
Alcohol-induced metabolomic differences in humans
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Alcohol consumption is one of the world’s major risk factors for disease development. But underlying mechanisms by which
moderate-to-heavy alcohol intake causes damage are poorly understood and biomarkers are sub-optimal. Here, we investigated
metabolite concentration differences in relation to alcohol intake in 2090 individuals of the KORA F4 and replicated results in
261 KORA F3 and up to 629 females of the TwinsUK adult bioresource. Using logistic regression analysis adjusted for age, body
mass index, smoking, high-density lipoproteins and triglycerides, we identified 40/18 significant metabolites in males/females
with P-values o3.8E� 04 (Bonferroni corrected) that differed in concentrations between moderate-to-heavy drinkers (MHD) and
light drinkers (LD) in the KORA F4 study. We further identified specific profiles of the 10/5 metabolites in males/females that
clearly separated LD from MHD in the KORA F4 cohort. For those metabolites, the respective area under the receiver operating
characteristic curves were 0.812/0.679, respectively, thus providing moderate-to-high sensitivity and specificity for the
discrimination of LD to MHD. A number of alcohol-related metabolites could be replicated in the KORA F3 and TwinsUK studies.
Our data suggests that metabolomic profiles based on diacylphosphatidylcholines, lysophosphatidylcholines, ether lipids and
sphingolipids form a new class of biomarkers for excess alcohol intake and have potential for future epidemiological and clinical
studies.
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Introduction

Alcohol consumption is the world’s third largest risk factor for
disease burden and is associated with diseases, including
neuropsychiatric disorders,1–4 cardiovascular diseases, cir-
rhosis of the liver, various cancers and fetal alcohol syndrome.
Each year, an estimated 2.5 million people die from alcohol-
related disease worldwide.5 Biomarkers for alcohol intake
include direct blood alcohol concentration, g-glutamyltrans-
ferase activity, carbohydrate deficient transferrin6 or mean
corpuscular volume of erythrocytes.7 Nevertheless, further
research is needed to understand alcohol-specific metabolic
responses and the underlying pathophysiology. For example,
identification of potential biomarkers for monitoring of alcohol
consumption or determination of pharmacotherapy targets
could facilitate early intervention for patients with specific
alcohol-related disorders.

Targeted metabolomics is a promising method that can
elucidate the effect of alcohol consumption on human
metabolism. Metabolites are products of cellular processes,
and their levels can be regarded as the ultimate response of

biological systems to genetic or environmental changes.8–11

Recent advances in metabolomic technologies have enabled
high-throughput measurement of not only one but several
compound classes simultaneously (for example, amino acids,
sugars, glycerophospholipids)12,13 resulting in a fast and more
comprehensive identification of candidate biomarkers. As far
as we are aware, no large-scale metabolic profiling analyses of
humans with alcohol consumption have yet been conducted.

The aims of the underlying study were to (1) investigate the
relation of alcohol intake and serum metabolite concentrations
in German and UK studies and (2) identify potential
biomarkers that could predict high levels of intake.

Materials and methods

KORA F4 study population. Cooperative Health Research
in the Region of Augsburg (KORA) is a population-based
research platform with subsequent follow-up studies in
the fields of epidemiology and health-care research.14–16

The KORA F4 study is the follow-up of KORA-Survey 4
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(S4, 1999/2001) conducted in 2006/2008. In all, 3080
individuals participated in the follow-up study. For 3061
individuals, metabolic data was available.17,18 From 3061
individuals, 1144 males and 946 females aged 32–81 years
were selected for further analysis after application of the
following exclusion criteria: non-fasting at examination,
diabetic, alcohol abstainer, missing data or outliers (that is,
extreme low or high values) in metabolite concentration data
(see Statistical analysis section for outlier detection calcula-
tion). Study participants were categorized according to daily
alcohol intake as light drinkers (LD; females o20 g day� 1

and males o40 g day� 1) and moderate-to-heavy drinkers
(MHD; females X20 g day� 1 and males X40 g day� 1).

