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Second-generation antipsychotic exposure, in both children and adults, carries significant risk for excessive weight gain that
varies widely across individuals. We queried common variation in key energy balance genes (FTO,MC4R, LEP, CNR1, FAAH) for
their association with weight gain during the initial 8 weeks in the two NIMH Research Units on Pediatric Psychopharmacology
Autism Network trials (N¼ 225) of risperidone for treatment of irritability in children/adolescents aged 4–17 years with autism
spectrum disorders. Variants in the cannabinoid receptor (CNR)-1 promoter (P¼ 1.0� 10� 6), CNR1 (P¼ 9.6� 10� 5) and the
leptin (LEP) promoter (P¼ 1.4� 10� 4) conferred robust-independent risks for weight gain. A model combining these three
variants was highly significant (P¼ 1.3� 10� 9) with a 0.85 effect size between lowest and highest risk groups. All results
survived correction for multiple testing and were not dependent on dose, plasma level or ethnicity. We found no evidence for
association with a reported functional variant in the endocannabinoid metabolic enzyme, fatty acid amide hydrolase, whereas
body mass index-associated single-nucleotide polymorphisms in FTO and MC4R showed only trend associations. These data
suggest a substantial genetic contribution of common variants in energy balance regulatory genes to individual antipsychotic-
associated weight gain in children and adolescents, which supersedes findings from prior adult studies. The effects are robust
enough to be detected after only 8 weeks and are more prominent in this largely treatment naive population. This study highlights
compelling directions for further exploration of the pharmacogenetic basis of this concerning multifactorial adverse event.
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Introduction

Antipsychotic-induced weight gain (AIWG) is a common and
limiting side effect of antipsychotic treatment, especially of
the widely prescribed second-generation antipsychotics
(SGA).1 Intersubject variability in this adverse effect may be
explained in part by individual genetic differences; heritability
may be as high as 80% based on comparisons of clozapine-
treated monozygotic twins and sex-matched siblings.2

Although AIWG is thought to be multifactorial, most of the
extant research has focused on monoaminergic systems
given their role in direct drug effects and their involvement in
appetite, satiety, metabolism and activity.3–5 Relatively
modest variance in AIWG has been explained by association
of common variants in these systems, suggesting that
additional moderators in other pathways are likely, rare
variants may be involved, or that confounding environmental
effects exist. Further support for the existence of novel
candidates is provided by pharmacogenomic analyses of the
CATIE study of SGA-treated adults with schizophrenia, in
which weight gain and metabolic effects were variably

associated with several genes not considered to be ‘drug
targets’.6

Energy balance pathways. Energy intake and expenditure
are regulated by the central nervous system, liver, gastro-
intestinal tract and adipose tissue to maintain energy
balance. In the central nervous system, melanocortin 4
receptor (MC4R) signaling has a key role in regulating
feeding behavior in the hypothalamus. The central melano-
cortin system regulates hepatic and adipocyte lipid metabo-
lism.7,8 Mutations in the MC4R gene are the most common
monogenic cause of severe obesity in humans.9 In addition,
the mesolimbic dopamine pathway modulates reinforcing
and motivational effects of food. The FTO (fat mass and
obesity-associated) gene, highly expressed in the hypotha-
lamus,10 was identified by a genome-wide association study
for its strong association with body mass index (BMI)11 and
this link was subsequently replicated independently and in a
meta-analysis.12 FTO expression appears to be sensitive to
fasting and feeding.13,14
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Leptin (LEP) promotes satiety and leanness through
multiple inputs to the energy balance circuit. LEP is secreted
by adipose tissue in proportion to fat stores, and activates
hypothalamic MC4R signaling to inhibit feeding and increase
energy expenditure.15 Recently, effects on reinforcement and
motivation via mesolimbic dopamine signaling have been
demonstrated.16,17 Peripherally, LEP regulates lipid and
glucose metabolism through the autonomic nervous sys-
tem.18,19 Obesity-producing spontaneous null mutations in
LEP and the LEP receptor (LEPR ) in mice prompted its
discovery.20 LEP antagonism in rats increases feeding,
promotes weight gain and reduces activity.21 Although humans
genetically lacking LEP are morbidly obese,22 mixed associa-
tion results and a negative meta-analysis23 suggest that LEP
does not have a major role in common variability in body weight.

