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A rare WNT1 missense variant overrepresented in ASD leads to
increased Wnt signal pathway activation
P-M Martin1, X Yang1, N Robin2, E Lam3, JS Rabinowitz 2, CA Erdman1,3, J Quinn1,3, LA Weiss 1,3, SP Hamilton 1,3, P-Y Kwok3, RT Moon2

and BNR Cheyette1

Wnt signaling, which encompasses multiple biochemical pathways that regulate neural development downstream of extracellular
Wnt glycoprotein ligands, has been suggested to contribute to major psychiatric disorders including autism spectrum disorders
(ASD). We used next-generation sequencing and Sequenom genotyping technologies to resequence 10 Wnt signaling pathway
genes in 198 ASD patients and 240 matched controls. Results for single-nucleotide polymorphisms (SNPs) of interest were
confirmed in a second set of 91 ASD and 144 control samples. We found a significantly increased burden of extremely rare missense
variants predicted to be deleterious by PolyPhen-2, distributed across seven genes in the ASD sample (3.5% in ASD vs 0.8% in
controls; Fisher’s exact test, odds ratio (OR)¼ 4.37, P¼ 0.04). We also found a missense variant in WNT1 (S88R) that was
overrepresented in the ASD sample (8 A/T in 267 ASD (minor allele frequency (MAF)¼ 1.69%) vs 1 A/T in 377 controls
(MAF¼ 0.13%), OR¼ 13.0, Fisher’s exact test, P¼ 0.0048; OR¼ 8.2 and P¼ 0.053 after correction for population stratification).
Functional analysis revealed that WNT1-S88R is more active than wild-type WNT1 in assays for the Wnt/b-catenin signaling
pathway. Our findings of a higher burden in ASD of rare missense variants distributed across 7 of 10 Wnt signaling pathway genes
tested, and of a functional variant at the WNT1 locus associated with ASD, support that dysfunction of this pathway contributes to
ASD susceptibility. Given recent findings of common molecular mechanisms in ASD, schizophrenia and affective disorders, these
loci merit scrutiny in other psychiatric conditions as well.
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INTRODUCTION
Autism spectrum disorders (ASD) have a strong genetic etio-
logy. The last decade of research in psychiatric genetics has led
to groundbreaking discoveries, including the identification of
ASD-associated sequence and structural variants in a variety of
genes implicated in brain development—particularly in synapse
formation, maintenance and function. However, the mutations
identified so far explain only a fraction of ASD cases, underscoring
the need to continue the search for missing genetic links in
ASD.
Wnt intercellular signaling refers to a set of key developmental

pathways that help to organize the nervous system. Among other
roles, Wnt signaling influences subdivision of the anterior neural
tube into major brain regions (such as forebrain, midbrain and
hindbrain), neural precursor proliferation, neural cell fate and
migration, axon guidance, dendrite development and synapse
formation.1 Given this broad spectrum of roles, it is no surprise
that dysregulation of Wnt signaling causes a similarly broad
spectrum of deleterious effects on neural development, and
largely on this basis it has long been considered a candidate
pathway in psychiatric pathogenesis. Its candidacy in this regard is
supported by evidence that Wnt signaling pathway components
are pharmacological targets of lithium,2,3 hallucinogenic drugs 4

and antipsychotic medications,5,6 as well as by evidence derived
from behavioral tests in animal models7–11 and from positive
associations in scattered human genetic studies.12–17

Here we used massively parallel sequencing technology to
simultaneously search for rare variants in 10 Wnt signaling
pathway genes in a sample of Caucasian patients with ASD and
healthy controls. We selected these 10 genes out of a much larger
set of pathway molecules based primarily on empirical support for
their individual relevance to psychiatry in human genetic (DKK1,
DKK4, NEUROG1, CTNNB1),18–21 animal behavior (DVL1, DIXDC1),7,10

biochemical (WNT1, NEUROD1)22,23 or other types of studies
(PRICKLE4, DACT2).24,25 Compared with whole exome sequencing
strategies that are now underway, this very targeted approach
benefited from our focus on functionally linked loci for which we
have substantial expertise, allowing us to immediately follow up
the most promising variant in in vitro functional assays.