KORA F3 replication data set. The KORA F3 study is a
follow-up of the KORA-Survey 3 (S3, examined in 1994/95),
conducted in 2004/05. The KORA F3 cohort is a 10-year
follow-up survey of the KORA S3 survey. A total of 2974
individuals participated in the follow-up. From 2974 indivi-
duals, 377 individuals had metabolic data available. In all,
154 males and 107 females aged 55–84 years were selected
for further analysis after the application of KORA F4
exclusion criteria. KORA F4 and KORA F3 are two
independent cohorts and do not contain common participants
and were conducted at different time points.19,20

TwinsUK replication data set. The UK Adult Twin Registry
(TwinsUK) is a UK-wide twin registry sample of 11 000 adults
founded in 1993 with the aim to explore the genetic
epidemiology of common adult diseases.21 A total of 629
individuals aged 23–73 years were selected for analysis after
the application of KORA F4 exclusion criteria. For 277
probands, high-density lipoproteins (HDL) data were
available.

Ethics statement. Written informed consent has been given
by each KORA and TwinsUK participant. The KORA studies,
including the protocols for subject recruitment and assess-
ment and the informed consent for participants, were
reviewed and approved by the local ethical committee
(Bayerische Landesärztekammer). For the TwinsUK study,
ethics approval was received from the St Thomas’ Hospital
Ethics.

Blood sampling. KORA F4 and F3 blood samples for
metabolic analysis were collected using the similar collection
procedures together with medical examinations described
previously.22–24 KORA F4 blood samples were drawn into
serum tubes in the morning between 0800 and 1030 hours
after overnight fasting. Tubes were gently inverted twice,
followed by 30-min resting at room temperature to obtain
complete coagulation. For serum collection, centrifugation of
blood was performed for 10 min (2750g, 15 1C). Serum was
frozen at � 80 1C until execution of metabolic analyses.

In the TwinsUK study, similar collection procedure was
used as that in the KORA study. TwinsUK blood samples were
taken after at least 6 h of overnight fasting. The samples were
immediately inverted three times, followed by 40-min resting
at 4 1C to obtain complete coagulation. The samples were
then centrifuged for 10 min at 2000g. Serum was removed

from the centrifuged brown-topped tubes as the top, yellow,
translucent layer of liquid. Four aliquots of 1.5 ml were placed
into skirted micro centrifuge tubes and then stored in a
� 45 1C freezer until sampling.25

Metabolite measurements. Metabolomic analysis was per-
formed on 3061 subjects from the KORA F4 study, 377
subjects from the KORA F3 study and 629 TwinsUK study.
Comparison of metabolite concentrations (that is, compar-
ison between LD and MHD) was conducted within the same
cohort and within the same site of collection. The targeted
metabolomic approach was based on flow injection analysis
coupled with electrospray ionization tandem mass spectro-
metry measurements by AbsoluteIDQ p150 assay (BIO-
CRATES Life Sciences AG, Innsbruck, Austria). The method
of AbsoluteIDQ p150 assay has been proven to be in
conformance with FDA-Guideline ‘Guidance for Industry—
Bioanalytical Method Validation (May 2001)’,26 which implies
proof of reproducibility within a given error range. The assay
procedures of the AbsoluteIDQ p150 kit as well as the
metabolite nomenclature have been described in detail
previously.2,27 Data evaluation for quantification of metabo-
lite concentrations and quality assessment is performed with
the MetIQ software package, which is an integral part of the
AbsoluteIDQ kit. Internal standards serve as reference for
the calculation of metabolite concentrations. To ensure data
quality, each metabolite had to meet the three criteria
described previously:17,19 (1) average value of the coefficient
of variance for the metabolite in the three quality controls
should be smaller than 25%; (2) 90% of all the measured
sample concentrations for the metabolite should be above
the limit of detection; and (3) the correlation coefficient
between two duplicate measurements of the metabolite
in 144 re-measured samples should be above 0.5. In total,
131 metabolites passed the three quality controls, and the
final metabolomics data set contained the sum of hexoses
(H1), 14 amino acids, 24 acylcarnitines, 13 sphingomyelins,
34 diacylphosphatidylcholines (PCs), 37 acyl-alkyl-phospha-
tidylcholines and 8 lysophosphatidylcholines (lysoPCs).
Supplementary Table S1 summarizes the characteristics of
163 metabolites measured in KORA F4.

