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Major depression affects multiple physiologic systems. Therefore, analysis of signals that reflect integrated function may be
useful in probing dynamical changes in this syndrome. Increasing evidence supports the conceptual framework that complex
variability is a marker of healthy, adaptive control mechanisms and that dynamical complexity decreases with aging and disease.
We tested the hypothesis that heart rate (HR) dynamics in non-medicated, young to middle-aged males during an acute major
depressive episode would exhibit lower complexity compared with healthy counterparts. We analyzed HR time series, a
neuroautonomically regulated signal, during sleep, using the multiscale entropy method. Our results show that the complexity of
the HR dynamics is significantly lower for depressed than for non-depressed subjects for the entire night (Po0.02) and
combined sleep stages 1 and 2 (Po0.02). These findings raise the possibility of using the complexity of physiologic signals as
the basis of novel dynamical biomarkers of depression.
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Introduction

Major depression (MD) is highly prevalent and a leading cause
of disability worldwide.1–3 MD is a multisystem illness,
affecting, for example, endocrine, immunological, nociocep-
tive and cardiovascular function.4,5 Patients have a twofold to
fourfold increased risk of developing cardiovascular disease6

and of mortality after a cardiac event.7 One underlying
mechanism could be related to dysregulation of the autonomic
nervous system.8,9 However, the diagnosis of MD still lacks
objective assays or genomic markers.10–12

To the extent that this syndrome affects multiple regulatory
mechanisms operating over a wide range of time scales,
diagnostic and therapeutic approaches might be enhanced by
(i) probing signals that reflect integrated physiology, such as
heart rate variability (HRV)13,14 and (ii) using newer measures
that quantify dynamical properties on multiple time scales.15–17

Beat-to-beat heart rate (HR) fluctuations may be particu-
larly relevant to the understanding of the pathophysiology of
MD as they encode information about underlying neuroauto-
nomic control.13,14 Previous reports18–23 on HR dynamics
in MD generally suggest decreased parasympathetic or
increased sympathetic effects. However, the findings are
not fully consistent and discrepancies are difficult to
resolve because of the heterogeneity of the populations
studied, confounding medication effects and differences in
analytical tools.

Here, we studied a population of non-medicated, young to
middle-aged men during an acute MDE and a healthy control
group. We quantified the complexity of cardiac interbeat
interval time series,15–17 for the entire night and different sleep
stages, to gain further insight into the effects of MDE on HR
dynamics.

Complexity relates to the information content (structural
‘richness’) of a signal24 that emerges from the nonlinear
interactions among regulatory components. Two signals may
have identical variance but different complexity values that
reflect differences in their dynamical properties.

High multiscale complexity has been proposed as a generic
feature of healthy dynamics.25 In contrast, disease and aging,
marked by degraded functionality and adaptability, are
characterized by loss of complexity.15,17,26,27 This study was
aimed at testing the hypothesis that MDE is associated with
degradation in the complexity of HR dynamics, reflecting
neuroautonomic perturbations.

Complexity of cardiac interbeat interval fluctuations during
sleeping hours was assessed using the multiscale entropy
(MSE) method described in detail elsewhere.15,17 This
method has been widely used in the analysis of physiologic
time series.28–30 MSE quantifies the complexity of a signal by
computing an entropy measure called sample entropy31,32

(SampEn) on different time scales. Of note, conventional
single scale-based entropy and mutual information algorithms
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are irregularity measures, which yield higher values for
uncorrelated random signals than for intrinsically complex
ones. In contrast, MSE analysis reveals that time-varying
signals such as cardiac interbeat intervals under healthy
conditions are more complex than highly irregular ones
generated by pathologic processes such as atrial fibrillation.

In this study, we focused on the analysis of nocturnal HR
time series as (i) a continuous electrocardiogram (ECG) is
routinely recorded with polysomnography (PSG) and (ii) the
level of physical activity among sleeping subjects is likely
more comparable than during waking hours.

