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Identification of risk factors in 
epidemiologic study based on ROC 
curve and network
Jiao Jin1,*, Shixin Zhou2,*, Qiujin Xu3 & Jinbing An4

This article proposes a new non-parametric approach for identification of risk factors and their 
correlations in epidemiologic study, in which investigation data may have high variations because of 
individual differences or correlated risk factors. First, based on classification information of high or low 
disease incidence, we estimate Receptor Operating Characteristic (ROC) curve of each risk factor. Then, 
through the difference between ROC curve of each factor and diagonal, we evaluate and screen for the 
important risk factors. In addition, based on the difference of ROC curves corresponding to any pair 
of factors, we define a new type of correlation matrix to measure their correlations with disease, and 
then use this matrix as adjacency matrix to construct a network as a visualization tool for exploring the 
structure among factors, which can be used to direct further studies. Finally, these methods are applied 
to analysis on water pollutants and gastrointestinal tumor, and analysis on gene expression data in 
tumor and normal colon tissue samples.

Identification of possible risk factors of specific diseases in epidemiologic studies is helpful in guiding diagnosis, 
therapy or disease control. This process is usually considered as a problem of variable selection in mathematics. 
However, due to individual differences or complicated interaction of risk factors, the epidemiologic investigation 
data often have serious variation and the relationship between response variable and explanatory variables can 
not be appropriately expressed by specific mathematical models, which may reduce the reliability of classical 
methods for variable selection. Therefore, it is desirable to develop appropriate analysis methods suitable for the 
epidemiologic data.

The conventional methods for variable selection include steps to construct some evaluation functions based 
on specific parametric models and identify significant risk factors through optimization process1,2. These meth-
ods usually have severe limitations on the distribution of random errors and mathematical forms of models, such 
as linear model3, Cox model4,5 and logistic model6. However, besides influence of large variation of observations, 
the bias of selected mathematical model may lead to inappropriate conclusions7,8. For example, some important 
variables may be rejected by selected model mistakenly, or inconsistent conclusions may be obtained after use of 
different models.

In contrast to parametric methods, random forest is often used to select variables through change of certain 
measurement on prediction accuracy when selected variables are eliminated9–11. In addition, methods based on 
some probability function12,13 or network14,15 are also effective choices to evaluate specific genes or tissues in 
studies of biomedical science. These methods are non-parametric methods without severe limitations on models 
or data, and therefore more suitable for the problems with high variation data and unknown factor structure in 
epidemiologic studies.

Noting the binary feature of high and low disease incidences in epidemiologic investigation data, and two 
components of true positive rate (TPR) and false positive rate (FPR) in ROC curve16,17, we select ROC curve 
to describe the relationship between risk factors and disease incidence, and screen for the candidate important 
risk factors. ROC curve has a well-established theoretical basis18,19, and is widely used for many problems20,21. 
Furthermore, we define a new type of correlation matrix based on distance of ROC curves corresponding to any 
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pair of factors, and then use it to evaluate the correlated effect of risk factors on disease and to construct a network 
as a visualization tool for exploring the structure among factors.

Screening of risk factors based on ROC curve
Suppose that k-dimensional random vector = …F FF ( , , )k1  denotes the risk factors, where each ∈F F has 
nonempty support set ⊆S RF , and random variable D denotes the state of disease, where D =  1 represents dis-
eased population, and D =  0 represents healthy population. To study the impact of F on disease incidence π, we 
can investigate observation = …u uu ( , , )n1  from diseased population, and = …v vv ( , , )m1  from healthy popu-
lation, where each vector ui or vj denotes observations of factors …F F( , , )k1 .