Endocannabinoids trigger feeding behavior and weight gain
through stimulation of widely expressed cannabinoid 1 (CB1)
receptors (CNR1).24 In the brain, the endocannabinoid
system regulates both mesolimbic reinforcement25,26 and
hypothalamic feeding pathways. CB1 signaling promotes
feeding through positive effects on orexins27 and inhibition of
MC4R,28 and is in turn stimulated by ghrelin29 and inhibited by
LEP30 and cholecystokinin.31 Endocannabinoid signaling in
the liver and adipose tissue regulates lipid metabolism,
adipogenesis and adiponectin release.32 CB1 receptor agon-
ism increases and antagonism reduces food intake and body
weight in both humans and animal models.33,34 Mice lacking
CB1 expression exhibit hypophagia and leanness at baseline,
and are resistant to high-fat diet-induced metabolic changes,
behaviors and obesity.35 Polymorphisms in CNR1 and the
gene encoding the catabolic enzyme (fatty acid amide
hydrolase (FAAH )) have been associated with obesity
phenotypes; however, data are mixed.36,37 In the RIO-North
America trial, 2-year treatment with a CB1 antagonist, rimona-
bant, in combination with a healthy diet, resulted in modest
reductions in weight, waist circumference and cardiometa-
bolic risk factors.38 The drug did not reach the US market,
however, due to psychiatric side effect concerns.

Energy balance candidate genes in AIWG. A few reports
have begun to investigate whether variants in metabolic and
appetite gene loci, such as LEP, may moderate AIWG.5

These studies were prompted by observed increases in
plasma LEP levels during SGA treatment.39 Common LEP
gene variants have reportedly moderated AIWG in some but
not all studies,5 including one pediatric sample.40 Variants
mapping adjacent to the MC4R gene have recently been
demonstrated to predict AIWG in multiple independent
samples.41,42 Given the role of the endocannabinoid system
in energy balance and observed CNR1 upregulation in
response to antipsychotic treatment,43 two recent pharma-
cogenomic studies have supported a contribution of endo-
cannabinoid involvement. One report demonstrated
moderation of AIWG in schizophrenia by a functional
polymorphism in CNR1.44 A second study demonstrated an
association between AIWG and a nonsynonymous variant in
the gene encoding the degradative enzyme, FAAH.45

The established role of the melanocortin, LEP and
endocannabinoid systems in energy balance and the asso-
ciation of gene variants with human obesity strongly suggest

these systems as possible moderators of AIWG, perhaps as
an alternative pathway to direct drug action at monoaminergic
and other targets. Relatively few studies have examined the
effects of common gene variants in these systems, and to our
knowledge, none have attempted a systematic, combined
examination of these loci in relation to AIWG. In addition, most
reports have not queried each locus thoroughly, relying
instead on rather few frequently studied polymorphisms.
Importantly, extant genetic studies of variants in the energy
balance system have been mainly limited to adults, despite
common use of SGAs in children. Reports suggest that
pediatric populations are at equal or greater risk of AIWG.46–49

In the NIMH Research Units on Pediatric Psychopharmacol-
ogy (RUPP) trials, weight gain above that predicted with
normal development was evident after just 8 weeks and
continued after 6 months of risperidone exposure.50 Other
longitudinal studies show persistent effects at 1 year.48

Studying AIWG in children has several scientific advantages,
such as fewer concomitant and potentially confounding
medical comorbidities and medications, and lower rates of
institutionalization, smoking and substance use/abuse.
Further, increased weight in children confers serious health
risks, social impairment, challenges to self-esteem and risk for
adult obesity. In light of the potential importance of energy
balance genes as moderators of AIWG and sparse investiga-
tion in pediatric samples, we examined the association of
genetic variants in these systems with weight gain in our
combined sample from two clinical trials of children and
adolescents receiving risperidone treatment for severe irrit-
ability associated with autism spectrum disorders (ASDs).51,52

