
OPEN

ORIGINAL ARTICLE

Loss of serum IGF-I input to the brain as an early biomarker
of disease onset in Alzheimer mice
A Trueba-Sáiz1,2, C Cavada3, AM Fernandez1,2, T Leon4, DA González2,5, J Fortea Ormaechea2,5, A Lleó2,5, T Del Ser4, A Nuñez3 and
I Torres-Aleman1,2

Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in
Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as
evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already
manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic
use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control
mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman
primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature
of serum IGF-I may be exploited as a disease biomarker in AD patients.

Translational Psychiatry (2013) 3, e330; doi:10.1038/tp.2013.102; published online 3 December 2013

Keywords: Alzheimer's disease; disease biomarker; early diagnosis; insulin-like growth factor I

INTRODUCTION
Alzheimer's disease (AD) is a major public health concern
worldwide. Decades of fruitless search for effective therapies has
led to the suggestion that treatment is started too late in the
course of the disease to be able to modify it. This is because
available diagnostic tools, mostly relying on clinical scales in
common practice, can only detect the disease when pathology is
already very advanced. Hence, early diagnosis seems essential to
establish earlier treatments.1 Two major types of efforts are
ongoing in this direction. One is to develop new diagnostic tools
based on advanced imaging protocols through functional
magnetic resonance imaging or positron-emission tomography.2

The other is based on biochemical markers using proteomic/
genomic analyses.3 Although the federal drug administration in
the USA has recently approved the use of a positron-emission
tomography amyloid marker for clinical use, general application of
these costly techniques are not envisaged for the near future.
More importantly, the recent guidelines of the US National
Institute on Aging and the US Alzheimer’s Association provide a
conceptual framework for defining the stages of preclinical AD in
which staging requires a combination of biomarkers. In this
regard, although proteomic/genomic signatures in AD patients
have already been described,3–5 none have yet reached common
practice. Therefore, there is an unmet need to better define the
multidimensional risk in preclinical AD and develop accurate
prediction models in order to decide those who should or should
not receive the treatment.6

The continued failure to develop effective drugs based on the
‘amyloid cascade’ hypothesis (the most favored one) has led to
revisit old ideas of the cause of AD and even to coin new
hypotheses. A currently favored one holds that AD is a metabolic
disease specifically affecting the brain. In this regard, deterioration
of insulin signaling,7 and possibly also of the related hormone

IGF-I,8 has been argued to have a role in brain metabolic
impairments in AD. Although there are already abundant data
supporting a role of insulin in AD, the evidence for a role of IGF-I in
AD is gradually accumulating. For instance, IGF-I promotes brain
amyloid (Aβ) clearance,9,10 whereas reduced entrance of serum
IGF-I into the brain results in increased levels of Aβ in the brain.11

Because serum IGF-I enters the brain in an activity-dependent
fashion12 and brain activity is dysregulated in AD brains,13 serum-
to-brain traffic of IGF-I is probably disturbed in AD. Accordingly,
we suggested that impaired serum IGF-I input to the brain due to
a resistance state may herald AD pathology.14 Indeed, new
evidence indicates that in postmortem AD brains there is a
profound resistance to IGF-I,15 a finding recently replicated in AD
mice.16 This is in agreement with a recently reported reduction of
the cerebrospinal fluid (CSF)/plasma IGF-I ratio in AD patients.17

Hence, we now tested this hypothesis by introducing the notion
that this impairment could be detected through clinically
amenable tools such as the electroencephalogram (EEG). The
latter assumption is based on the observation that systemic insulin
produces rapid changes in EEG patterns in humans18 and that
serum IGF-I modulates neuronal excitability.19 Our aim is to
translate knowledge of the role of IGF-I in AD into an early
diagnostic system.

MATERIALS AND METHODS
Animals
Adult (3–5 months old) male and female mice were used to minimize
animal use. Control C57BL6/J wild-type (WT) mice were used. APPswe and
PS1Δ9 mice of C57BL6/J background were a kind gift from P. Mouton
(National Institutes of Health). Although no gender differences were
observed in any of the parameters measured under our experimental
conditions, the proportion of females for each experimental group was
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kept within 30–60%. Nine adult macaques purchased from R.C. Hartelust
BV (Tilburg, The Netherlands) and aged 14 years and weighing ∼8 kg were
used. Saline and IGF-I injections were given on separate days. Monkeys
were housed at the monkey facility of the Faculty of Medicine at UAM
(register number EX 021-U). Animal procedures followed European
guidelines (86/609/EEC and 2003/65/EC, European Council Directives)
and approval of local Bioethics Committees was obtained.