For any factor ∈F F, ROC curve is defined as a graph of true positive rate (TPR) in y-axis versus false positive 
rate (FPR) in x-axis. For the sake of simplicity, ROC can be expressed by a series of (RX(f), RY(f)) in coordinate 
system X ×  Y for various values of ∈f SF, where

= > = = > =R f P F f D R f P F f D( ) ( 1), ( ) ( 0), (1)Y X

and their values can be estimated by u and v, respectively.
Because both RX(f) and RY(f) are monotone functions with range (0,1) and connected by common value 

∈f SF, if we define = ≥ < <−R t f R f t t( ) sup{ : ( ) ; 0 1}X X
1 , then ROC curve can also be expressed as a graph of 

(t, R(t)) with only one parameter t on (0, 1):

= − ≤ ≤ .−R t R R t t( ) [ (1 )], 0 1 (2)Y X
1

Now, suppose the larger value of the variable F increases the disease incidence π, that is for ∀ ∈f SF , 
= > > =P D F f P D( 1 ) ( 1), then according to definition of conditional probability, we can reach the 

conclusion:

= > > = ⇒ ≥ .P D F f P D R f R f( 1 ) ( 1) ( ) ( ) (3)Y X

Similarly, for ∀ ∈f SF, we can also obtain

≥ ⇒ = > > = .R f R f P D F f P D( ) ( ) ( 1 ) ( 1) (4)Y X

Because of the equivalence property of (RX(f), RY(f)) and (t, R(t)), the conclusions above suggest that if the 
larger value of the variable F increases the disease incidence π, then the ROC curve R(t) is above the diagonal of 
bounded region = ×(0, 1) (0, 1)  constantly. Similarly, if R(t) is above the diagonal of region  constantly, 
then the larger value of the variable F may result in the larger disease incidence π.

Based on this fact, we can evaluate whether F plays an important role in influencing disease incidence π 
through hypothesis testing with null-hypothesis of independence between variable F and D, that is ⊥H D F:0 . To 
construct appropriate test statistic, suppose consistent estimation of R(t) is R̂ t( ), then using the conclusion on 
ROC curve22, as → ∞min n m( , ) , n/m →  λ, we have

δ λ= − = − + − +ˆt n R t R t B t B t o( ) [ ( ) ( )] (1 ) (1 ) (1), (5)p
1/2

1 2

where B1(t) and B2(t) are two identical independent Brownian bridges.
Suppose the null hypothesis of H0 is true, we should have =R f R f( ) ( )X Y  for ∀ ∈f SF, which means that 

R(t) =  t. In this situation, if we define the symbol δ = −ˆt n R t t( ) [ ( ) ]0 , then we can obtain its asymptotic distri-
bution based on Brownian bridge. Because the integral on δ0(t) is connected with Area under ROC Curve (AUC), 
which is well known in epidemiologic study, we can construct test statistic based on AUC:

∫ ∫δ= | | = | − | = | − . |.
ˆ

S t dt n R t t dt n AUC( ) { [ ( ) ]} 0 5 (6)A
0

1
0

0

1

If the value SA is larger than a certain critical value, we can reject the null hypothesis of H0, which means that 
the impact of variable F on disease incidence π can not be explained as random fluctuations.

Because the asymptotic distribution of δ0(t) is expressed as a linear combination of two Brownian bridge pro-
cesses, we can obtain the empirical distribution of test statistic SA through method of asymptotic simulation, and 
judge whether the ROC curve is significantly deviated from the diagonal. Specifically, we can simulate two inde-
pendent Brownian bridges B1(t) and B2(t) using relationship between Brownian bridge and Brownian motion, 
and construct stochastic process of δ0(t) by equation (5) and SA by equation (6). Repeat this process for n times, 
and we can obtain n simulated observations of SA, from which we can obtain the empirical distribution of test 
statistic SA together with the hypothesis threshold as the null hypothesis H0 is true, and then we can complete the 
hypothesis test to judge whether the ROC curve has significant deviation from the diagonal, which can be used to 
screen for the variable ∈F F with important impact on disease.