Materials and methods

The research was conducted by the RUPP Autism Network
under two protocols approved by individual site Institutional
Review Boards and by a National Institute of Mental Health
Data Safety Monitoring Board. Written informed consent (and
assent from the child, when capable) was obtained from a
parent or guardian before enrollment. Youth (ages 4–17
years) meeting DSM-IV criteria for ASD (autism, Asperger’s
disorder, pervasive developmental disorder not otherwise
specified) accompanied by severe irritability (aggression,
tantrums, and/or self-injurious behaviors) defined by a score
ofX18 on the Aberrant Behavior Checklist Irritability subscale
were treated for 8 weeks with risperidone or placebo as part of
two controlled trials, RUPP51 and RUPP-PI (RUPP-Psycho-
social Intervention).51,52 Only 10% of subjects had previously
received (ineffective) antipsychotic treatment; subjects with
prior adequate trials of risperidone were excluded. In the
RUPP sample, subjects included both those randomized first
to risperidone in the 8-week acute phase and non-responders
to 8 weeks of initial placebo treatment who were then openly
treated with risperidone according to an identical titration and
assessment protocol.51 In the RUPP-PI study, all subjects
received risperidone, titrated as in the RUPP study, with or
without parent behavior management for up to 24 weeks.52 Of
the 225 total outpatients enrolled from the two trials, weekly
measures of weight, height, BMI and genotype data were
available for a combined 184 subjects from their initial 8-week
acute exposure to risperidone. Plasma drug and metabolite
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levels were analyzed for the RUPP sample according to
previously published protocols.53

The RUPP and RUPP-PI groups were compared using the
appropriate w2, analysis of variance or t-test to ensure
comparable samples (Table 1). Baseline variables that were
significantly different between the two groups were tested in
the final model and dropped if they showed no significant
effect on outcome. Weight was transformed to standardized z-
scores using anthropometric indices based on the 2000 CDC
growth charts using the CDC SAS program,54 as described in
a previous report.50 A separate repeated measures mixed
effects model was constructed for each single-nucleotide
polymorphism (SNP) with change in weight z-score from
baseline as the main outcome. Genotype, visit (as a
continuous variable) and interaction of genotype by visit were
entered as predictors, controlling for baseline weight z-score.

Other potentially confounding covariates were entered in the
initial model such as dose, plasma drug level and ethnicity, but
were nonsignificant and therefore dropped from the final
model.

The linkage disequilibrium (LD) structure of MC4R, LEP
and CNR1 were examined using the Broad Institute Tagger
software55 to select markers (Table 2), which span each gene
and capture common variability (41%) in this genomic region,
with a mean max r240.98 for LEP and r2¼ 1 for MC4R. Our
CNR1 tag is less robust according to the latest genome build,
with a mean max r240.61 for alleles with 410% frequency
across the CNR1-coding region. Tags were chosen based on
the European Caucasian reference genome, given that our
population is 70% Caucasian and thus provides little power to
detect population-specific alleles in non-Caucasian subsets.
A well-characterized, functional variant (rs324420) in FAAH

Table 1 Characteristics of the RUPP, RUPP-PI and combined RUPP risperidone Autism samples

RUPP (n¼71) RUPP-PI (n¼110) Combined (n¼ 181) P-value

Gender (n (%) male) 56 (78.9%) 92 (83.6%) 148 (81.8%) w2¼0.66, P¼0.4177
Baseline age (months) 106.66±34.5 89.96±29.0 96.5±32.3 T¼3.51, P¼0.0006
Baseline BMI 18.2±4.9 17.7±3.1 17.9±3.92 T¼ 0.85, P¼0.40

Ethnicity (n (%)) w2¼ 14.9, P¼ 0.02
White, non-Hispanic 51 (71.8%) 74 (67.3%) 125 (69.0%)
Black, non-Hispanic 6 (8.5%) 20 (18.2%) 26 (14.4%)
Native American 0 2 (1.8%) 2 (1.1%)
Asian or Pacific Islander 7 (9.9%) 5 (5.5%) 13 (7.2%)
Hispanic 2 (2.8%) 7 (6.4%) 9 (5.0%)
Black, Hispanic 0 1 (0.9%) 1 (0.6%)
Other 5 (7.0%) 0 5 (2.8%)

Duration of treatment
Median (range) weeks 8 (6–8) 8 (1–8) 8 (1–8) w2¼ 4.08, P¼0.54

Final dose (mg) 1.84±0.63 2.09±0.59 2.00±0.62 T¼ � 2.66, P¼0.0084
Mean weight gain (kg) 2.84±2.05 2.57±1.51 2.68±1.74 T¼0.97, P¼0.3317

Abbreviations: BMI, body mass index; RUPP, Research Units on Pediatric Psychopharmacology; RUPP-PI, RUPP-psychosocial intervention.