In addition to the complexity analysis, we also present
conventional HRV analyses comprising time and frequency
(Fourier-based) domain measures.33 The latter require the
data to be stationary and linear. Despite the fact that
physiologic data are almost invariably non-stationary and
non-linear, traditional HRV measures are among the most
frequently computed. Therefore, we provide them supple-
mentarily, further noting that they are not directly relevant for
the hypothesis that we test.

Subjects and methods

Subjects. A total of 20 control subjects and 25 unmedicated
male inpatients with an acute episode of MD, according to
DSM-IV-TR criteria, enrolled this study (Table 1). Healthy
controls were recruited from the community; patients were
recruited from both the Sleep Laboratory and an inpatient
psychiatry ward at Erasme Academic Hospital in Brussels.
Controls were determined to be free of DSM-IV-TR axis I or
axis II diagnoses and had no family history of major
psychiatric disorders. Subjects reported a regular sleep-
wake schedule and no current or past sleep disorders.
Depressive symptom severity was assessed with the 24-item
Hamilton rating scale for depression.34

Patients were included if they had the following: (1) a
Hamilton rating scale for depression score of 20 or greater;34

(2) were not taking psychotropic medications and (3) had a
Pittsburgh Sleep Quality Index of five or greater.35 Subjects
were excluded if they had untreated or poorly controlled
conditions known to confound analysis of the sleep electro-
encephalogram and/or HRV results, for example, diabetes
mellitus and chronic heart failure.

In addition, we also excluded subjects who required
treatment with agents known to affect either signal (for
example, b-blockers or corticosteroids). Both controls and

patients were medically screened with complete physical
examination, chest X-ray, 12-lead ECG, electroencephalo-
graphy and standard laboratory tests as well as blood and
urine toxicology screens. They did not show evident cardio-
vascular or endocrine abnormalities, primary sleep disorders
and had a body mass index o 29 kg m�2. Before signing
informed consent, each subject received a detailed descrip-
tion of the procedures involved in the study and was deemed
capable. The protocol was approved by the Ethics Committee
of Erasme Academic Hospital, Free University of Brussels. A
more complete description of our recruitment procedures is
provided elsewhere.36

Recordings and experimental conditions. In the patient
group, sleep studies were conducted after at least a 3-week,
psychotropic medication-free evaluation period. PSG
recordings were obtained during two to three consecutive
nights, of which, only the last one was examined in this
study.37 HR parameters were obtained from analysis of
cardiac interbeat intervals from the continuous ECG
recorded as part of the PSG exams, (Alice 5 Diagnostic
Sleep System, Philips Respironics, Murrysville, PA, USA).
Nineteen lead electroencephalograms were recorded
according to the International 10–20 Standard, with a
contralateral reference to the A1 or A2 mastoid derivation,
along with two electrooculograms and one submental
electromyogram, as previously described.36 Using a
customized program (Endymion 1993–2009, Sleep
Laboratory, Erasme Hospital) to facilitate analysis, each
20-second PSG epoch was visually scored according to
standard criteria.38

HRV computations. From the European data format (edf)
files, the ECG signal was extracted and converted to open
source WFDB format (http://www.physionet.org). An
automated QRS detection algorithm was then used to
detect beats and annotate them as either normal sinus or
ectopic.39 Outliers due to missed or false beat detections
were identified using a sliding window average filter. Intervals
o0.4 s or greater than 2.0 s were excluded from the window
average. Next, using a window of 41 intervals, the average
over the window was calculated, excluding the central
interval. If the central interval was outside 20% of the
window average this interval was excluded and the window
advanced by one interval.