Statistical analysis. Statistical analysis was performed with
the open source software R (version 2.14.1). To detect
outliers, concentrations obtained for the 131 metabolites
were first scaled to zero mean and unity s.d. and were
projected onto the unit sphere, and Mahalanobis distances
for each individual were then calculated using the robust
principal components algorithm.28 Calculations were done
separately for males and females. For each group, the mean
Mahalanobis distance plus three times variance were defined
as the cutoff. Missing values were imputed using the R
package ‘mice’.29 Metabolite concentrations were logarith-
mized for all subsequent analysis steps. Shapiro–Wilk test30

was applied on single metabolites to check for normal
distribution of metabolites in the study population in order to
choose proper follow-up tests. Mann–Whitney test31 was
applied for the comparison of two variables not satisfying
normal distribution. Fisher’s exact test32 was applied for
comparing binomial proportions.
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Logistic regression33 was applied on each of the 131
metabolites to investigate associations of metabolites
between MHD and LD. P-values were corrected according
to the Bonferroni correction, at a level of 3.8E� 4 (for a total
use of 131 metabolites at the 5% level). To further select
candidate biomarkers, two additional methods were
applied:2,8 the random forest selection34 and the stepwise
selection, which assess the metabolites as a group. Between
the two groups, the random forest was first used to select the
metabolites among the 30 highest ranking variables of
importance score, allowing the best separation of the
individuals from different groups. Age, body mass index
(BMI), smoking, HDL and triglycerides were also included in
this method with all the metabolites. We further selected the
metabolites using stepwise selection on the logistic regres-
sion model. Metabolites with significantly different concentra-
tions between the compared groups in logistic regression, and
which were also selected using random forest, were used in
this model along with all the covariates. Akaike’s Information
Criterion was used to evaluate the performance of these
subsets of metabolites used in the models. The model with
minimal Akaike’s Information Criterion was chosen. The area
under the receiver-operating characteristic curves (AUC) was
used to evaluate the models.

Heat maps were used to illustrate the trends of metabolite
concentrations with increasing alcohol consumption. Alcohol
consumption data were split into alcohol consumption cate-
gories increasing by 5 g day� 1. A matrix of mean metabolite
concentrations was calculated for each alcohol consumption
category for significant male/female-specific metabolites from
logistic regression. In the same procedure, step hierarchical
clustering with Euclidean distance was applied on the
metabolite concentration matrix to generate a hierarchical
dendogram clustering metabolites with similar mean metabolite
concentrations. For the meta-analysis of the combined KORA
F4 and KORA F3 studies, a fixed effect model was used.

Results

Description of the study populations. Based on previous
results from KORA F4, which showed strong metabolomic
differences between men and women,19 we conducted strictly
sex-separated analyses. For both sexes, we classified our
probands into two groups according to daily alcohol con-
sumption of LD and MHD and compared MHD with LD
(Table 1). Alcohol abstainers (ND; defined as alcohol intake of
0 g day� 1) were included (view Supplementary Table S3 for
description of the ND group, view Supplementary Table S4
for sensitivity analysis). In general, age and BMI was
comparable between MHD and LD. A significantly lower
age could be observed in MHD of KORA F3 males and
TwinsUK participants (P-value 1.3E� 02 and 1.6E� 02,
respectively). BMI was significantly increased in MHD in
male KORA F4 participants (P-value 3.3E� 03). The propor-
tion of smokers was significantly higher in MHD in KORA F4
male and TwinsUK female populations (P-values 1.0E� 04
and 1.3E� 02, respectively). In all the three studies, there
was a significant increase in HDL in MHD compared with LD
(P-values 7.1E� 12–1.3E� 02). Except in KORA F3, the T
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mean HDL was increased, but P-value was not significant.
Significant increase of mean triglyceride concentration could
be observed in KORA F4 male MHD only (P-value 3.4E� 02).