MATERIALS AND METHODS
ASD samples (Caucasians)
Samples were lymphoblastoid cell lines from the Simons Simplex
Collection. The diagnosis in these samples was based on the ADI-R
(Autism Diagnostic Interview-Revised).26

Unscreened controls (Caucasians)
Healthy control subjects were recruited by the survey research company
(Knowledge Networks, Menlo Park, CA, USA) from a nationally representa-
tive internet-based panel that was selected by random digit dialing.27

Subjects completed an online version of the CIDI-SF (Composite
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International Diagnostic Interview-Short Form) for lifetime history of
anxiety, mood and substance use disorders. Subjects consented to
anonymization and deposition of their clinical information and DNA in
the National Institute of Mental Health (NIMH) repository for use in any
medical research.

Pooling samples
Concentration of individual DNA samples was measured using Pico Green.
Based on previous reports using an identical pooling strategy,28,29 we
expected sequencing error rates to be B0.5%. To distinguish a single real
mutant allele in 876 chromosomes (minor allele frequency (MAF)¼ 0.11%)
from random sequencing artifacts, we pooled samples into 11 sets of 38–
40 individuals each. Therefore, the frequency of a single mutant allele in
each pool was 1%, significantly above the detection threshold of 0.5%.

Target enrichment
Each pool of genomic DNA from 38–40 individuals was enriched by PCR
amplification for 10 genes involved in Wnt signaling (WNT1, DVL1, DIXDC1,
PRICKLE4, DACT2, NEUROG1, DKK1, DKK4, NEUROD1, and CTNNB1), plus 1
control gene, DACT1, during the validation step (Supplementary Table S1).
For each gene, the entire locus was amplified in 1 or 2 ‘long-range’ PCR
reactions. The total amplification length for all 11 genes was 71.5 kb.

Sample preparation and high-throughput sequencing procedure
Each pool of target-enriched genomic DNA was used to build a prepped
DNA library following Illumina sample preparation protocols. In brief, each
pool was ligated with adapters containing a unique index allowing us to
combine 11 pools in each sequencing lane of the HiSeq flow cell (HiSeq
2000, Illumina, San Diego, CA, USA). Finished flow cells carrying 438
individuals (1 lane containing 11 indexed pools of 38–40 individuals) were
sequenced in the HiSeq 2000 for paired-end analysis.

Initial data processing (sequence assembly, SNP calling, quality
assessment)
Bowtie30 was used for read alignment against the latest human genome
reference. SAMtools,31 Picard (not published; http://picard.sourceforge.
net/), BEDTools32 and the Genome Analysis Toolkit (GATK;33) were used for
post-alignment processing. Multisample realignment around potential
insertion/deletions (indels) and base quality score recalibration were
performed before variant calling. For single-nucleotide polymorphism
(SNP) calling, we used SyZyGy, an algorithm specifically designed to call
bases in pooled samples.34

Analysis of conservation and prediction as deleterious
For each SNP, analysis by SeattleSeq (http://snp.gs.washington.edu/
SeattleSeqAnnotation137/) provided information about base position
conservation in the genome, whether it was intronic or exonic, and if
exonic whether it was synonymous, missense or nonsense. Predicted
deleteriousness for each SNP in exonic sequence was determined by
PolyPhen-235 version v2.1.0r367 or more recent. If either version predicted
that the SNP was deleterious, it was counted as deleterious.

Human cDNAs and mutagenesis
Human WNT1 (clone ID: 30915309) complementary DNA (cDNA) was
purchased from Thermo Scientific (Rockford, IL, USA) and subcloned into a
pcDNA 3.1(� ) vector. The WNT1 S88R variant was generated using the
QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA)
and confirmed by Sanger sequencing. In subsequent functional assays, in
order to avoid potential confounds arising from nonsystemic biases in
measurements of plasmid yield or purity, each construct was prepared
independently 42 times each by different experimenters in two different
laboratories. Similar functional results were obtained from each indepen-
dent preparation compared with wild type (WT).