Construction of network based on correlation matrix
Although ROC curve can express the effects of any variable ∈F F on disease D, we can only evaluate their effects 
one by one. In fact, the variables often have correlation with one another, therefore it is necessary to analyze the 
interaction among risk factors. Similarly, the measurements of correlation, such as Pearson coefficient of correla-
tion, Kendall coefficient or other measurements, also have such disadvantages, which can not express the corre-
lation among many variables.



www.nature.com/scientificreports/

3SciEntiFic RepoRts | 7:46655 | DOI: 10.1038/srep46655

Considering the unknown structure of correlation among many variables, we select network to evaluate their 
correlation. Network is constructed by many knots with connections between certain pair of variables and there-
fore can describe the complex interaction among interesting variables23,24.

Provided that two factors Fi and Fj have synergistic effect, they should have similar ROC curves and small 
value of difference between their AUC. Based on the assumption above, we define distance dij between any pair of 
variables of Fi and Fj to evaluate the correlation of Fi and Fj on disease D:

∫= | − | = | − |d R t R t dt AUC AUC{ ( ) ( )} , (7)ij i j i j
0

1

whose value can be estimated by R̂ t( )i  and R̂ t( )j , and we can denote its estimation as d̂ij. Then, we select the 
expression below to estimate the correlation of Fi and Fj:

= − .ˆ ⁎ ˆ{ }r n dexp (8)ij ij

Here, the value of r̂ij is always confined into interval of (0, 1), and the larger value of r̂ij is, the stronger correla-
tion of Fi and Fj in effects on disease D should be.

If we obtain all the estimations of correlations among factors r̂ij, then we can use the matrix of 
×

r̂( )ij k k
 as adja-

cency matrix to construct network to analyze the structure of correlation among these factors. However, when the 
value of k ×  k is too large, some connections may be noisy ones, whose values should be converted into 0 through 
some criteria to avoid interference of them on the analysis.

In fact, based on equation (5), for any pair of Fi and Fj, we have

λ− = − + − − −

+ − + − + .

ˆ ˆ
R t R t R t R t B t B t

B t B t o
( ) ( ) [ ( ) ( )] [ (1 ) (1 )]

[ (1 ) (1 )] (1) (9)

i j i j i j

i j p

1/2
1 1

2 2

Based on this result, suppose Fi and Fj have strong connection and similar ROC curves, and express it as null 
hypothesis Ri(t) =  Rj(t), then the value of r̂ij, as a function of ∗ n dij, can also be evaluated by the aid of distribu-
tion of Brownian bridge. Thus, it is a good choice to make decision on whether certain connections r̂ij should take 
values 0 through approximated distribution of r̂ij, just as some statistical methods do in testing whether some 
parameters should take values 0.

Now, similar to the process of simulation mentioned above, we can simulate Brownian bridges Bi1, Bi2 and Bj1, 
Bj2, from which we can obtain simulated values of r̂ij by equations (7) and (8). Repeat this procedure for n times, 
and we can obtain n simulated observations of rij and obtain its empirical distribution. Then, for a given level β, 
we take the quantile of empirical distribution as threshold and transform the ones lower than threshold to 0. Here, 
the smaller the value of β is, the fewer nodes in the network there are.

After rearrangement of each element, the matrix r̂ij should have more explicit information. Therefore, we can 
take the amendatory matrix r̂ij to construct a network to explore the relationship among these factors, such as 
individual groups and their central nodes, which can be clues for further experimental or theoretical studies.

The methods above are completed by R software, and the programs are available in appendix, through which 
the readers can update the programs based on their new methodology.

Examples and Results
Example 1. In this part, we apply the introduced methods to problem of correlation between gastrointestinal 
(GI) tumors  and pollutants in local drinking water, particularly polycyclic aromatic hydrocarbons (PAHs) and 
heavy metals. Some reports have suggested that high levels of PAHs in the air may be associated with cancer25–27. 
However, few studies have assessed the presence of both PAHs and heavy metals in sources of drinking water, 
which may have stronger influence in GI tumors.