Table 2 Association of genetic variants in energy balance pathways with AIWG

Gene SNP ID (rs#) Gene region Our MAF HapMap MAF P-value Prior association

FTO rs1421085 Intron 1 0.33 0.45 0.13 12

rs6499640 Intron 1 0.41 0.35 0.88 81

rs1121980 Intron 1 0.41 0.48 0.78 12,82

rs17817449a Intron 1 0.39 0.45 83

rs8050136a Intron 1 0.38 0.45 12

rs9939609a Intron 1 0.38 0.45 11,73

MC4R rs8087522 Promoter 0.36 0.36 0.06 41,84

rs11872992 Promoter 0.12 0.13 0.03 41,84

rs8093815 30 Downstream 0.32 0.33 0.07
rs489693 30 Downstream 0.39 0.34 0.03 85

LEP rs7799039 promoter 0.43 0.49 1.4�10�4 72,86,87

rs10244329 Intron 1 0.49 0.47 9.6�10�3 88

rs12706832 Intron 1 0.49 0.57 0.09
rs2071045 Intron 2 0.24 0.21 0.19 89

CNR1 rs806378 Variableb 0.24 0.26 1.0�10�6 44

rs806377 Promoter 0.46 0.49 0.17
rs1049353 Synonymous 0.23 0.23 9.6�10�5

rs806368 30UTR 0.18 0.25 0.26
FAAH rs324420 Nonsynonymous 0.25 0.21 0.19 45

Abbreviations: AIWG, antipsychotic-induced weight gain; CNR, cannabinoid receptor; MAF, minor allele frequency; SNP, single-nucleotide polymorphism; UTR,
untranslated region.
aFTO SNPs removed from analysis due to near perfect linkage disequilibrium with rs1121980. brs806378 maps to either a promoter, 50UTR, or intronic location in
alternatively processed CNR1 transcripts.
Bolded P-values are significant after Bonferroni-correction for 19 tests.
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was included to more comprehensively evaluate the endo-
cannabinoid system. Six SNPs in FTO with genome-wide
association study support for obesity were also examined;
however, four of these were in near perfect LD, thus only one
was included in the final analyses. Genomic DNA was
extracted from whole blood using QiaAmp DNA Blood Mini
Kits (Qiagen, Valencia, CA, USA). Genotyping was performed
using the TaqMan genotyping platform (Life Technologies,
Grand Island, NY, USA) with Qiagen Type-it Fast SNP Probe
PCR Kit (Qiagen) according to manufacturer’s protocols. All
markers were in Hardy–Weinberg equilibrium, 10% of the data
set was genotyped in duplicate with perfect concordance, and
allele frequencies were consistent with those reported by the
HapMap Consortium (Table 2).56 Functional potential of
associated SNPs was explored using online databases,
including the online UCSC Genome Browser57 with ENCODE
tracks58 and the Broad Institute’s HaploReg online resource
(accessed 4 November 2012).59

A combined risk variable was constructed using the three
significant markers, in part to examine the relative indepen-
dence of each marker. Genotype at each locus was given a
score of 0 or 1, with 1 denoting the presence of at least one risk
allele. Scores were summed across the three loci and each
subject received an overall risk score ranging from 0 to 3. A
similar repeated measures mixed effects model (predicting
change in weight z-score based on risk score, visit and visit by
risk score) was applied, with baseline weight as a covariate.

Results

The two studies were roughly equivalent with respect to
demographic and baseline characteristics, final risperidone
daily dose and weight gained (Table 1). Statistical compar-
isons of the two study populations showed small clinical
differences: RUPP-1 subjects were 16.7 months older,
weighed 0.27 kg more at baseline and received an average
of 0.25 mg less total daily risperidone compared with RUPP-PI
participants. Whereas both samples were predominantly
Caucasian (B70%), there were minor ethnicity differences
across the samples. As a result, significant associations with

gene variants were repeated with ethnicity and risperidone
dose as covariates. The mean absolute weight increase for
the combined sample (Table 1) was 2.68±1.74 kg (9.8% of
baseline) with an increase in BMI of 8.3% from baseline (final
BMI¼ 19.3±3.9) following 8 weeks of risperidone exposure
(mean final dose 2±0.62 mg per day). Of note, the decrease
in Aberrant Behavior Checklist-Irritability subscale score
(primary outcome) from baseline to 8 weeks was significantly
inversely correlated with weight gain in kilograms (r¼ � 0.36,
Po0.0001). Drop-out rates were very low with more than 95%
completing the entire 8-week study.

