probed
with anti-TH and monoclonal antibodies against 14-3-3z (M6).
(b) Sagittal sections and (i, ii) coronal sections (iii iv) show that the
abundance of TH-positive dopaminergic neurons in the substantia
nigra (sn) and ventral tegmental area (vta), and their projections to
the striatum (st) are similar in 14-3-3z KO and wild-type (WT) mice.
Scale bars¼ 500 mm. (c) Western blot analysis of brain lysates shows
that total TH, phospho serine 31 (Ser-31) and phospho Ser-40 are
present at similar levels in 14-3-3z KO and WT mice. Load control
used for quantitating western blots was a tubulin. A representative
blot of all four samples is shown in this figure that is quantitated in
Supplementary Figure S3.

Figure 5. Expression of dopamine (DA) receptors in 14-3-3z knock-
out (KO) mice. (a) Quantitative reverse transcriptase-PCR (qRT-PCR)
of DA receptors D1–D5 and DA transporter (DAT) show that transcript
levels of these genes are present at the same level in 14-3-3z KO
(open bars; n¼ 4) and 14-3-3z wild-type (WT) brains (closed bars;
n¼ 4). (b) Western blot analysis of whole-brain lysate shows that
protein levels of DA receptors D1–D5 are present at the same level
in 14-3-3z KO (n¼ 4) and 14-3-3z WT brains (n¼ 4). A representative
blot of all four samples is shown in this figure that is quantitated in
Supplementary Figure S4.
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Figure 6. 14–3-3z Regulates dopamine transporter (DAT )expression in the substantia nigra (SN)-ventral tegmental area (VTA). (a) Sagittal brain
sections stained with anti-tyrosine hydroxylase (TH; red) and anti-DAT (green) show reduced levels of DAT in the SN-VTA of 14-3-3z knockout
(KO) mice compared with wild-type (WT) littermates. Blue, 4,6-diamidino-2-phenylindole (DAPI); scale bars¼ 50 um. (b) Higher magnification
of anti-DAT immunostaining (green) in SN-VTA shows that DAT is mislocalized in the cell bodies of dopaminergic neurons (white arrowheads).
Scale bar¼ 20 um. (c) Quantitation of anti-DAT immunostaining normalized to anti-TH confirms that 14-3-3z KO (open bar) have an
approximately 30% reduction of DAT compared with WT mice (closed bar).

Figure 7. 14–3-3z Regulates dopamine transporter (DAT) expression in the striatum. (a) Sagittal brain sections stained with anti-tyrosine
hydroxylase (TH; red) and anti-DAT (green) show reduced levels of DAT in the striatum of 14-3-3z knockout (KO) mice compared with wild-type
(WT) littermates. Blue, 4,6-diamidino-2-phenylindole (DAPI); scale bars¼ 200 um. (b) Higher magnification of anti-DAT immunostaining (boxed
region in a) shows that DAT is missing in the axonal terminals of dopaminergic neurons (white arrowheads). Blue, DAPI; scale bar¼ 10 um.
(c) Quantitation of anti-DAT immunostaining normalized to anti-TH confirms that 14-3-3z KO (open bar) have an approximately 50% reduction
of DAT compared with WT mice (closed bar). (d) Western blot analysis of whole-brain lysate shows that proteins levels of unglycosylated DAT
(50 kDa) and glycosylated DAT (80 kDa) are reduced in 14-3-3z KO (n¼ 4) compared with 14-3-3z WT mice (n¼ 4).
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reduced by approximately 50% in the striatum of 14-3-3z KO mice
(Figure 7c; WT, n¼ 4; KO, n¼ 4; P¼ 0.009).
Analysis of P35 whole-brain lysates by immunoblotting further

identified robust deficiency of the non-glycosylated form of DAT
(approximately 50 kDa band) in KO mice and in around half the
cases also deficiency of the glycosylated form (approximately
75 kDa band; Figure 7d). To confirm that 14-3-3z is expressed in
dopaminergic neurons, and in appropriate regions to have a role
in DAT function, we co-immunostained sagittal brain sections with
anti-14-3-3z M6 and anti-TH antibodies. Our analysis found that
14-3-3z is widely expressed in the midbrain, and importantly,
within TH-positive neurons in the SN/VTA and their terminals in
the striatum (Supplementary Figure S5). The lack of staining in
14-3-3z KO brain sections further confirms the specificity of this
antibody and the expression of 14-3-3z in dopaminergic neurons.