Luciferase reporter assays
This was performed essentially as described previously.36 Briefly, both
HEK293T and SH-SY5Y BAR-Luc cells were transfected with 1, 5, 20 and
50 ng pcDNA3.1(� ) vector containing either WT WNT1 or WNT1-S88R.
HEK293T cells were additionally transfected with 20 ng per well pBAR-Luc
plasmid and 10 ng per well pRL-TK (Renilla luciferase control plasmid). Cells

were cultured for 24 h, and then luciferase activity measured using the
Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) and
an Envision multi-label plate reader (PerkinElmer, Waltham, MA, USA).

Quantitative reverse transcription-PCR
Total RNA from cultured HEK293T cells transfected with an empty
pcDNA3.1(� ) vector, or a pcDNA3.1(� ) vector containing either WT
WNT1 or WNT1-S88R, was isolated with the RNeasy Mini kit according to
the manufacturer’s instructions (Qiagen, Hilden, Germany). The cDNA was
synthesized from 2 mg of total RNA with Superscript III Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) using random hexamer
primers. Quantitative reverse transcription PCR was performed using the
PerfeCTa SYBR Green FastMix, ROX (Quanta, Byfleet, UK) with gene-specific
primer pairs (WNT1 forward (Fwd): 50-GCAGCGACAACATTGACTTC-30 , WNT1
reverse (Rev): 50-GTGGCACTTGCACTCCTG-30 ; AXIN2 Fwd: 50-TTATGCTTTG-
CACTACGTCCCTCCA-30 ; AXIN2 Rev: 50-CGCAACATGGTCAACCCTCAGAC-30)
on an ABI 7900HT real-time PCR system (ABI Advanced Technologies,
Columbia, MD, USA). Data were analyzed using the comparative CT
method (User Bulletin No. 2, PerkinElmer Life Sciences, Boston, MA, USA).
To normalize for loaded cDNA, glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) was used as an endogenous control (GAPDH Fwd:
50-CAAGGTCATCCATGACAACTTTG-30 , GAPDH Rev: 50-GGCCATCCACAGTCTT
CTGG-30). Results shown reflect combined data from two independent
experiments, each done in triplicate reactions.

Statistical analyses
Unless stated otherwise in Figure legends, the data are expressed as
mean±s.e.m. Data were analyzed by Student’s t-test, Fisher’s exact test or
Pearson’s correlation test where appropriate, using GraphPad Prism
software (GraphPad Software, La Jolla, CA, USA). PLINK software37 was
used for Multidimensional Scaling and logistic regression. A P-value of
o0.05 was considered to be significant.

RESULTS
Using a next-generation (massively parallel Illumina-based)
strategy, we sequenced promoter, 3’ untranslated, intronic and
coding regions of 10 Wnt pathway genes (WNT1, DVL1, DIXDC1,
PRICKLE4, DACT2, NEUROG1, DKK1, DKK4, NEUROD1 and CTNNB1) in
genomic DNA obtained from a first set of 198 Caucasian ASD
patients and 240 healthy Caucasian controls, arranged in pools of
38–40 samples each. The number of reads was homogeneously
distributed over the different amplicons and pools (and therefore
between ASD and controls), reads mapped 88% of the targeted
regions and coverage averaged 865-fold/individual. To validate
the next-generation sequencing strategy employed, we compared
results obtained using this strategy to results obtained using
Sanger sequencing of the exons in a control locus (DACT1) in a
subset of samples (40 ASD). Every DACT1 variant (n¼ 8), including
several singleton variants (n¼ 3), found by Sanger sequencing in
this set was also detected by the next-generation sequencing
strategy, and the allele frequencies of all SNPs were identical using
each methodology (Pearson’s correlation test; r¼ 0.99; Po0.0001;
Supplementary Table S1).
In the 10 genes under study, we identified 652 SNPs overall in