Analysis of global metabolite concentration differences
between MHD and LD. We identified 40 metabolites in
males and 18 metabolites in females using logistic regression
analysis (adjusted for age, BMI, smoking, HDL and triglycer-
ides) that significantly differed (P-value o3.8E� 4) in
concentration between MHD and LD in the KORA F4 study
(view Supplementary Table S2 for detailed P-values and
direction). To illustrate the trend of metabolite levels with
increasing 5 g day� 1 alcohol consumption increments, heat
maps were displayed based on normalized mean metabolite
residuals for each of the 40/18 male/female metabolites.
Hierarchical clustering with Euclidean distance was used in
order to find similar metabolite groups. The final clusterogram
(display of dendogram and heat map) resulted in two main
clusters C1 and C2 both in males and females (Figure 1). C1
consists of metabolites that increase in concentration with
increasing alcohol consumption (high in MHD and low in LD).
In contrast, C2 consist of metabolites that decrease in
concentration with increasing alcohol consumption (low in
MHD and high in LD). PC aa Cx:ys, ether lipids (PC ae
Cx:ys), lysoPC a Cx:ys and sphingomyelins (SMs) occurred

in both males and females. Only the acylcarnitine C16:1
occurred in males. All PC ae Cx:ys and SMs were decreased
in MHD in males and females. PC aa Cx:ys were increased in
MHD compared with LD in males and females (except PC aa
C32:3, which was decreased in MHD in females). All lysoPC
a Cx:ys were increased in MHD in males and females (except
lysoPC a C17:0).

The logistic regression analysis was based on each single
metabolite, and some of these 40/18 male/female metabolites
are expected to correlate with each other. To find more
specific and independent metabolites that best separate MHD
from LD as potential biomarkers for alcohol-consumption, we
further applied Random Forest and Stepwise Selection
method. Ten metabolites in males (PC aa C32:1, PC aa
C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a
C17:0, lysoPC a C18:1, SM (OH) C22:1, SM (OH) C22:2, SM
(OH) C16:1) and five metabolites in females (PC aa C34:1, PC
ae C30:2, PC ae C40:4, lysoPC a C16:1, lysoPC a C17:0)
were further selected (Figure 1). To evaluate the model of the
combination of the 10/5 male/female specific metabolites with
covariates (that is, how good does the logistic regression
model adjusted for age, BMI, smoking, HDL and triglycerides
distinguish between MHD and LD), the AUC was calculated.
The AUC value in males was 0.812 and in females 0.679
(Figure 1).

Figure 1 Alcohol-specific metabolomic profiles. Clusterograms show 40 and 18 metabolite concentrations in relation to alcohol consumption in light drinkers (LD) and
moderate-to-heavy drinkers (MHD) in (a) males and (b) females, respectively. The additional two-column clusterogram shows the effect of lipid-lowering medication (that is,
statins, fibrates, herbal-based lipid-lowering agents) on metabolite concentrations in non-drinkers (ND). Relative concentration of metabolites are represented by x-fold s.d.
from overall mean concentrations for groups of alcohol consumption of 5 g day� 1. Horizontal axis displays the alcohol concentration in g day� 1, while vertical axis represent
hierarchical clustering. The 10/5 most significant metabolites separating MHD from LD in males/females are highlighted in blue and pink. (c) Graphic shows receiver operating
characteristic (ROC) curves for the set of most significant 10/5 metabolites in males (PC aa C32:1, PC aa C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a C17:0,
lysoPC a 18:1, SM (OH) C22:1, SM (OH) C22:2, SM (OH) C16:1) and females (PC aa C34:1, PC ae C30:2, PC ae C40:4, lysoPC a C16:1, lysoPC a 17:0). ROC curve
displayed as dotted/crossed line represent marker performance in males/females. The area under the ROC curve was calculated for the combined metabolite panel with
adjustment for age, body mass index, smoking status, high-density lipoproteins and triglycerides.
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Replication analysis in two independent cohorts.
Replication analysis of the most significant 10 alcohol-related
metabolites in males and five metabolites in females found in
KORA F4 discovery sample was performed in two indepen-
dent KORA F3 and TwinsUK cohorts (Tables 2 and 3). In
males, 3 out of 10 metabolites (that is, PC aa C32:1, PC aa
C36:1, SM (OH) C16:1) could be replicated in KORA F3
(Table 2). In females, two out of five metabolites could be
replicated (Table 3); one metabolite in KORA F3 (that is, PC
ae C30:2) and one metabolite (that is, PC aa C34:1) in
TwinsUK. In the TwinsUK population, only females were
available for replication analysis. In all, 629 TwinsUK
participants met the inclusion criteria and were eligible for
the replication analysis; however, only for 277 participants
HDL and triglyceride data were available for the same time
point. In TwinsUK, we performed the replication analysis using
277 and 629 study participants. In the first replication analysis
on 277 participants, logistic regression adjusted for age, BMI
and smoking, HDL and triglyceride resulted in no significant
P-values. When we increased the sample size to 629 and
used the logistic regression model adjusted for age, BMI and
smoking, the metabolite PC aa C34:1 could be replicated.