Human samples
We obtained CSF and plasma from 35 subjects with Alzheimer dementia and
10 age-matched healthy controls. Experimental procedures were approved
by the corresponding Ethics Committees. Patients underwent an extensive
neuropsychological evaluation20 including Mini-Mental State Examination
scores of 16–26. All participants gave written consent for the study. Plasma
and CSF were obtained from each subject following established procedures.
Samples were processed and stored at −80 °C until analysis.

Environmental enrichment
Animals were under inverted circadian cycle conditions for 1 week before
enrichment (dark: 0500–1700; light: 1700–0500). Then, they were split into two
groups: control animals, that remained under standard housing conditions
(370–530 cm2 cage, 2–5 mice per cage and no objects) and enriched animals,
placed for 2 h in a large cage (1815 cm2), 10 animals per cage and with
different objects (cardboard tunnels, shelters of different materials, a plastic
net, toys, chewable and nesting material). Thereafter, animals were
anesthetized with pentobarbital and killed by transcardiac perfusion.

Immunoassays
Western blot and immune precipitation were performed as described.21

Mouse CSF and serum IGF-I were determined using species-specific com-
mercially available enzyme-linked immunosorbent assays (R&D Systems,
Minneapolis, MN, USA), as described.22 CSF samples were directly collected
from the cisterna magna of pentobarbital anesthetized animals placed in a
stereotaxic device before transcardiac perfusion.

Cell cultures and in vitro assays
Endothelial cell cultures were performed as described12 with minor
modifications.

Electrocorticogram (ECG) and EEG recordings
The following number of animals were used in these studies: WT saline
(n=9): 3 ± 0 months; WT-IGF-I (n=14): 3 ± 0; APP/PS1 (n= 7):
3.52 ± 0.44; APP (n=7): 3.75 ± 0.53. Mice were anesthetized with isoflurane
(2–3% for induction) mixed with O2 (0.5–1 l min− 1) and placed in a
stereotaxic device. The skin was cut along midline and a craniotomy made
(0.5 mm diameter) on the primary somatosensory area (S1). A tungsten
macroelectrode of 0.5 MΩ was placed without disrupting the meninges to
register the cortical electrical activity (EEG). After surgery the isoflurane
concentration was reduced to 0.5–1.5%, depending on individual
requirements, to obtain absence of reflexes and a stable slow wave ECG.
EEG baseline was registered during 20min (control period) and then saline
or 25 μg IGF-I (in 100 μl saline) was injected intraperitoneally. EEG was
recorded during 60min after the injection. The cortical electrical activity
was filtered between 0.3 and 30 Hz and amplified by a P15 Grass amplifier
(Warwick, RI, USA). Signals were stored in a PC through an analogic–digital
converter card (1401, Cambridge Electronic Design, Cambridge, UK) for off-
line analysis with Spike 2 software (Cambridge Electronic Design) at a
sampling frequency of 100 Hz.
For primate studies, monkeys were starved overnight before the

experiment to avoid potential hypoglycemia due to intravenous IGF-I
administration. Animals were sedated with an intramuscular injection of
ketamine (5–10mg kg− 1) and anesthetized with isoflurane (2–4% for
induction and 1–1.5% for maintenance) mixed with O2 (2 l min− 1 for
induction and 1.5 l min− 1 for maintenance). EEG recording began 30min
later to assure ketamine clearing and to get a stable slow wave EEG. Blood
glucose levels were monitored and clamped at a euglycemic level
(Macaca fascicularis: 50–70mg dl− 1; Macaca mulatta: 40–60mg dl− 1) with
a 3.3% gluco-saline solution infused systemically through the saphenous
vein. EEG recordings were performed from three surface electrodes placed
in Fpz, Cz y Oz according to the International 10–20 System. A conductive
electrode gel was placed between the skin and the electrode to improve