Table 1 Selected demographic and clinical data

Healthy (N¼ 20) Depressed (N¼25) P-value

Demographic data
Age (years) 36 (25–52) 39 (19–55) 0.43
Body mass index (kg m�2) 23.7 (21.1–28.1) 22.2 (17.1–28.0) 0.17

Clinical data
24-item Hamilton depression score 1 (0–3) 32 (24–51) o0.0001
Pittsburgh sleep quality index 1 (1–6) 10 (7–20) o0.0001

Results are given as median and (minimum–maximum) range.
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From the resulting beat annotation files, we calculated the
following standard time domain HRV statistics: the average of
all the normal sinus to normal sinus (NN) intervals (AVNN), the
s.d. of all NN intervals (SDNN), the s.d. of the averages of NN
intervals in all 5-min segments (SDANN), the mean of the
s.d.’s of NN intervals in all 5-min segments (SDNNINDX), the
root mean square of consecutive differences between
adjacent NN intervals (rMSSD), and the percentage of
adjacent intervals whose difference is higher than 10 ms
(pNN10), 25 ms (pNN25) and 50 ms (pNN50)40 (http://
www.physionet.org).

The following standard frequency domain measures were
calculated using the Lomb periodogram for unevenly sampled
data: total spectral power (TOTPWR; 0–0.4 Hz), ultra-low
frequency power (ULF; 0–0.003 Hz), very-low frequency
power (VLF; 0.003–0.04 Hz), low frequency power (LF;
0.04–0.15 Hz), high frequency power (HF; 0.15–0.4 Hz), the
ratio of low to high frequency power (LF/HF) and the slope (b)
of the spectrogram on a log-log scale assessed over the range
of 0 to 0.04 Hz.

SDNN and TOTPWR are measures of variance. SDANN is
a measure of the degree of non-stationarity of the time series.
SDNNINDX quantifies how much the variance changes over
time. rMSSD and pNN measures quantify HF fluctuations.
Therefore, these time domain measures, in addition to HF
power, have been used as indexes of cardiac vagal tone
modulation. LF power is thought to reflect both sympathetic
and vagal influences. LF/HF ratio has been proposed as an
index of cardiac autonomic control but it is no longer widely
accepted as a direct indicator of ‘sympatho-vagal balance.’
ULF and VLF powers quantify nonspecific trends in the time
series. The b exponent is one measure of the fractal scaling
properties of a signal. For HR time series obtained from
healthy subjects under baseline conditions, this exponent is
usually close to �1, which indicates the presence of long-
range correlations.41,42

Complexity analysis. In order to quantify the dynamical
complexity of the RR interval time series, we used the MSE
method described in detail elsewhere.15,17 Briefly, the MSE
method quantifies the degree of irregularity of a signal using
an entropy measure, such as SampEn, over multiple time
scales. SampEn31 is the negative natural logarithm of an
estimate of the conditional probability that subseries
(epochs) of length m that match pointwise within a
tolerance r will also match when the length of each of
these subseries increases from m to mþ 1 data points.
Signals that are highly irregular, and therefore more entropic,
over a wide range of scales are more complex than both
those that are highly regular, that is, periodic, and those that
are irregular only at a single time scale (for example, white
noise). The line obtained by connecting the SampEn values
(y axis) for a range of time scales (x axis) is called the MSE
curve. We then derived a short-term and longer-term
complexity index (CI).

As noted, in traditional HRV analysis, the cutoff separating
the low and high frequency bands is 0.15 Hz, which
corresponds to a period of B7 s. Physiologically, the high
frequency band encompasses HR fluctuations associated
with respiration. To quantify the complexity of the dynamics

over a comparable high-frequency band, we define a short-
term CI as the area under the MSE curve ranging from scales
1 to 8, inclusive (Given the fact that the average HR for both
groups was about 60 beats per minute, the mean RR interval
was B1 s and, therefore, scale n corresponds to Bn
seconds). We note that the specific cutoffs for both traditional
frequency and complexity analyses are somewhat arbitrary.