Additionally, we pooled data from the KORA F4 discovery
and KORA F3 replication samples and conducted a meta-

analysis with a fixed effect model in order to investigate the
combined effect of alcohol on metabolite concentrations. In
the meta-analysis, the replication succeeded for all 10
metabolites in men and 5 metabolites in women. This
indicates that due to the small sample size in TwinsUK and
KORA F3 cohorts the previous replication could not be
achieved for all metabolites. Nevertheless, the trends of
metabolite concentrations (as stated by the comparison of
means of metabolite concentrations between MHD and LD in
Tables 2 and 3) for all 10 and 5 metabolites are consistent with
the trends in the discovery across all studies. For example, the
metabolite lysoPC a C18:1 was not replicated in KORA F3 and
TwinsUK, still the mean metabolite concentration is higher in
MHD compared with LD throughout the KORA F4, KORA F3
and TwinsUK studies.

Discussion

In the current study, we used a targeted metabolomics
approach and identified, as well as partly replicated, alcohol-
related metabolites in German and UK human studies. Our
results suggest that alcohol affects mostly the sphingolipid,
glycerophospholipid and ether lipid metabolism. A schematic
overview of the observed alcohol-specific metabolic

Table 2 Results of logistic regression analysis of alcohol-specific metabolites in males

Discovery KORA F4 (n¼ 1144) Replication KORA F3 (n¼ 154)
Meta analysis discoveryþ replication

fixed effects (n¼ 1298)

Metabolite

LDa

mean±s.d.
(mM)b

MHDc

mean±s.d.
(mM)b P-valued,e

LD
mean±s.d.

(mM) b

MHD
mean±s.d.

(mM) b P-valued,f

LD
mean±s.d.

(mM) b

MHD
mean±s.d.

(mM) b P-valued,f

PC aa C32:1 19.3±9.2 31.0±16.9 1.1E� 18 20.7±9.7 35.0±16.5 7.3E�05 19.4±9.2 31.6±16.8 8.6E�23
PC aa C36:5 28.7±12.9 36.6±17.6 3.9E� 07 31.8±19.8 44.0±278 4.9E�02 29.0±13.9 37.7±19.5 5.6E�08
PC aa C40:4 4.0±1.2 4.9±1.6 1.2E� 07 3.7±1.0 4.7±1.5 1.6E�02 4.0±1.2 4.8±1.6 2.8E�09
PC aa C36:1 51.4±11.9 59.7±16.4 6.6E� 06 53.0±11.2 66.6±15.9 9.9E�04 51.5±11.8 60.7±16.5 9.9E�09
lysoPC a C17:0 1.7±0.5 1.5±0.5 5.4E� 10 1.6±0.4 1.3±0.4 3.4E�02 1.7±0.5 1.5±0.5 4.1E�11
lysoPC a C18:1 20.0±5.5 22.7±7.4 1.6E� 05 18.5±4.9 20.9±5.0 1.3E�01 19.9±5.4 22.5±7.1 3.9E�06
PC ae C40:6 4.9±1.2 4.4±1.1 4.3E� 10 5.4± 1.3 5.0±1.1 3.5E�02 4.9±1.2 4.5±1.1 1.5E�10
SM(OH) C16:1 3.1±0.7 2.7±0.7 6.8E� 12 2.7±0.7 2.4±0.6 2.0E�03 3.0±0.7 2.6±0.7 1.2E�13
SM(OH) C22:1 12.6±2.5 11.4±2.9 3.4E� 09 10.0±2.5 9.3±2.1 1.2E�02 12.3±2.6 11.1±2.9 4.4E�10
SM(OH) C22:2 10.2±2.1 9.1±2.3 4.0E� 13 8.1±2.1 7.7±1.7 2.3E�02 9.9±2.2 8.9±2.3 1.3E�13