signal recording. The experimental protocol was the same as in mice
except that both saline and IGF-I (100 μg kg− 1 diluted to 1mgml− 1 in
saline solution) were administered as an intravenous bolus in the
saphenous vein. Signal recordings were performed as described above.
ECG and EEG segments of 5 min were analyzed by Spike 2 software,

using the fast Fourier transform algorithm to obtain the power spectra. The
mean power density was calculated for four different frequency bands that
constitute the global EEG: δ-band (0.3–4 Hz), θ-band (4–8 Hz), α-band (8–
12 Hz) and β-band (12–30 Hz). Every 5min the percentage of contribution
of each band to the global wavelength of the EEG (band power × 100/total
band powers) was calculated and normalized against the baseline
(calculated as the mean value of the 20min before the injection of saline
or IGF-I). Results were plotted in the figures as fold increase value for each
band every 5 min. For each animal, we calculated the area under the curve
(AUC) of the 60min after injection using the trapezoidal rule. Mean values
of AUC of the β-wave (AUC) of each group were plotted against the
corresponding value of phosphoIGF-IR/IGF-IR (IGF-I receptor) after envir-
onmental enrichment. For that, WT saline was matched with WT control
and IGF-I-injected animals were matched with enriched animals.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5 software (San
Diego, CA, USA). All results are shown as mean± s.e.m. For single
comparisons, we used Student’s t-test and for multiple comparisons, one
or two-way analysis of variance plus Bonferroni’s multiple comparison test
as post-hoc test. Probability values o0.05 were considered significant.

RESULTS
Impaired serum IGF-I input to the brain in AD
We first corroborated that the CSF/plasma ratio of IGF-I is reduced
in AD patients as compared with age-matched controls (Figure 1a
and Supplementary Table 1). In agreement with recently
published interpretations of this observation,17 we considered that
this reduction reflects impaired entrance of IGF-I from serum to
CSF in AD patients. A similarly reduced CSF/serum IGF-I ratio was
found in APP/PS1 and APP mice, two well-established models of
familial AD (Figure 1b, Table 1 and Supplementary Table 2).
Therefore we considered that APP/PS1 mice may constitute a valid
model to investigate early loss of serum IGF-I input to the brain
associated to AD pathology. We explored in detail this possibility.
As previously shown,12 transient exposure of mice to enriched

environment (EE) increased phosphorylation of the IGF-IR in the
hippocampus (Figure 1c), a brain area actively engaged by this
multisensory stimulation (Supplementary Figure 1). Other brain
areas such as the cerebellum showed similar increases
(Supplementary Figure 2A), albeit slightly smaller. As previously
found, this increased phosphorylation of the IGF-IR resulted from
increased uptake of serum IGF-I by the brain in response to
neuronal activation, rather than from local release of brain IGF-I.12

Accordingly, liver-deficient IGF-I mice,23 which have very low
serum IGF-I levels (Table 1), did not show increased IGF-IR
phosphorylation in response to EE (Supplementary Figure 2B).
Taking advantage of the stimulatory effect of enrichment on
hippocampal IGF-IR phosphorylation, we tested whether in AD
mice this stimulation leads to similar effects. First, we exposed
APP/PS1 mice with Aβ pathology (Supplementary Figure 3) to EE.
Contrary to what we observed in WT mice, 4-month-old APP/PS1
mice did not show increased hippocampal IGF-IR phosphorylation
in response to EE (Figure 1c). Then we used another model of AD
mice with no signs of pathology (Supplementary Figure 3). In this
case, 3–5-month-old APP mice, that take a much longer time to
develop AD-like amyloidosis than the double-mutant APP/PS1,
showed significantly attenuated phosphorylation of the hippo-
campal IGF-IR after EE (Figure 1c). We measured serum IGF-I in
APP/PS1 and APP mice to rule out that this deficit was not due to
low serum levels and found them to be similar to that in control
mice (Table 1). Also, basal levels of hippocampal IGF-IR in AD mice
were similar to that in control mice (Supplementary Figure 4),
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whereas, as already documented in human AD brains,15 AD mice
show increased Ser616 phosphorylation of insulin receptor
substrate 1 (Supplementary Figure 4B), a recognized index of
insulin/IGF-I resistance.24 Collectively these data suggest that AD
mice show early disturbances in serum IGF-I input to the brain due
to a resistant state.
To reach the brain, blood-borne IGF-I is internalized by brain