DAT associates with 14-3-3z
As DAT is phosphorylated on several serine and threonine
residues by CAMKII/protein kinase C and contains putative
14-3-3 binding sites (data not shown), we next investigated if
14-3-3z interacts with this transporter. By transiently expressing
Flag-His-DAT and Myc-14-3-3z in the SN-derived mouse neuronal
cell line SN4741, we were able to identify an interaction between
these proteins by co-immuoprecipitation. In these experiments,
purification of 14-3-3z with anti-Myc antibodies also co-precipi-
tated Flag-His-tagged DAT (Figure 8a). In addition, purification of
DAT with anti-Flag antibodies co-precipitated Myc-tagged 14-3-3z
(Figure 8b). In contrast, co-immunoprecipitation with an immuno-
globulin G isotype control antibody was unable to purify either
14-3-3z or DAT from protein lysates in which purification of DAT
with anti-Flag antibodies co-precipitated Myc-tagged 14-3-3z
(Supplementary Figure S6). To confirm the interaction between
these proteins in vivo, we next completed co-immunoprecipitation
experiments with our G1-7 monoclonal antibody in striatal protein
extracts from P35 WT mice. Consistent with our overexpression
study, we found that antibodies recognizing 14-3-3z also
precipitate DAT from these complex protein extracts (Figure 8c).

DISCUSSION
Over the past 50 years, there have been many clinical and
pharmacological studies implicating aberrant DA signalling in the
pathology of psychosis associated with schizophrenia and related
disorders.5,39–42 Animal models with deficits in each component of
the dopaminergic pathway, such as DA biosynthesis, DA receptors
and DAT have provided valuable insight to the role of aberrant
DA signalling in the presentation of psychosis-like behavioural
defects.43 However, many of these models have also shown
paradoxical effects when compared with the human condition.
We recently described 14-3-3z KO mice as a novel

neurodevelopmental schizophrenia-like mouse model that has
many anatomical and behavioural defects associated with the
human condition.17 This notion is supported by genetic linkage
analysis23 and the observations that 14-3-3z is downregulated
at the mRNA18 and protein20,21,44 levels in post-mortem
schizophrenia brain samples. Further support for a role in
schizophrenia is derived from the recent finding that 14-3-3z is
represented as a central hub within the schizophrenia-specific
protein interaction network.24 At the molecular level, 14-3-3z also
interacts with several putative risk factors for schizophrenia that
are essential for neuronal development, such as NdeL1, LIS1 and
DISC1.17,45 In this study, we have significantly advanced our
understanding of the role of 14-3-3z in the presentation of
schizophrenia-like deficits by identifying part of the molecular
defects underpinning locomotor hyperactivity. First, we
specifically identify dysregulated DA signalling as a cause of
hyperactivity in 14-3-3z KO mice. Second, we have shown that
DAT dysregulation occurs in the absence of any obvious change in
abundance of TH or DA receptors. Finally, we found a reduction in
the abundance of DAT in the brains of adult 14-3-3z KO mice, and
show that in the WT setting, 14-3-3z and DAT interact.
A defining feature of schizophrenia is hypersensitivity to drugs

that increase synaptic DA levels.35–37 To test the validity of 14-3-3z
KO mice as a model for the human condition, we therefore
analysed both this feature and the ability of antipsychotics to
ameliorate psychosis-like symptoms in our mouse model in vivo.
In support of 14-3-3z KO mice modelling the behavioural

deficits associated with schizophrenia and associated disorders,
we found that the antipsychotic drug clozapine was able to rescue
baseline hyperactivity. However, although a 2-week treatment
regime with clozapine had dramatic pharmacological effects on
hyperactivity it was unable to modify the neurodevelopmental
and anatomical defects associated with the disorder, including
lamination and mossy fibre navigation in the hippocampus (data
not shown).
Consistent with behavioural responses in patients with schizo-