Abbreviations: LD, light drinkers; MHD, moderate-to-heavy drinkers.
aAlcohol consumption o40 g day� 1 males, o20 g day� 1 females. bMean and s.d. of the metabolite concentration from serum. cAlcohol consumption X40 g day�1

males, X20 g day� 1 females. dLogistic regression analysis adjusted for age, body mass index, smoking, high-density lipoproteins and triglycerides. eSignificance
level o0.00038 (Bonferroni corrected). fSignificance level o0.005 males (Bonferroni corrected). Significant P-values are represented in bold.

Table 3 Results from logistic regression analysis of alcohol-specific metabolites in females

Discovery KORA F4 (n¼946) Replication KORA F3 (n¼107)
Meta analysis discoveryþ replication

fixed effect (n¼1053)a Replication TwinsUK (n¼ 277)

Metabolite

LDb

mean±s.d.
(mM)c

MHDd

mean±s.d.
(mM)c P-valuee,f

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

LD
mean±s.d.

(mM)c

MHD
mean±s.d.

(mM)c P-valuee,g

PC aa C34:1 241.1±52.9 259.4±56.3 1.0E� 04 274.8±72.8 308.5±73.6 5.8E� 02 244.6±56.2 263.7±59.6 6.6E�05 311.5±98.8 350.4±121.0 9.4E� 03h

lysoPC a C16:1 2.8±0.9 3.1±1.0 4.7E� 05 2.5±1.0 3.04±0.9 5.2E� 02 2.7±0.8 3.1±1.0 6.2E�06 4.21±1.5 4.24±1.7 7.3E� 01
lysoPC a C17:0 1.8±0.5 1.6±0.5 2.8E� 04 1.6±0.5 1.4±0.4 2.3E� 02 1.7± 0.5 1.6±0.4 7.7E�05 2.3± 0.9 2.2±0.7 5.6E� 01
PC ae C30:2 0.17±0.04 0.16±0.04 4.0E� 05 0.17±0.03 0.15±0.04 2.5E� 03 0.16± 0.04 0.15±0.03 4.2E�06 0.2± 0.1 0.2±0.1 7.8E� 01
PC ae C40:6 5.4±1.3 5.0±1.2 2.4E� 07 6.1±1.5 5.4±1.4 2.2E� 02 5.4±1.3 5.0±1.2 1.7E�08 7.5±2.7 7.4±2.7 9.9E� 01

Abbreviations: LD, light drinkers; MHD, moderate-to-heavy drinkers.
aMeta analysis consist of KORA F4 discovery, KORA F3 and TwinsUK replication data sets. bAlcohol consumptiono40 g day�1 males,o20 g day� 1 females. cMean
and s.d. of the metabolite concentration from serum. dAlcohol consumption X40 g day� 1 males, X20 g day�1 females. eLogistic regression analysis adjusted for
age, body mass index, smoking, high-density lipoproteins and triglycerides. fSignificance level o0.00038 (Bonferroni corrected). gSignificance level o0.01 females
(Bonferroni corrected). hLogistic regression analysis adjusted for age, BMI, smoking with n¼ 629 study participants. Significant P-values are represented in bold.
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differences and the potential underlying mechanisms is
depicted in Figure 2 and are discussed below.