To probe the complexity of the dynamics on relatively longer
time scales, we computed a CI defined as the area under the
MSE curve from scales 1 to 20. The upper cutoff scale chosen
(20), although necessarily arbitrary, is based on previous
studies of HR time series.17,30 Standard parameter values for
calculating SampEn are as follows: m¼ 2 and r¼ 15% of the
time series’ s.d.’s.31,32 Here, we chose m¼ 2 and r¼ 8 ms for
the following reason. The parameter r determines the level of
noise accepted. If |xi�xiþ 1|4r, then the two data points, xi and
xiþ 1, are distinguishable. If instead, |xi–xiþ 1|pr, the two data
points are indistinguishable, that is, their difference is
considered noise, not signal. As the ECG recordings were
sampled at 250 Hz, each RR interval is determined with an
uncertainty of 4 ms (1/250), and the difference between RR
intervals with an uncertainty of twice this value. To be above
the noise level we chose r¼ 8 ms. Qualitatively similar results
were obtained using r¼ 15% of the time series’ s.d.’s,
corresponding to r values ranging from 6 to 18 ms.

The number of time scales one can probe depends on the
total length of the original signal. Analysis of larger time scales
requires longer signals. As a rule of thumb,32 at least 200
consecutive data points are needed for reliable calculation of
SampEn. Therefore, if N is the length of a signal and S the
largest time scale to be included in the MSE analysis, the
relationship between the two variables should be such that
N/S4200. For the analysis of HR dynamics during different
sleep stages, we considered 15 min or longer segments with
at least 1000 data points, and computed SampEn for time
scales 1 to 5, inclusive. The analysis of full-night HR dynamics
is not constrained by the length of the time series, which
ranged from about 23 000 to 40 000 data points. Therefore, in
this case, we were able to compute a CI encompassing
entropy values for both short (1 to 8) and longer (1 to 20)
time scales.

Biostatistical analyses. Mann–Whitney non-parametric
U-tests were used to examine group (controls versus
depression) differences in clinical, demographic, and sleep
measures as well. This test was deemed most appropriate
because of the sample size and data distribution. To adjust
for age, we also fit least squares regression models. To
evaluate the association between MSE and depression
during specific sleep stages, we fit linear regression
models. Because there were multiple observations per
participant, we used generalized estimating equations
methods with an exchangeable correlation structure to
account for within-participant correlation. Spearman
correlation was used to assess the association between
MSE and the Hamilton depression scale among the
depressed patients. All analyses were performed with a
(type I error) set at 0.05 using the SAS statistical software
(version 9.13 for Windows, SAS Institute, Cary, NC, USA).
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Results

Clinical data. Selected demographic and clinical data are
summarized in Table 1.

PSG analyses. Standard PSG measures are summarized
in Table 2. Consistent with previous reports,43,44 the
depression versus healthy groups showed statistically
significant decreases in sleep efficiency, total sleep time,
rapid eye movement latency, percentage delta sleep, and
increases in sleep onset latency, percentage stage 1
sleep, awakenings throughout the night and in rapid eye
movement density.

Standard HRV analyses. Standard HRV measures are
presented in Table 3. Depressed patients showed

significantly decreased values for the following: (1) the
mean of the heartbeat interval (AVNN); (2) the mean
of the s.d.’s of NN intervals in all non-overlapping 5-min
segments (SDNNINDX); (3) pNN10; (4) spectral power in
the VLF and LF ranges. However, multiple other commonly
used measures, including the s.d. of the NN intervals (SDNN)
and high frequency power (HF), were not statistically
different.

Complexity analysis of HR dynamics. SampEn of the RR
interval time series derived from full-night ECG recordings
was higher for the healthy than for the depressed subjects
across all measured time scales (Figure 1). The CI for short
time scales, defined as the area under the MSE curve from
scales 1 to 8 (corresponding to frequencies between 0.12
and 0.5 Hz), was significantly (Po0.04) higher for healthy