In the current study, Huai’an region, located in the middle of Jiangsu Province, has been one of the surveil-
lance spots with high cancer incidence for 30 years in China. Furthermore, Huai’an has the highest incidence of 
GI cancers in Jiangsu Province, and patients suffering from GI cancers (mainly esophageal, stomach, and liver 
cancers) account for more than two-thirds of all cancer patients in Huai’an28. Therefore, on the basis of the cancer 
surveillance data for incidence and mortality, three counties in Huai’an (Xuyi, Jinhu, and Chuzhou) with a high 
cancer incidence were selected as test group, and the Tongshan district of Xuzhou city, which has a low cancer 
incidence, was selected as the control group.

To study the important risk factors which may affect the disease incidence π, based on related literature and 
other information source about candidate risk factors of GI tumors, we select and measure 25 risk factors for each 
sample of water, including 15 PAHs and 10 heavy metals, and the jth factor is denoted as Fj, whose observations 
are denoted as fij.

Firstly, we give the basic information of all the 25 risk factors by two box graphs, where one is corresponding 
to test group and the other to control group. However, considering that observations correspond to different 
substances, which suggest that the values may not be comparable to each other, and each variable may have high 
variability, we make data transformation on raw data by monotone function below

α β
=

+ − −
z

f
1

1 exp[ ( )/ ]
,

(10)
ij

ij j j
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where the parameters of αj are median of fij, and βj are median absolute deviation of fij. Through data transfor-
mation on raw data, all the observations can be confined into interval of (0, 1), which can ensure that the data of 
each variable is comparable in a single box graph. In fact, this transformation is not necessary for analysis in this 
article, because monotone transformation will not change the values of RX(t) and RY(t), therefore the ROC should 
be same to former ones.

The box graphs on transformation zij are shown in Fig. 1. According to this figure, the values of many factors 
have high variation, which means that it is not very reliable to perform conventional statistical analysis based 
on such investigation data. For example, we perform variable selection by logistic model for each variable at one 
time, and only 5 variables are selected at level α =  0.05: BkF (V12), Cr (V16), Zn (V20), As (V21) and Ba (V23). 
Through probit model, we obtain similar results.

Secondly, we classify the samples with high and low cancer incidences as the test group and the control group, 
which are denoted as D =  1 and D =  0, respectively. And then, for each Fj from 25 risk factors, based on the infor-
mation of ∈D {1, 0}, we calculate its ROC curve Rj(t) and obtain the value of test statistic SAj based on equation 
(6). Then, through process of simulation for n =  1,000 times, we obtain the empirical distribution of test statistic 
SA under null hypothesis H0, and then make hypothesis testing and give p-value of each observation of SAj. The 
p-values are shown in Table 1, and Cu (V19) is excluded from candidates at level α =  0.05.

Furthermore, we also carry out variable selection by random forest based on the R package ‘randomForest’ for 
comparison. The parameter of ‘ntree’ is 1,000, and the measurement of importance for variables is ‘Accuracy’. We 
also provide the top 10 variables: BkF (V12), ANY (V2), NAP (V1), Hg (V24), IPY (V14), FLU (V4), BAP (V13), 
PYR (V8), ANT (V6) and DBA (V15). However, if the measurement of importance for variables is changed to 
‘Gini’, then the top 10 variables are: BkF (V12), ANY (V2), NAP (V1), FLU (V4), FLT (V7), Cr (V16), ANA (V3), 
PYR (V8), BAP (V13) and CHR (V10). These results show that methods based on ROC and random forest, as 
nonparametric methods, give close conclusions, and the results are accorded with experimental study, which 
implies good performance of nonparametric methods.

Finally, we obtain measurement r̂ij between any pair of variables Fi and Fj based on equation (8) and obtain 
matrix of 

×
r̂( )ij 25 25

, wherein the values lower than threshold at given level β are converted into 0. Then, based on 
the R package ‘igraph’, we take 

×
r̂( )ij 25 25

 as adjacency matrix to construct network, where each node Vk corre-

Figure 1. Box graphs of 25 candidate risk factors. 