phrenia and related psychiatric disorders, we found that 14-3-3z
KO mice are hypersensitive to the effects of amphetamine in a test
of locomotor function. Taken together with our findings of
baseline hyperactivity, disrupted senorimotor gating and deve-
lopmental defects in the hippocampus,17 these analyses implicate
14-3-3z KO mice as a highly applicable neurodevelopmental
model of schizophrenia and related disorders.
As amphetamine acts as a substrate for DAT to promote DA

efflux from presynaptic neurons, and clozapine can antagonise DA
receptors, our results further suggest that some of the psychosis-
like behavioural defects of 14-3-3z KO mice may arise from defects
in the dopaminergic pathway. Indeed, our analysis of total tissue
DA levels found that DA is significantly increased in the striatum of
KO mice and strongly supports a role for 14-3-3z in the DA
signalling pathway. 14-3-3z Has been implicated as a regulator of

Figure 8. 14–3-3z Associates with dopamine transporter (DAT). (a) SN4741 cells were transiently transfected with Flag-His-DAT and Myc-14-3-
3z. 14-3-3z was precipitated from protein lysates with anti-Myc antibody. 14-3-3z Immunoprecipitates were probed with anti-Myc monoclonal
antibody to recognise 14-3-3z and anti-Flag to recognize DAT. (b) DAT was precipitated from protein lysates as in (a) with anti-Flag antibody.
DAT immunoprecipitates were probed with anti-Myc monoclonal antibody to recognise 14-3-3f and anti-Flag to recognize DAT (c) 14-3-3z
Was precipitated from P35 striatum lysates with anti-14-3-3z G1-7 monoclonal antibody. 14-3-3z Immunoprecipitates were probed with anti-
14-3-3z (C16) and antibodies against DAT.
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DA signalling by interacting with TH through phosphorylation of
Ser-19 to enhance activation of TH enzymatic activity by
promoting further phosphorylation of Ser-31 and Ser-40.15 Our
analysis of 14-3-3z KO mice not only shows that 14-3-3z is
indispensable for the formation of dopaminergic neurons in the
brain, it also shows that TH levels and TH activation are
maintained in the absence of 14-3-3z. In contrast to the
proposal that 14-3-3z is the major isoform controlling TH
activity,15 our results suggest that 14-3-3 isoforms are likely to
act redundantly in promoting TH activity in vivo. Indeed, multiple
14-3-3 isoforms have been shown to bind TH, and 14-3-3g has
recently been suggested to promote localization of TH to
membrane fractions to preserve enzymatic activity.46 Although
our data fit with the idea that DA production is normal in 14-3-3z
KO mice, it will now be important to measure the rate of DA
synthesis in vivo.
To determine the nature of the dopaminergic dysfunction in our

schizophrenia-like mouse model, we therefore analysed later
stages of signalling post-secretion of DA from presynaptic vesicles.
DA interacts with receptors on postsynaptic neurons to initiate a
myriad of downstream signalling events by modulating activity of
adenylate cyclase. Our analysis of the abundance of DA receptor
by quantitative reverse transcriptase-PCR and western blotting
was unable to detect any differences in the levels of either total
RNA or protein from whole-brain samples. This finding identifies
important differences between our schizophrenia-like mouse
model and that of the DISC1 mouse models. DISC1 mutant mice
also display DA dysfunction, however, in these mice the primary
defect has been attributed to excessive levels of DA receptor
D2.47 Although the techniques used in our study provide a high
level of quantitation, future experiments will be best directed at
completing receptor binding studies to confirm our results and to
analyse the levels and binding capacity of the DA receptors in
more detail.
In the absence of gross defects in DA receptor levels, we next

analysed the abundance of DAT that is expressed in presynaptic
dopaminergic neurons to regulate levels of DA in the synaptic
cleft. Our finding that DAT levels are reduced at the protein level
and not at the RNA level suggests that the deficiency of DAT
occurs via post-transcriptional mechanisms. In support of DAT
dysfunction having a central role in the behavioural defects of our
14-3-3z mouse model, DAT KO mice have also been shown to
have baseline hyperactivity.48 At steady-state levels DAT is
constitutively internalized, recycled to the plasma membrane or
degraded in the lysosome through the activity of the E3 ubiquitin
ligase Nedd4-2.49 Although the precise mechanisms of this
trafficking pathway are unclear it is reliant on amino acids
587–597 in the c-terminus of the protein50 and on the
ubiquitination of three lysine residues in the N-terminus.51 DAT
function is also heavily regulated by several kinases that primarily
phosphorylate serine and threonine residues in its n-terminus.52