this set of 438 combined ASD and control samples. We restricted
most of our attention to nonsynonymous sequence variants found
only in our own sample set (not referenced in dbSNP, 1000
Genomes, the Exome Variant Server (EVS) or the Exome Chip
Design Consortium). To determine whether any of the putative
SNPs found by this method were artifacts produced by the next-
generation sequencing technology, we confirmed each of them
by individual genotyping using either IPlex Sequenom or Sanger
sequencing. Using this approach we confirmed 12 novel singleton
missense variants distributed across 8 of the 10 loci included in
our study (Supplementarty Table S2). Moreover, genotyping in a
second set of 91 ASD and 144 control samples failed to identify
any additional occurrences of each of these rare deleterious
missense SNPs. Although each of these SNPs were found only
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once among the probands in our samples and had not been
reported in any public database, genotyping of parents demon-
strated that none of them had occurred de novo; all were
transmitted from either the mother or father. Moreover, sequen-
cing of family trios showed that each was also present in an
unaffected sibling. This verifies that each of these variants is not
an idiosyncratic artifact arising during lymphoblastoid cell line
derivation, and suggests that they are extremely rare alleles
(single-nucleotide variants) in the Caucasian population repre-
sented by our samples.
Although we found a greater number of extremely rare

missense variants in our ASD sample compared with our control
sample (4% in ASD vs 1.7% in controls; Figure 1), this difference in
the ‘rare missense variant burden’ did not reach statistical
significance (Fisher’s exact test, P¼ 0.11). Nonetheless, when
considering only those rare missense variants that were also
predicted to be deleterious by PolyPhen-2, the difference in ASD
versus control groups did become significant (3.5% in ASD vs 0.8%
in controls; Fisher’s exact test, OR¼ 4.37, P¼ 0.04; Figure 1). We
also examined the distribution of less informative variants (that is,
synonymous, untranslated regions and intronic variants) in each
group, and found a very similar distribution for all of them
(synonymous: 3.5% in ASD vs 2.9% in controls; untranslated
regions: 11.1% in ASD vs 9.6% in controls; intronic: 24% in ASD vs
21% in controls; Figure 1). The similarity in the incidence of less
informative variants argues against the possibility that the
difference in the incidence of rare deleterious variants can be
attributed to differences in recent ancestry between the ASD and
control sample groups.
In addition to these novel SNPs, we found one previously

referenced rare (o1%) missense SNP that was overrepresented in
our ASD group versus our control group. This SNP (rs61758378)
occurred in WNT1, the gene encoding the first-discovered
mammalian Wnt ligand. To eliminate the possibility of a
sequencing artifact we confirmed this result by genotyping all
samples using IPlex Sequenom. We also genotyped an additional
91 ASD and 144 control samples to replicate and potentially
extend these findings. In this way, we not only confirmed MAF
results for rs61758378 obtained using the Illumina platform in the
original sample set, we further found that the rs61758378 minor
allele remained significantly overrepresented in the combined
ASD sample compared with the combined control sample (8 A/T
in 267 ASD (MAF¼ 1.69%) vs 1 A/T in 377 controls (MAF¼ 0.13%);

Fisher’s exact test, allelic P¼ 0.0048; Table 1). Furthermore, when
we compared the rs61758378 MAF in our combined ASD sample
with the reported MAF in the EVS for a much larger group of
individuals, the association also remained significant (8 A/T in 267
in our combined ASD sample (MAF¼ 1.69%) vs 45 A/T in 4300
European/American individuals in the EVS (MAF¼ 0.5%), Fisher’s
exact test, allelic P¼ 0.011). Because different allele frequencies
are reported in European populations (TSI, Tuscans in Italy,
MAF¼ 3.0%; CEU, Northern Europeans in Utah, MAF¼ 0.5%), we
wanted to evaluate and address possible effects of subtle
stratification in ancestry between cases and controls. We therefore
performed Multidimensional Scaling using genome-wide SNP
genotype data for a subset of the total samples used in this
analysis (235 SSCs and 329 controls) using PLINK. Multidimen-
sional Scaling using reference CEU and TSI data showed that the
ratio of individuals clustering with CEU and TSI was not
significantly different between ASD and controls. Nevertheless,
we noted that one of the first four dimensions was significantly
different between ASD and controls, indicating possible stratifica-
tion. We sought to account for this using a logistic regression
analysis including the first four dimensions as covariates. In this
analysis, the odds ratio (OR) remained high (OR¼ 8.17) and the
P-value remained close to significance (P¼ 0.053). We note that
our analyses have low power for SNPs with such a low MAF and in
a modest number of samples.
The rs61758378 minor allele changes a conserved serine at