Table 2 Electroencephalographic sleep data summaries

Healthy (N¼20) Depressed (N¼25) P-value

Sleep continuity
Total sleep time (min) 487 (436–543) 375 (204–485) o0.0001
Sleep latency (min) 28 (7–40) 48 (19–186) o0.0001
Sleep efficiency (%) 85.6 (78.2–94.5) 66.9 (35.8–89.3) o0.0001
No. of awakenings 57 (27–90) 74 (29–115) 0.07
Awake time (min) 58.5 (14–90) 98 (38–204) o0.0001
Awake time (% SPT) 10.4 (3.2–16.4) 22.1 (13.7 – 47.0) o0.0001

NREM
% Stage 1 7.9 (3.8–11) 10 (2.9–61) 0.004
% Stage 2 58.3 (35.1–73.0) 58 (7.0–74.1) n.s.
% Delta 14.1 (7–25.9) 3.8 (0–17) o0.0001

REM
% REM 21.3 (14.5–27.4) 20.5 (9.5–32.1) n.s.
% REM latency 85.5 (65–147) 48 (5–88) o0.0001
% REM density (unit/min) 2.1 (1.3–3.2) 4.8 (2.5–7.4) o0.0001

Abbreviations: NREM, non-rapid eye movement; n.s., nonsignificant; REM, rapid eye movement; SPT, sleep period time. Results are indicated as median and
(minimum–maximum) range.

Table 3 Heart rate variability analysis

Healthy (N¼20) Depressed (N¼ 25) P-value

AVNN (sec) 1.04 (0.82–1.22) 0.94 (0.81–1.29) 0.002
SDNN (sec) 0.10 (0.06–0.17) 0.10 (0.06–0.14) n.s.
SDANN (sec) 0.07 (0.04–0.12) 0.06 (0.04–0.10) n.s.
SDNNINDX (sec) 0.08 (0.05–0.11) 0.06 (0.03–0.10) 0.02
rMSSD (sec) 0.05 (0.02–0.09) 0.04 (0.01–0.09) n.s.
pNN10 0.82 (0.59–0.89) 0.73 (0.14–0.89) 0.05
pNN25 0.59 (0.22–0.76) 0.45 (0.01–0.75) n.s.
pNN50 0.25 (0.02–0.54) 0.15 (0.00–0.51) n.s.
TOTPWR (sec2) 0.013 (0.004–0.035) 0.010 (0.004–0.022) n.s.
ULF (sec2) 0.006 (0.001–0.019) 0.004 (0.002–0.012) n.s.
VLF (sec2) 0.004 (0.001–0.009) 0.003 (0.001–0.007) 0.01
LF (sec2) 0.002 (0.001–0.004) 0.001 (0.000–0.003) 0.04
HF (sec2) 0.001 (0.000–0.003) 0.001 (0.000–0.003) n.s.
LF/HF 1.590 (0.646–4.076) 1.981 (0.431–11.18) n.s.
b exponent �0.94 (�0.74 to �1.28) �0.92 (�0.75 to �1.15) n.s.

Abbreviations: AVNN, average of all the normal sinus to normal sinus intervals; HF, high frequency; LF, low frequency; n.s., nonsignificant; pNN10, percentage of
adjacent intervals whose difference is higher than 10 ms; pNN25, percentage of adjacent intervals whose difference is higher than 25 ms; pNN50, percentage of
adjacent intervals whose difference is higher than 50 ms; rMSSD, root mean square of consecutive differences between adjacent NN intervals; SDANN, s.d. of
averages of NN intervals in all 5-min segments; SDNN, s.d. of all NN intervals; SDNNINDX, mean of the s.d. of NN intervals in all 5-min segments; TOTPWR, total
spectral power; ULF, ultra-low frequency; VLF, very-low frequency.
Results are indicated as median and (minimum–maximum) range.
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(median: 17.6; range: 13.8–19.4) than depressed (median:
15.4; range: 6.9–19.8) subjects. In a regression model
adjusted for age, the CI for depressed subjects was, on
average, 1.8 (95% confidence interval 0.3 to 3.3, P¼ 0.02)
lower than for healthy subjects.