endothelial cells and through transcytosis reaches the brain

parenchyma.12 Thus, we determined whether uptake of IGF-I by
endothelial cells is affected by Aβ, which has an important role in
AD pathogenesis. We found that Aβ1–40 dose-dependently
decreased IGF-I internalization by brain endothelial cells
(Figure 1d). Because internalization of serum IGF-I by brain
endothelia requires interaction of the IGF-IR with LRP-1,12 a
multicargo membrane transporter possibly associated with risk of
AD,25 we examined whether levels of this receptor differ among
experimental groups, however, no differences were observed
(Supplementary Figure 4C).

Loss of serum IGF-I input as an early biomarker of AD
We next explored the potential use of this early loss of
neurotrophic input in AD mice as a biomarker of disease onset.
To this end, we compared the ECG signature of systemically
injected IGF-I (1 μg g− 1; intraperitoneal) in AD mice vs control
mice. As shown in Figure 2, IGF-I elicited a small decrease in
δ-band together with a robust increase in θ-, α- and β-bands
(Po0.001 by two-way analysis of variance for all bands) in
anesthetized WT mice, whereas in age-matched anesthetized APP
mice the response was markedly attenuated. Confirming the
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Figure 1. Evidence of reduced serum insulin-like growth factor I (IGF-I) input in Alzheimer's disease (AD). (a) The cerebrospinal fluid (CSF)/
serum IGF-I ratio is significantly reduced in Alzheimer patients (n= 35); **Po0.01 vs age-matched controls (n= 10). (b) The CSF/serum IGF-I ratio
is also decreased in young APP (n= 6) and APP/PS1 AD-like mice (n= 17). WT: age-matched wild-type controls (n= 10). Serum IGF-I and CSF
were collected from the same individuals to calculate ratios (F= 8.538, *Po0.05 and ***Po0.001 vs WT). (c) Phosphorylation of the
hippocampal IGF-I receptor in response to environmental enrichment is reduced in AD mice. Both single (APP) and double-mutant (APP/PS1)
mice showed reduced IGF-I receptor activity as compared with controls (n= 72). After immunoprecipitation with anti-IGF-IR (IGF-I receptor),
membranes were blotted with anti-pTyr antibody (4G10, upper blot), stripped and re-blotted with anti-IGF-IR (lower blot) to normalize for total
load. Number of animals is indicated on the bars. White bars are animals housed under standard conditions and filled bars are enriched animals
(F= 15.64, *Po0.05 and ***Po0.001 vs WT). (d) Soluble amyloid (Aβ) reduces in a dose-dependent manner the amount of biotin-labeled IGF-I
accumulated by cultured brain endothelial cells (n= 3–4; F= 10.95, *Po0.05 and ***Po0.001).

Table 1. Levels of serum IGF-I in mice used in this study

Group Serum IGF-I (ng ml− 1) n

Control 378.71± 11.94 17
LID 41.91± 3.24a 6
APP/PS1 403.86± 20.07 13
APP 403.71± 18.08 8

Abbreviations: IGF-I, insulin-like growth factor I; LID, liver-deficient IGF-I
mice. Animals included in this table are not the same as those used to
calculate the cerebrospinal fluid/serum IGF-I ratio shown in Figure 1b.
aPo0.001 vs control mice.
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greater loss of serum IGF-I input observed in double-mutant APP/
PS1 mice (Figure 1), their ECG response to IGF-I was fully blunted
(Figure 2). Analysis of ECG stimulation over baseline after a latency
of 20 min (the time it takes for IGF-I to consistently alter ECG
activity) up to 60 min after IGF-I administration showed significant
differences in all the bands in WT mice, whereas both APP
and APP/PS1 mice showed no significant changes (Figure 3).
Nevertheless, although not significantly different from baseline
values, APP mice show an attenuated response to IGF-I. To rule
out a nonspecific loss of IGF-I activity in humanized mouse models
of neurodegenerative diseases, we examined the ECG signature
of IGF-I in transgenic mice bearing a human Friedreich's
ataxia transgene26 and found a response similar to WT mice
(Supplementary Figure 5). Hippocampal IGF-IR phosphorylation
after enrichment could predict ECG signatures after IGF-I injection
as higher phosphorylation rates (measured as pIGF-IR/IGF-IR ratio)
were directly related to higher ECG activity (Supplementary Figure
6). This suggests that the ECG signature reliably reflects brain
sensitivity to systemic IGF-I. Finally, to ascertain the suitability of
this method for human studies, we tested whether this ECG
pattern in response to IGF-I is seen in EEG recordings in
nonhuman primates because of their closer phylogenic proximity
to humans, and because EEG is amenable for clinical screening.
Figure 4 shows increased EEG activity in the frontal cortex of
euglycemic macaque monkeys after an intravenous bolus of IGF-I
(100 μg kg− 1) reminiscent of that seen in the ECG recordings of
WT mice.