position 88 into arginine. Although this change is not predicted to
be deleterious by PolyPhen-2 (HumDiv score¼ 0.174), serine 88 is
nonetheless a very highly conserved residue across species
(PhasCons score¼ 0.998), and the change to arginine at this
residue is predicted to be deleterious by Grantham score, which
categorizes codon replacements into classes of increasing
chemical dissimilarity (Grantham score¼ 110, moderately radical
change).38 Given the potential association between the WNT1
rs61758378 minor allele and ASD in our sample set, we therefore
tested for functional effects of this variant on Wnt signaling
pathway activation. To accomplish this, we engineered this variant
into a human WNT1 cDNA (WNT1-S88R) using site-directed
mutagenesis and then tested it alongside WT Wnt1 in several
assays for Wnt signaling activity.
First, we performed a plasmid-based Wnt reporter assay in

human embryonic kidney (HEK293T) tissue culture cells. This is a
well-established method to quantify transcriptional activation
downstream of the Wnt/b-catenin signaling pathway, based in this
case on transient transfection of the pBAR-Luc reporter plasmid
that expresses luciferase downstream of a b-catenin-responsive
promoter.36 Cells were co-transfected with pBAR-Luc and a dose
range (1–50 ng) of plasmids encoding WNT1-S88R or WT WNT1 to
test for the ability of these proteins to activate Wnt/b-catenin
pathway-dependent transcription. At all doses tested, WNT1-S88R
showed increased activity in this assay compared with WT WNT1
(Figure 2a). Moreover, this difference was statistically significant at
the 20 ng dose (WT WNT1, 1.00±0.09 vs WNT1-S88R, 1.37±0.087,
t-test, P¼ 0.02) and at the 50 ng dose (WT WNT1, 1.00±0.18 vs
WNT1-S88R, 1.86±0.22, t-test, P¼ 0.016; Figure 2a). Similar results
were obtained when experiments were replicated in a different
laboratory by a different investigator using independently pre-
pared DNA constructs and reagents (pSuperTop; data not shown).
The aforementioned assays rely on transient transfection of

reporter plasmid, and on this basis they are conceptually more
variable than assays based on read-out of an endogenous Wnt
pathway target gene or of a single-copy Wnt pathway reporter
integrated into the genome. Accordingly, we confirmed these
results in the same (HEK293T) cell line using quantitative reverse
transcription-PCR to directly measure transcriptional activation of
the endogenous Wnt/b-catenin pathway target gene AXIN2.39

Mirroring results obtained with the Wnt reporter assay, com-
pared with WT WNT1, WNT1-S88R showed significantly increased
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transcriptional activation of AXIN2 (WT Wnt1, 1.00±0.025 vs Wnt1-
S88R, 2.16±0.43, t-test, P¼ 0.02; Figure 2b). We confirmed these
results via a third in vitro assay that relies on SH-SY5Y BAR-Luc

cells. This is an independently derived immortalized cell line with a
single copy of a Wnt/b-catenin pathway luciferase reporter stably
integrated into its genome.36 Consistent with data obtained by
the plasmid-based Wnt reporter assays and by quantitative
reverse transcription-PCR in HEK293T cells, SH-SY5Y BAR-Luc
cells showed significantly increased activation of their reporter
after transfection of WNT1-S88R (WT Wnt1, 1.00±0.04 vs Wnt1-
S88R, 1.28±0.03, t-test, P¼ 0.0003; Figure 2c).
Taken together, our data from cell-based transcription target

assays suggest that the rs61758378 minor allele associated with
ASD in our sample (WNT1-S88R) encodes a modestly more active
form of the WNT1 ligand compared with the most prevalent WNT1
allele found in Caucasians.