Although the difference between the two groups is most
apparent across the shorter time scales, the healthy group still
trended (P¼ 0.09 unadjusted, P¼ 0.06 adjusted for age) to
higher dynamical HR complexity when longer time scales (1 to
20) were included in the analysis (Figure 1). To ascertain that
these findings were not due to differences in the number of
arousals and disrupted sleep architecture in MD, we
computed HR complexity during different sleep states. This
sub-analysis was restricted to continuous ECG segments
15 min or longer because of the minimum data length
requirements for multiscale signal analysis (see Subjects
and methods). In an effort to maximize the number of subjects
included in this sub-analysis, we combined sleep stages 1 and
2, and 3 and 4.

Only 8 out of 25 (o30%) depression patients and 10 out of
20 healthy subjects had at least one 15-min or longer rapid
eye movement segment. Similarly, only 10 depressed and 9
healthy subjects (o 50%) had at least one 15-min or longer
segment of combined sleep stages 3 and 4, precluding the
use of complexity analysis for these stages. Time series of
sufficient length for multiscale analysis were available in 20
healthy and 23 depressed subjects during combined sleep
stages phases 1 and 2. For these non-rapid eye movement
sleep periods, HR complexity was significantly higher for the
control (median: 17.0; range: 7.7–30.3) than for the depres-
sion (median: 14.6; range: 9.1–28.0) group (difference of
1.43, 95% confidence interval 0.38–2.48, P¼ 0.007, based on
the generalized estimating equation model). Among de-
pressed subjects, the CI was inversely correlated with the
Hamilton rating scale for depression score (r¼�0.40,
P¼ 0.05).

Discussion

The major finding of this study is that acute MDEs in young to
middle-aged men are associated with a decrease in cardiac
interbeat interval complexity during sleeping hours (Figure 1).
This finding is consistent with a degradation in multiscale
neuroautonomic regulation of HR over relatively short time
scales (o20 s). Further, lower CIs tend to be associated with
more severe depression (higher Hamilton rating scale for
depression score). Our observations cannot be attributed to
differences in medication, age, gender, activity or sleep
architecture.

Two previous studies have sought to examine changes
in HR complexity with depressive illness using MSE. In one45

the authors analyzed only daytime time series derived from
relatively short (30 min) continuous ECG recordings and
found that MSE for only one time scale (B3 s) was
significantly higher for healthy subjects than for depressed
patients. Our results differ importantly because (i) we analyze
night-time recordings and (ii) we show a loss of complexity
across a relatively broad range of time scales, not just a single
one, which is a central requisite of the complexity-loss
hypothesis.

Another study46 assessed HR complexity during both
awake and ‘bedtime’ hours in a group of patients with major
depressive disorder, a group with primary insomnia and a
group of healthy controls. The authors reported a reduction in
complexity during sleeping but not daytime hours for both
patient groups. One limitation of this study is the fact that it did
not include PSG recordings and, therefore, did not control for
sleep stage effects. However, these results on MD syndrome
are not inconsistent with the findings reported here for patients
during a major depressive episode.

Boettgeret al.47 reported on two different, putative measures
of complexity in MD, including the scaling exponent b, a fractal
dimension. In contrast with this study, we observed values of
this exponent (Table 3) that were quantitatively consistent
with previous reports for young adults41,42 but no statistical
difference between depressed and non-depressed groups.

Our findings are also of potential interest because they are
aligned with the emerging concepts16,17,25 that (1) the
dynamics of healthy systems, which show the highest
adaptability, functionality and reserve, are the most complex,
and (2) a variety of pathologic states,28–30 as well as
advanced aging,48,49 are associated with loss of dynamical
complexity (information content). Our findings place MDE in
this growing class of pathologic states characterized by a loss
of complexity. The possible universality of complexity loss
with pathology and aging may limit its diagnostic specificity.
However, to the extent that complexity is a dynamical ‘assay’
of integrative (global) dynamics, measures such as MSE that
probe multiscale features may provide novel ways to monitor
individual patients over time and assess their response to
therapeutic interventions intended to enhance functionality
and plasticity.