The underlying mechanism for lower sphingomyelin con-
centrations (SM(OH)C16:1, SM(OH)C22:1, SM(OH)C22:1) in
MHD compared with LD could be attributed to acid sphingo-
myelinase (ASM) activity. ASM catalyzes the hydrolysis of
sphingomyelins by cleaving the phosphodiester bond of
sphingomyelins generating ceramide and phosphorylcho-
line,35,36 which is again reassembled to phosphatidylcholine.3

Enzymatic dysfunction of ASM results in Niemann–Pick
disease A (NPD-A, OMIM 257200) and B (NPD-B, OMIM
607616), a lipid storage disease characterized by accumula-
tion of sphingomyelins within the endo-lysosomal compart-
ment.37 Interestingly, this mechanism is reciprocal when
alcohol is administered. Several studies investigating cellular
response to alcohol in vitro and in vivo have provided
evidence that alcohol stimulates the ASM activity leading to
accumulation of ceramide and decrease of sphingomye-
lins.36,38–41 A recent in vivo study on patients with alcohol
dependence reported alcohol-induced release of phosphoryl-
choline from sphingomyelins in the peripheral blood cells
confirming alcohol-induced activation of ASM.42

There is a direct correlation between PC concentrations
and phosphatidylethanol (PEth). PEth is a clinical biomarker
of the past 1–2 weeks of moderate-to-heavy alcohol con-
sumption.43 PEth is a unique phospholipid that is synthesized
only in the presence of ethanol and is directly formed from PCs
by the enzyme phospholipase D44–46 that catalyzes the
exchange of ethanol for choline in PCs.46 Different PEth
molecular species have a common phosphoethanol head

group onto which two fatty acid moieties derived from PCs are
attached. A study by Helander and Zheng47 has shown that
PEth-16:0/18:1 (34:1) was the most predominant molecular
species accounting for 37% of all PEth species. A recent study
by Nalesso et al.48 compared the occurrence of different PEth
species between heavy drinkers and social drinkers (defined
as daily alcohol intake 60–300 and 0–20 g day� 1, respec-
tively). Interestingly, PEth 16:0/18:1 (34:1), PEth 18:0/18:1
(36:1) and PEth 16:0/16:1 (C32:1) were most abundant in
heavy drinkers. This may be consistent with our findings
in which PC aa C34:1 in female, PC aa C36:1 and PC aa 32:1
in male had higher concentration in MHD compared with that in
LD. We hypothesize that concentrations of specific PC species
can be used as surrogate biomarkers for PEth to distinguish
MHD from LD. However, PEth measurements are out of scope
of this study. Dedicated and parallel measurements of PC aa
C34:1 and PEth (34:1) would be required in order to investigate
whether PC aa C 34:1 can be a substitute PEth (34:1).

lysoPCs are derived from PCs49 and have been reported to
have cytotoxic effects.50 They accumulate in alcohol-related
conditions as in atherosclerosis51 or ischaemia.52 LysoPCs
originate from several metabolic pathways, as part of the
production is attributed to the transesterification of PCs and
free cholesterol catalysed by the enzyme lecithin-cholesterol
acyltransferase (LCAT), where LCAT hydrolyses the sn-2 acyl
group and subsequently transfers and esterifies the fatty acid
to free cholesterol.53 A study by Goto et al.,54 investigating
clinical alcoholics, reported an increase of LCAT concentra-
tion in individuals with alcohol intake of 430 g day� 1. Another
metabolic pathway generating lysoPC species is attributed to