Upon pharmacological stimulation of DAT with amphetamine,
several serine and threonine residues in this n-terminal region are
phosphorylated by protein kinase C and CAMKII to induce DA
efflux from presynaptic neurons.52 Our finding that DAT levels are
reduced in 14-3-3z KO mice and also mislocalized in dopaminergic
neurons therefore raises the hypothesis that 14-3-3z may have a
role in modulating DAT phosphorylation, trafficking and/or
degradation. In support of this notion, 14-3-3z has previously
been found to bind to and inhibit the function of Nedd4-2 to
positively regulate the abundance of other substrates such as
amiloride-sensitive epithelial Naþ channel.53 Whether 14-3-3z
also binds Nedd4-2 to regulate levels of DAT is currently unknown,
however, as Nedd4-2 is proposed to modulate membrane
associated DAT (that is, the glycosylated form) our finding of
reduced non-glycosylated DAT may argue against a primary role
in regulating DAT levels through this pathway. A role for 14-3-3z in
modulating DAT phosphorylation or function may also help to

explain the ability of amphetamine to increase hyperactivity of
KO mice over and above that of WT controls albeit in the presence
of a 30% reduction of total DAT levels. Thus, dysregulation
of receptor phosphorylation and/or activity may promote
degradation in the resting state but retain DAT in a primed
state for activation upon pharmacological stimulation. In support
of this notion, phosphorylation of DAT Ser-7 has previously been
found to hold DAT in a primed state for amphetamine-induced DA
efflux.52 It will now be of interest to examine the response of 14-3-
3z KO mice to alternative stimulants of DAT such as cocaine and to
test the ability of 14-3-3z to reduce amphetamine-induced DA
efflux, for example by micro-dialysis.
In this study, we also identified an interaction between DAT and

14-3-3z in SN4741 cells and striatum brain extracts. However, as
we were only able to co-purify a small proportion of total input
protein in our co-immunoprecipitation experiments this further
suggests that the interaction between DAT and 14-3-3z is quite
weak and/or unstable. Whether this interaction is direct or
mediated by an intermediate adaptor protein and whether this
has a role in DAT function is currently unknown. Our in silico
analysis of DAT identifies several high stringency phospho-serine/
threonine 14-3-3 binding motifs in the c-terminus of the protein.
Interestingly, these sites are located near the regions predicted to
act as interaction sites for CAMKII and in the regions predicted to
be essential for DAT internalization. It will now be of interest to
determine the interaction dynamics of 14-3-3z and DAT and to
determine if this has any role in kinase binding and receptor
phosphorylation.
Finally, consistent with a functional abnormality in DAT

physiology we found that total tissue DA levels are increased in
14-3-3z KO mice. Our study also found an increase in the DA
degradation by-product, DOPAC. Although a 30% reduction in
DAT may be expected to result in reduced DA degradation, our
finding is in agreement with that observed in DAT KO mice that
also have abundant levels of DOPAC.54 Our findings therefore add
strong support to the notion that DOPAC represents a by-product
of newly synthesized DA rather than a by-product of DA recycled
from the synaptic cleft.54 Thus, although TH levels and activation
are normal in 14-3-3z KO mice it will be of interest to determine
the rate of DA synthesis in this model.
In conclusion, our data supports a model in which 14-3-3z

interacts with DAT to modulate its activity and stability and
thereby control the availability of DA in the synaptic cleft. This
finding has important implications to the physiological basis of
schizophrenia-like behavioural defects, the mechanisms control-
ling DAT function and the potential modulation of this pathway in
the treatment of disorders with a hyperdopaminergic basis.
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