DISCUSSION
Early disruption of the entrance of serum IGF-I into the brain of AD
mice supports a pathogenic significance of this disturbance in
AD.14 In this regard we reported that reduced IGF-I signaling at the
blood–CSF barrier in choroid plexus epithelium elicited AD-like
pathology in healthy young rats, including cognitive loss,
amylodosis and tauopathy.11 Others reported increases in various
indicators of IGF-I resistance in the brain of AD patients15,27,28 and
more recently, in APP/PS1 mice.16 Changes in systemic IGF
components have also been proposed as biomarkers of AD.17,29

Indeed, we confirmed the existence of reduced traffic of serum-to-
CSF IGF-I in AD patients,17 a reduction replicated in AD mice. This

reinforces the notion that these animal models provide useful
information about the human condition. The fact that the EEG
signature of systemic IGF-I in healthy animals is shared by
relatively distant species (mice and monkeys) opens the possibility
to find a similar EEG signature in healthy humans. Nevertheless,
human studies are needed to determine the potential use of EEG
recordings after IGF-I challenge as an early screening system to
define a population at risk of AD.
As recently confirmed in AD mice,16 Aβ interferes with insulin

and IGF-I signaling.30 Accordingly, we observed that Aβ interferes
with IGF-I uptake by brain endothelium, a process that requires
the interaction of IGF-I with its receptor.12 This interference may
explain the loss of serum IGF-I input not only in the very rare
familial cases of AD with high levels of Aβs caused by mutations in
presenilins and APP, but also in sporadic forms of AD (SAD).
Recent evidence shows that Aβ also accumulates in induced
pluripotent stem cells derived from SAD patients and elicits cell
stress.31 Further, other processes related or not with Aβ load that
may elicit endothelial cell dysfunction may intervene in SAD.
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Figure 2. Electrocorticogram (ECG) signature of systemic insulin-like growth factor I (IGF-I) in control animals is strongly attenuated in
Alzheimer’s disease (AD) mice. Intraperitoneal administration of IGF-I in anesthetized animals induces a pronounced increase of α-, β- and
θ-band frequencies in the ECG of wild-type (WT) mice (n= 14) as compared with WT injected with saline (n= 9), whereas no changes are seen
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These may include an inadequate diet (known to elicit stress of
endoplasmic reticulum32), oxidative stress associated with aging,
or life-style factors known to reduce serum IGF-I traffic to the brain
such as sedentary life, peripheral infections or imbalanced
diets.33,34 We suggest that in SAD, these multiple factors
negatively impinge on serum-to-brain IGF-I traffic.
Our findings open the possibility to diagnose AD earlier than

that possible by the present methods. We believe this method
could be implemented in humans for the following reasons: (i)
there is extensive safety data for IGF-I; it is already approved for
chronic use in children with Laron's dwarfism (see: http://www.
drugs.com/pro/increlex.html) and our method is based on a single
injection of IGF-I; (ii) EEG recordings are of routine use in clinical
practice as easy, cheap and noninvasive explorations; and (iii)
validation of the method could be carried out along the AD
continuum in SAD and also in familial AD cases. An abnormal EEG
response to IGF-I might therefore prove useful to better define a
subpopulation of patients in preclinical AD as a biomarker that
adds to the multidimensional risk assessment in these subjects or
as a surrogate response to treatment. Perhaps more importantly,
such a biomarker might be useful to develop preventive schemes
including physical exercise, adequate diet or even early treatment
with IGF-I or its mimetics35–38 in a population in which such long-
term interventions might have special interest and rationale.
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