Figure 2 Schematic overview of metabolite concentration differences in moderate-to-heavy drinkers (MHD) compared with light drinkers (LD) in males and females. Ten/five
metabolites that best discriminate MHD from LD in males/females are shown. Yellow and blue boxes represent male- and female-specific alcohol-related metabolites identified in this
study. Combined yellow-blue boxes represent metabolites identified both in males and females. Bold black arrows represent observed higher or lower of metabolite concentration in
MHD compared with LD in the discovery. Replicated metabolites are marked by a star. Thin black arrows represent the higher or lower of alcohol-related analytes in MHD reported in
earlier publications. Red boxes represent alcohol-related enzymes and red arrows represent the effect on the respective enzyme activity or concentration reported in previous
publications in MHD. ASM, acid sphingomyelinase; LCAT, lecithin-cholesterol acyltransferase; PAF, platelet-activating factor; PLA2, phospholipase A2; PLD, phospholipase D.
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the enzyme phospholipase A2, which catalyzes the hydrolysis
of an ester bond at the sn-2 position of 1,2-sn-diacylglyceroIs
yielding lysoPCs and free fatty acids,55 which are esterified
into fatty acid ethyl esters that have been reported as alcohol
marker to distinguish social from heavy drinkers or alcohol-
dependent individuals.56,57

Fatty acids with uneven number of carbons (that is, C15:0
and C17:0) are produced by bacterial flora of human
intestine.58 It is known that alcohol acts as a disinfectant
which kills bacteria. Thus a possible explanation for the lower
concentrations of lysoPC a C17:0 in MHD could be that
alcohol consumption leads to the disruption of the respective
intestinal bacterial microflora in the gut which thus influences
lysoPC a C17:0 levels in human blood. On the other hand, the
fatty acid C17:0 is also found in the bacterial flora of
ruminants.59,60 A study by Wolk et al.61 revealed that portions
of the fatty acids C15:0 and C17:0 in adipose tissue reflected
milk fat consumption in women. An earlier study62 investigat-
ing associations of reported alcohol intake with dietary habits
in probands from the EPIC cohort found that alcohol
consumers had a lower intake of dairy products than
abstainers. This is consistent with another French cohort of
the EPIC study,63 which found that high alcohol intake was
associated with lower consumption of dairy products in both
genders compared with moderate alcohol consumption. Thus
another plausible explanation to the lower concentrations of
lysoPC a C17:0 in MHD in our study could be based on lower
intake of dairy products. Based on the above findings and
explanations, lysoPC a C17:0 might also be a dietary
biomarker associated with distinguished dietary behavior of
MHD compared with LD rather than a biomarker for alcohol-
induced toxic or inflammatory mechanisms.

Ether lipids (for example, PC ae C30:2 and PC ae C40:6) have
a role as precursor of platelet-activating factor.64,65 Platelet-
activating factor is an important mediator in hemostasis and has
an important role in platelet aggregation (that is, thrombotic
effects). A number of studies indicate that ethanol directly affects
hemostasis via a number of mechanisms, including platelet
aggregation and activation.66–69 This mechanism is still not fully
understood; however, based on our results, it can be hypothe-
sized that reduced platelet-activating factor levels in response to
moderate-to-heavy alcohol consumption might form a bottleneck
in the process of platelet activation leading to poor platelet
aggregation and to alcohol-related hemorrhagic events. This is
supported by studies from the United States and Sweden
showing that the baseline incidence of acute upper gastro-
intestinal bleeding increased by threefold as alcohol consump-
tion increased from p1 drink to 420 drinks per week.70

Conclusion and outlook. Our study provides new insights
into the impact of alcohol consumption on human metabo-
lism. Our results suggest that metabolomic profiles based on
PCs, lysoPCs, ether lipids and sphingolipids form a new
class of biomarkers for alcohol consumption. This may be of
great value for the clinical assessment of alcohol use,
alcohol-specific disease detection and drug-therapy monitor-
ing. Side effects of alcohol consumption on specific organs
as liver could be investigated by future studies using an
association study analysing metabolite concentrations in
relation to concentrations of liver biomarkers as, for example,

g-glutamyltransferase.71 The current analysis is based on a
targeted metabolomics approach that is limited to a subset of
131 currently known metabolites in human (for example,
lipid metabolism, amino acid metabolism). A study using a
broader metabolomics approach that quantifies a bigger
number of metabolites would be needed to investigate
alcohol effects on other areas of metabolism. Further
research is needed to elucidate the exact underlying mech-
anisms. A prospective study in large sample would help
validate the predictive potential of these results.
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