We note that HR complexity is not directly related to
traditional HRV as assessed by measures of variance, by
spectral power in selected bands, or by spectral scaling
exponents. Instead, MSE probes properties of the system that
relate to the temporal structure of the signals it generates and

Figure 1 Multiscale entropy analysis of heart rate dynamics in men during a
major depressive episode (open circles) and healthy controls (dark squares) for the
full night. For all time scales displayed, the entropy values for the control group were
higher than for the depression group, indicating that the heart rate dynamics of
healthy subjects are more complex than those of depressed patients. The values
are mean±s.e.
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not simply to the amplitude of their fluctuations. In this study,
measures most directly related to the s.d. of HR time series
from healthy subjects were actually comparable to those of
depressed subjects (Table 3). Our findings suggest that a key
difference between the cardiac interbeat interval time series
from healthy and depressed patients appears to reside in their
temporal correlations, that is, the organization across, not just
within, a given time scale.

In a previous study17 of HR dynamics that included healthy
young and elderly subjects, as well as patients with heart
disease, we found that a monotonic decrease in HR
entropy with time scale during night time was characteristic
of both healthy young and healthy elderly subjects, but not of
patients with heart disease. What distinguished the former
two groups was the fact that the entropy values were
significantly higher for the young than for the elderly. Of
further interest is the finding in the present study that the MSE
profiles for the healthy and depression groups (Figure 1)
showed a monotonic decrease of entropy with time scale,
qualitatively similar to the previously noted age-related
changes in the MSE curves. These results, in conjunction
with the fact that the MSE values were lower for the
depression than the healthy group, support the putative link
between the dynamics of aging and depression.50–52

The results are also in accord with evidence that severe
mood disorders are associated with excess vulnerability
to cardiovascular disease, and possibly some cancers,
through accelerated organismal aging.52 How complexity
loss, interpretable as a marker of degraded system adapt-
ability, has a role in these apparently diverse syndromes
(aging, depression, cardiovascular disease) remains to be
determined.

Measures of complexity are likely to be useful in comple-
menting, not replacing, current time and frequency domain
metrics of HR dynamics. In this study, the mean HR (inversely
related to the mean interbeat interval) showed a very small but
significant increase (equivalent to 6 beats per min) in the
depression versus non-depression groups (Table 3). How-
ever, of the HRV measures designed to assess cardiac vagal
tone modulation, only one, pNN10, was significantly reduced
in the depression group. Other measures of cardiac vagal
modulation (pNN25 and 50, rMSSD, HF power and LF/HF
ratio) were not significantly different. In contrast, VLF and LF
power, and SDNNINDX, which were significantly lower in the
depression group, do not have a well-established physiologic
interpretation. Overall, these HRV results are compatible with
decreased vagal and increased sympathetic modulation, as
previously described in depression. However, the HRV
measures, themselves, are also not entirely self-consistent,
which it is not unexpected in light of the range of findings
reported in other studies.19–23,47

Testing the diagnostic power of the complexity method and/
or of any particular combination of the complexity and
traditional HRV methods was outside the scope of our work.
This task will require a much larger database than the one
probed here.

This study has a number of limitations. First, depression is a
heterogeneous syndrome, and multiple sources of variance
may exist within patients (for example, severity, typicality,
seasonality and number of previous episodes). Second, we

excluded patients with more serious forms of psychiatric
comorbidity. Third, the sample size and the methods did not
allow for analysis by depressive subtypes. Advantages of this
study are the restriction to unmedicated subjects with MD, not
just anxiety disorder, and the exclusion of those with
confounding effects due to comorbidities. Further, we
examined HR dynamics not only during the entire sleeping
period but also during comparable sleep phases, minimizing
activity and sleep stage effects. Future studies are needed to
confirm these results in larger populations, including both men
and women, and, importantly, to test whether remission is
associated with restoration of more complex cardiac interbeat
interval dynamics.
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