NAP(V1) 0.000 ANY(V2) 0.000 ANA(V3) 0.000 FLU(V4) 0.000 PHE(V5) 0.000

ANT(V6) 0.000 FLT(V7) 0.0040 PYR(V8) 0.000 BaA(V9) 0.004 CHR(V10) 0.004

BbF(V11) 0.004 BkF(V12) 0.000 BAP(V13) 0.000 IPY(V14) 0.000 DBA(V15) 0.000

Cr(V16) 0.012 Mn(V17) 0.048 Ni(V18) 0.104 Cu(V19) 0.832 Zn(V20) 0.000

As(V21) 0.000 Cd(V22) 0.004 Ba(V23) 0.000 Hg(V24) 0.000 Pd(V25) 0.000

Table 1.  P-Values corresponding to different water pollutant risk factors.
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sponds to certain factor Fk, and the purple dots and red dots denote the PAHs and heavy metals, respectively. The 
networks are shown in Figs 2 and 3, where the level β take values of 0.01 and 0.02, respectively.

Based on analysis of network, we can see that almost all the PAHs act as a group, and these results match 
the studies of PAHs and heavy metals for environmental pollution, such as air pollution, and cancer develop-
ment25,29–31. In particular, we find that heavy metal As (V21) has strong connection with most PAHs. This finding 
of connection between As (V21) and PAHs may imply the existence of PAHs-arsenic co-contaminated sites32, 
because many PAHs-arsenic co-contaminated sites, such as wood preservation sites, coking or chemical indus-
try sites, and mining or metallurgy industry sites, are common around our survey locations. This finding may 
indicate the importance of remediation technologies for PAHs-arsenic combined pollution in the future, such as 
microbial degradation methods33–35.

For comparison, we also use Pearson sample correlation coefficient matrix 
×

P̂( )ij 25 25
 as adjacency matrix to 

construct network. Similar to the process on matrix 
×

r̂( )ij 25 25
, the ones lower than the threshold through test 

hypothesis on coefficient are converted into 0, and the network based on P̂( )ij  as β =  0.01 is shown in Fig. 4. We 
can find that this network can hardly give more information, and this phenomenon may be resulted from the 
sensitivity of Pij on outliers of observation and the nonlinear relationship between some pairs of variables of Fi 
and Fj.

Example 2. To show more application of this method, we also use it to analysis of gene expression data in 
colon tissues, where the data is produced by U. Alon (1999). In this data set, the gene expression in 40 tumor and 
22 normal colon tissue samples was analyzed with an Affymetrix oligonucleotide array complementary to more 
than 6,500 human genes, and two thousand out of around 6,500 genes were selected based on the confidence in 
the measured expression levels36.

In this example, we consider the genes in this data set as risk factors, and obtain about 100 genes as β =  0.01. 
Through the annotations of these candidate genes, we note that there are some genes having function connected 
with tumor of colon. For example, cadherins are the principal components of Adhesion Junctions (AJs) and 
cluster at sites of cell-cell contact in most solid tissues. These cell adhesion molecules play a significant role in 
the development of colorectal cancer and mediate the metastases of this common malignancy. Loss or downreg-
ulation of E-cadherin expression is a significant feature for colorectal cancer progression or the development of 
metastases37,38. Furthermore, besides E-cadherin, some other genes involved in the signaling pathway of Adhesion 
Junctions (AJs), including LAR protein, DEP1 (Protein Tyrosine Phosphatase), alpha-catenin, alpha-actinin and 
actin, also appear in this candidate gene set. These genes together with their annotations are shown in Table 2. The 
fact that quite a few genes in Adhesion Junctions coexist in the filtered gene set indicates this method can be used 
to screen for the genes related to colorectal cancer.
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Figure 2. Network of water pollutant risk factors based on r̂( )ij  as β = 0.01.
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Figure 3. Network of water pollutant risk factors based on r̂( )ij  as β = 0.02.
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Figure 4. Network of water pollutant risk factors based on P̂( )ij  as β = 0.01.
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We also construct network based on r̂( )ij  corresponding to these candidate genes as level β =  0.01 and the 
result is shown in Fig. 5, through which we find that these genes can be roughly divided into two groups, where 
the six genes except LAR protein coexist in one group, and LAR protein is in the other group. It suggests that our 
method may give clues to connections among genes.