DISCUSSION
Our finding in ASD of a higher burden of rare missense variants
distributed across 7 of 10 Wnt signaling pathway genes tested,
and of an ASD-associated functional variant at the WNT1 locus,
supports that dysfunction of this pathway contributes to ASD
susceptibility.
In functional assays for the Wnt/b-catenin pathway, the

biochemical cascade physiologically activated by the WNT1 gene
product,40,41 WNT1-S88R consistently showed increased activity. In
animal models, hyperactivation of Wnt/b-catenin signaling can
lead to dominant neurodevelopmental defects including in
brain regionalization,42,43 neural precursor proliferation, cell fate
specification, neuron migration,44–47 and in dendrite and synapse
formation or function.48,49 A mutation in a gene, such as WNT1, that
modestly increases activation of this downstream signaling pathway
would therefore be expected to result in neurodevelopmental and
behavioral phenotypes. Moreover, as ASD and other major
psychiatric disorders are generally not associated with gross
neuroanatomical defects, changes in Wnt signaling activity
contributing to susceptibility for these disorders should be modest.
Anatomical changes resulting from a signaling variant such as WNT1-
S88R might only be evident at a cellular level (for example, in neural
subtype numbers and position, neural morphology, connectivity and
so on) or at a subcellular level (for example, in dendritic spine
morphology, synapse numbers, synapse strength, synapse plasticity
and so on), yet could still be sufficient to cause behavioral symptoms.
This of course conforms closely to the central features of major
psychiatric disorders, which are distinguished from neurological
disorders in part by the absence of focal or grossly evident structural
brain defects. Moreover, it is not our intent to posit that this or the
other rare coding variants we have identified here in WNT1 and in
Wnt signaling pathway component genes are monogenic causes of
psychiatric illness.50 Genetic susceptibility to these disorders is highly
heterogeneous and thought to be frequently multigenic; that is, for
most patients genetic loading is thought to be distributed across

Table 1. Association of WNT1 rs61758378 with ASD

Sequenom genotyping

Illumina
sequencing

Confirmation
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sample set

Combined sample
set

P-value (combined samples)

Gene Reference Function ASD Con ASD Con ASD Con ASD Con

WNT1 rs61758378 S88R 0 AA 0 AA 0 AA 0 AA 0 AA 0 AA 0 AA 0 AA 0.0048
6 AT 1 AT 6 AT 1 AT 2 AT 0 AT 8 AT 1 AT
192 TT 239 TT 189 TT 238 TT 70 TT 138 TT 259 TT 376 TT

Abbreviations: ASD, autism spectrum disorders; Con, controls.
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many loci that affect a common pathogenic pathway.51,52 In this
susceptibility model, an allelic variant at any one locus may only
appreciably increase disease risk in the context of variants at other
loci that affect the same pathway in the same individual. The rare
nonsynonymous sequence variants found in both affected and
unaffected individuals within the same family in this study may
contribute to ASD in the context of other genetic and nongenetic
factors that increase susceptibility.
Several lines of evidence support that Wnt ligands (of which

there are 19 family members in humans) participate in ASD
susceptibility. A recent whole exome sequencing study identified
copy number variants affecting both WNT3 and WNT9B in an ASD
patient,53 whereas another study showed that WNT3 expression is
increased in the prefrontal cortex of young autistic patients
compared with controls.54 Rare variants in WNT2 have been
reported to segregate with ASD.16 Although other groups have
not always replicated this linkage,55,56 two more recent studies
have found SNPs in WNT2 associated with either ASD or speech
delay.15,17 In a Valproate-exposure rat model of ASD, expression of
both WNT1 and WNT2 was upregulated in the developing
forebrain and this was associated with increased Wnt/b-catenin
pathway activity in that brain region.57 Other recent sequencing
studies have identified several ASD-susceptibility genes that
encode functionally linked components of a protein network
involved in the regulation of b-catenin-dependent transcription,
as occurs in Wnt/b-catenin signaling.21,58,59 The findings of the
present study add to this evidence by suggesting that minor
alleles and extremely rare variants at the WNT1 locus and other
Wnt pathway loci may contribute to risk for this psychiatric
disorder, a possibility that merits further attention in ongoing
human genetic studies focused on ASD. Given evidence that
genetic etiologies are shared across several psychiatric
disorders,60–62 as well as that Wnt signaling is involved more
broadly in psychiatric pathogenic and therapeutic mechanisms,63

these loci should also be carefully scrutinized in ongoing human
genetic studies of other major psychiatric disorders, such as
schizophrenia and major affective disorders.
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