Three independent gene variants were associated with
z-score weight change at a Bonferroni-corrected significance
level, one in LEP and two in CNR1 (Figure 1; Supplementary
Table 1). The T-allele of the CNR1 rs806378 polymorphism
predicted an allele dosage-dependent increase in AIWG
(P¼ 1.0� 10� 6, Figure 1a). The increase in age-corrected
BMI for the three genotype groups was 1.85 for TT
homozygotes, 1.57 for CT heterozygotes and 1.34 for CC
homozygotes. The G-allele of the commonly studied
(rs1049353) synonymous variant in the large, final exon of
CNR1 conferred an independent risk for weight gain (P¼ 9.6
� 10� 5), suggesting allelic heterogeneity at this locus.
G-allele carriers gained more weight than AA homozygotes,
with change in BMI of 1.25 for GG homozygotes, versus 1.49
for AG heterozygotes and AA homozygotes. The G-allele
of the LEP rs7799039 promoter SNP acted dominantly to
increase weight gain compared with A-allele homozygotes
(P¼ 1.4� 10� 4, Figure 1b). Change in BMI of GG homo-
zygotes and AG heterozygotes was 1.37 and 1.43 respectively,
compared with 1.07 in AA homozygotes. A second marker,
rs10244329, produced a weaker association (9.6� 10� 3) that
was a result of modest LD with this associated variant but
conferred no independent effects. None of the FTO obesity-
associated markers were related to AIWG in our sample
(Table 2). SeveralMC4R variants showed a trend association,
but none met significance after correction for multiple
comparisons (adjusted significance threshold for 19 markers
Po0.003). The single nonsynonymous variant in FAAH did
not achieve significance in our data set.

Figure 1 Gene variants predict weight gain across 8 weeks of risperidone treatment. (a) A greater risk for weight gain is conferred by T-allele dosage at cannabinoid
receptor (CNR1) rs806378 (P¼ 1.0� 10� 6). (b) The G-allele of leptin (LEP) rs7799039 acts dominantly to increase risk for antipsychotic-induced weight gain
(P¼ 1.4� 10� 4), whereas AA homozygotes are relatively protected.
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Although weight gain was not correlated with risperidone
dose (r¼ � 0.09, P¼ 0.24), we repeated the analyses using
dose as a covariate to rule out any confounding effects;
risperidone dose did not contribute to the effects of genotype
(rs806378, P¼ 0.68; rs1049353, P¼ 0.68; rs7799039,
P¼ 0.86). In addition, as trough plasma levels were obtained
for the RUPP samples, the markers with significant associa-
tions were analyzed in the RUPP subsample using plasma
level as a covariate. Surprisingly, despite the much smaller
sample size (n¼ 34), rs1049353 (Po0.005) and rs7799039
(Po0.05) both retained nominal significance, however,
rs806378 did not (P¼ 0.26); plasma level did not account for
these effects (rs806378, P¼ 0.41; rs1049353, P¼ 0.49;
rs7799039, P¼ 0.54). Finally, although there were no
significant difference in weight gained (Z-score) in the
Caucasian versus non-Caucasian groups, analyses of the
three significant markers included ethnicity as a covariate and
were reanalyzed in the Caucasian subsample (n¼ 119). No
main effect of ethnicity was observed (rs806378 P¼ 0.60,
rs1049353 P¼ 0.66, rs7799039 P¼ 0.86), P-values were
similar whether or not ethnicity was included in the model, and
all three SNPs retained significance in the smaller Caucasian
subsample (rs806378, P¼ 1.8� 10� 3; rs1049353, P¼ 8.63
� 10� 6; rs7799039, P¼ 4.5� 10� 5).