The data sets used in Example 1 are presented in files of “Supplementary Data 1.csv” and “Supplementary Data 
2.csv”, which are the observations and classification information of samples, respectively. The data set used in 
Example 2 is produced by U. Alon (1999) and is available on the web at http://www.molbio.princeton.edu/colon-
data. The programs for data analysis in Example 1 and Example 2 are presented in “Supplementary RiskFactor.R”.

Discussion
In epidemiologic studies, because of high variability, complex structure among correlative factors, and individual 
differences of data, it is unreasonable to construct specific mathematical models directly to study the influence of 
risk factors on disease, while the proposed methods, as non-parametric statistical methods without severe math-
ematical conditions, such as normality or linear style as in classical statistical methods, are appropriate to explore 
the relationship between various risk factors and disease incidence. Specifically, ROC curve is only related with 
probability functions RX(t) and RY(t), and can be estimated directly by quantiles, thus the statistic SA or r̂ij based 
on ROC curve is not sensitive to outliers, variability of data or individual differences, and can give more reliable 
conclusions.

ID Name Description

481 R09468 PROTEIN-TYROSINE PHOSPHATASE 
PTP-S (Rattus norvegicus)

806 Z13009 H. sapiens mRNA for E-cadherin

1337 R70016 Human F-actin capping protein beta subunit 
mRNA, complete cds

1393 X55187 Human mRNA for alpha-actinin, partial cds

1720 U03100 Human alpha2(E)-catenin mRNA, complete 
cds

1929 Y00815 Human mRNA for LCA-homolog. LAR 
protein (leukocyte antigen related)

Table 2.  Annotations for some genes in signaling pathway of Adhesion Junctions.
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Figure 5. Network of genes in colon data based on r̂( )ij  as β = 0.01.
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Furthermore, although there is no explicit formulation between risk factors and disease incidence, according 
to equations (3) and (4), ROC curves imply the dose-effect relationship between selected risk factors and disease 
incidence, similar to classical linear model, which should help to evaluate and screen for the important candidate 
risk factors. Admittedly, because the larger values of the variable F do not necessarily increase or decrease the 
disease incidence π directly, this method may miss some factors without clear dose-effect relationship between F 
and π, therefore the users should pay attention to such limitation in real work.

In addition, as factors have complex correlation with each other, network analysis is a desirable choice to 
explore the complex interaction among different factors through many pairs of factors. The proposed method 
gives a nice visualization of the network based on correlation matrix rij among all risk factors. It is worth noting 
that the definition of rij is constructed by Ri(t) and Rj(t), which uses the information both from risk factors and 
disease status, while the traditional correlation matrix only uses the information from risk factors. Thus, this 
method can give more important information in exploring complicated relationship between risk factors and the 
disease in epidemiologic studies, and is helpful for directing further experimental analyses.

Finally, as shown in the two examples, the proposed method may provide useful tools in other biomedical 
problems with similar data structure. We can screen risk factors and filter for certain connections rij in network 
by relatively objective criterion, namely quantile of distribution, which can be approximated by some function 
of Brownian bridge. Thus, it is desirable in real studies, especially for the problems with big data, where some 
criterions, such as number of selected objects or proportion of total candidates, may be inconvenient for further 
studies. Incidentally, because the obtained networks may be too complex to efficiently interpret, it is still necessary 
to improve the proposed method to simplify the networks more efficiently and reliably in the future.
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