In order to test for overlapping or interactive effects between
these three variants, we calculated a risk score for each
subject by assigning one point for the presence of a risk allele
at each identified locus (Figure 2). This model strongly
predicted weight gain in both the overall sample (P¼ 1.29
� 10� 9) and the Caucasian subset (P¼ 2.13� 10� 11).
The addition of each risk allele conferred an independent

risk; subjects with 0 or 1 risk alleles (combined as only one
subject had no risk alleles) gained the least weight and those
with three alleles gained the most (Cohen’s D effect size 0.46
for 0/1 versus 2 and 0.85 for 0/1 versus 3). In all, 64% of the
variance in weight gained was explained by the combined risk
by time model.

Discussion

Our results form strong support for individual genetic variation
in the LEP and CNR1 genes as moderators of AIWG. SGAs
may impact appetite, weight gain and energy expenditure
through direct or indirect interactions with these key regulators
of energy balance. Although the exact mechanisms of these
effects are unknown, our data suggest that genetic regulation
of energy balance components may impact energy home-
ostasis in the face of antipsychotic exposure. The prominent
role of promoter, rather than coding, variants in both genes
implies that regulation of gene expression may be an
important mechanism. Future studies should examine gene
expression profiles during SGA exposure, with particular
interest in the expression of the significantly associated loci
identified in this report.

In this sample of children and adolescents with ASD,
individuals with at least one copy of the T-allele of CNR1 SNP
rs806378 showed greater weight gain during low-dose
risperidone exposure, evident even after only the first 8
weeks of treatment. As our data are in agreement with a prior
study in adults with schizophrenia receiving olanzapine,44 this
variant may confer broad risk for AIWG. This SNP localizes
immediately adjacent to the coding region in either the
putative promoter, the 50 untranslated region or the large first
intron in alternative transcripts ofCNR1, and mechanistically it
has been suggested to impact a binding site for a transcription
factor involved in regulating hypothalamic feeding drives.44

Despite the inclusion of the upstream alternative promoter
and untranslated exon in several prior studies, all association
signals have localized to the 30 LD block tagged in the present
analyses. Allelic heterogeneity and possible differential ethnic
risk affecting this locus may help to explain disparate findings
in published studies. Another nearby SNP (rs806377) and a 30

untranslated region polymorphism (rs806368) previously
reported to associate with obesity phenotypes were not
associated with AIWG in our sample.37,60 Association with
fat mass and BMI of the G-allele of synonymous SNP
rs1049353 was previously reported and replicated,61,62

although not all studies are in agreement.60,63,64 In all positive
reports, including the present study, the G-allele is associated
with risk for weight gain or related phenotypes. Synonymous
SNPs may be directly relevant by altering translational
efficiency or by impacting mRNA processing, stability or
localization, or may reflect indirect association through
LD with a nearby functional variant. Indeed, HaploReg
analysis indicates that this SNP is in near perfect LD with a
30 untranslated region variant mapping to a region of active
transcription factor binding (rs4707436). The two associated
CNR1 variants reflect independent associations, as LD
between these two SNPs is negligible (r2¼ 0.01). Despite
previous support,45 the single nonsynonymous variant in
FAAH was non-significant in our data set.

Figure 2 Amount of weight gain is moderated by risk allele load. A risk score
(0–3) was assigned to each subject corresponding to the number of loci with risk
alleles present for each significant marker (leptin rs7799039 and cannabinoid
receptor 1 rs806378 and rs1049353). Risk allele dosage predicted amount of weight
gain (P¼ 1.29� 10� 9, Cohen’s D effect size¼ 0.85). Only one subject had no risk
alleles and was therefore included in the 1-allele group.
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We report a substantial contribution of the LEP rs7799039
(G-2548A) promoter SNP with individual differences in weight
gain, as have multiple prior studies, including one in
children.40 In our sample, the G-allele conferred a dominant
effect on risk for weight gain. Data from several groups
support this directionality of effect for AIWG65–69 and related
phenotypes.70,71 A few studies have found no evidence for
association at this locus.72,73 Three studies have found
association of the A-allele with AIWG in Asian popula-
tions,74–76 as well as a single smaller mixed-ethnicity pediatric
study, which also showed LEP elevation for carriers of the
A-allele.40 Taken together, our data stand in agreement with
the majority of reports; those studies with contrary patterns of
association with AIWG and the A-allele appear to differ by
virtue of effects of ethnicity. Of the two negative reports, one
sample was significantly smaller than ours, and both involved
a mixture of various antipsychotics, including other concomi-
tant medications. It is conceivable that some associations with
AIWG will emerge to be medication specific. Interestingly, in
the only prior pediatric report, A-carriers had greater weight
gain and higher LEP concentrations at lower BMIs overall,
however, the magnitude of the increase in LEP with BMI was
greater for GG homozygotes, arguing that this SNP may
indeed produce differential LEP expression.40 In concordance
with this finding, higher transcription factor binding to the LEP
promoter, LEP expression and LEP secretion has been
demonstrated in non-obese AA homozygotes compared with
G-carriers.77 Interestingly, in silico investigation also suggests
that this SNP may be functional, as it tags an LD block
annotated by HaploReg as containing multiple enhancer
elements.

The marginal association of SNPs in the obesity-related
gene, MC4R deserves mention. Our MC4R results stand in
contrast to recent strong associations with AIWG. However,
we note three possibly relevant study differences. Our sample
tested only associations with risperidone monotherapy,
whereas the positive MC4R reports examined associations
with multiple, mostly other SGAs, not risperidone. Our sample
is considerably younger (mean age 9 years) than most; it is
conceivable that age and developmental stage interacts with
gene–weight gain relations. Our sample is also unique in that
is only includes subjects with ASD, rather than the majority of
reports of adolescents and adults with psychotic and other
disorders. Each of these differences may be relevant to
genetic associations with AIWG. Clinically, it is of note that the
inverse correlation of AIWG with clinical improvement on the
primary outcome measure concurs with our RUPP report that
weight gained negatively mediated risperidone benefit,78

which could have implications for drug development. However,
the mechanism of antipsychotic action in autism-associated
aggression may be distinct from activity in psychotic disorders;
indeed, the relationship between efficacy and weight gain
appears to be positively correlated in studies of psychosis.79,80

Our investigation likely benefited from several features: the
largely treatment-naive sample of youth with a single disorder
(ASD), observations of weight with risperidone monotherapy
only, weekly monitoring and data collection allowing a
powerful repeated measures statistical model and a more
rigorous query of candidate genes. As repeated measures
of weight gain across eight visits were tightly correlated

(r¼ 0.95), this study was powered to detect effect sizes
ranging from 0.15 to 0.32 based on the minor allele frequency
of the variant. The clinical impact of the variants reported here
appear significant given the large effect size. It is conceivable
that these associations could become even more robust if
measured over longer periods of drug exposure. To our
knowledge, this study represents the only examination of the
endocannabinoid system in children, who may suffer greater
morbidity both in terms of magnitude of weight gained and
health impact across the lifespan. Importantly, the support for
involvement of CNR1 signaling suggests that the use of
known drug modulators of this system, such as those similar
to rimonabant, could limit the extent of AIWG, especially in
those individuals at higher genetic risk.

Although our study is limited by a relatively modest number
of subjects, results did withstand correction for multiple
testing. Although a functional variant in the FAAH enzyme
and highly associated FTO markers were chosen for inclusion
based on prior data, these genes were not comprehensively
screened. A larger sample would provide the statistical power
to permit the inclusion of additional markers, either within
these genes or other components of the energy balance
system, or allow a full selection-unbiased genome-wide
association study. Similarly, other metabolic response ‘phe-
notypes’, such as hip and waist circumference, lipid profile
and measures of glucose metabolism, could also be
examined,6 although the current sample size lacks desired
power for broader exploration.

Taken together, our data and prior evidence support a
moderating role of genetic variation in the LEP and endo-
cannabinoid system on AIWG. Additional efforts to replicate
and extend these findings to larger samples, to understand
the biological basis for these associations and to examine
possible clinical implications by a priori risk prediction and
genotype-driven treatment matching are suggested as future
directions. Polygenic inheritance, small effect sizes and
genetic and phenotypic heterogeneity have limited the
identification of genetic moderators of complex phenotypes.
However, understanding the risk for tractable and quantitative
adverse drug effects informed by underlying biology may pose
a less complex genetic question. The pharmacogenetics of
AIWG may offer a window into the intricate physiology of
energy balance and guide the personalization of treatment to
improve clinical outcomes.
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