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Maximal violation of Bell 
inequalities under local filtering
Ming Li1, Huihui Qin2,3, Jing Wang1, Shao-Ming Fei3,4 & Chang-Pu Sun5

We investigate the behavior of the maximal violations of the CHSH inequality and Vèrtesi’s inequality 
under the local filtering operations. An analytical method has been presented for general two-qubit 
systems to compute the maximal violation of the CHSH inequality and the lower bound of the maximal 
violation of Vértesi’s inequality over the local filtering operations. We show by examples that there 
exist quantum states whose non-locality can be revealed after local filtering operation by the Vértesi’s 
inequality instead of the CHSH inequality.

Quantum mechanics is inherently nonlocal. After performing local measurements on a composite quantum sys-
tem, non-locality, which is incompatible with local hidden variable theory1 can be revealed by Bell inequalities. 
The non-locality is of great importance both in understanding the conceptual foundations of quantum theory 
and in investigating quantum entanglement. It is also closely related to certain tasks in quantum information 
processing, such as building quantum protocols to decrease communication complexity2,3 and providing secure 
quantum communication4,5. We refer to ref. 6 for more details.

To determine whether a quantum state has non-locality, it is sufficient to construct a Bell inequality7–13 which 
can be violated by the quantum state. For two qubits systems, Clauser-Horne-Shimony-Holt have presented the 
famous CHSH inequality7.

Let CHSH denote the Bell operator for the CHSH inequality,

= ⊗ + ⊗ + ⊗ − ⊗A B A B A B A B , (1)CHSH 1 1 1 2 2 1 2 2

with Ai and Bj being the observables of the form σ= ∑ =A ai k ik k1
3  and σ= ∑ =B bj l jl l1

3  respectively, i, j =  1, 2,

σ σ σ= − = =
−( ) ( ) ( )i

i
1 0

0 1 , 0 1
1 0 and 0

0 (2)1 2 3

are the Pauli matrices. For any two-qubit quantum state ρ, the maximal violation of the CHSH inequality (MVCI) 
is given by14

τ τ| | = +
ρ

max 2 ,
(3)1 2B

B
CHSH

CHSH

where τ1 and τ2 are the two largest eigenvalues of the matrix T†T, T is the matrix with entries ρσ σ= ⊗αβ α βT tr [ ], 
α, β =  1, 2, 3, † stands for transpose and conjugation. For a state admitting local hidden variable (LHV) model, 
one has | | ≤max 2LHVBB CHSHCHSH

.
Another effective Bell inequality for two-qubit system is given by the Bell operator15 Vértesi

∑ ∑ ∑=








⊗ + ⊗ − + − ⊗






= ≤ < ≤ ≤ < ≤n

A B C B B A A D1 ( ) ( ) ,
(4)i j
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i j ij2
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BV

where Ai, Bj, Cij and Dij are observables of the form σ∑α α α= x1
3  with → =x x x x( , , )1 2 3  the unit vectors.

The maximal violation of Vértesi’s inequality(MVVI) is lower bounded by the following inequality16. For 
arbitrary two-qubit quantum state ρ, we have
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where ∫ µ= →
αβ Ωα

βs d x( ). The maximum on the right side of the inequality goes over all the integral area Ω × Ωa
b

c
d 

with ≤ < ≤ πa b0
2

 and ≤ < ≤ πc d0
2

. Here the maximal value | |
ρ

max BB VV
 of a state ρ admitting LHV 

model is upper bounded by 1.
The maximal violation of a Bell inequality above is derived by optimizing the observables for a given quantum 

state. With the formulas (3) and (5) one can directly check if a two-qubit quantum state violates the CHSH or the 
Vértesi’s inequality. It has been shown that the maximal violation of a Bell inequality is in a close relation with the 
fidelity of the quantum teleportation17 and the device-independent security of quantum cryptography18.

The maximal violation of a Bell inequality can be enhanced by local filtering operations19. In ref. 20, the 
authors present a class of two-qubit entangled states admitting local hidden variable models, and show that the 
states after local filtering violate a Bell inequality. Hence, there exist entangled states, the non-locality of which can 
be revealed by using a sequence of measurements.

In this manuscript, we investigate the behavior of the maximal violations of the CHSH inequality and Vértesi’s 
inequality under local filtering operations. An analytical method has been presented for any two-qubit system to 
compute the maximal violation of the CHSH inequality and the lower bound of the maximal violation of Vértesi’s 
inequality under local filtering operations. The corresponding optimal local filtering operation is derived. We 
show by examples that there exist quantum states whose nonlocality can be revealed after local filtering operation 
by Vértesi’s inequality instead of the CHSH inequality.

Results
We consider the CHSH inequality for two-qubit systems first. Before the Bell test, we apply the local filtering 
operation on a state   ρ ∈ = ⊗A B with  = =dim dim 2A B . ρ is mapped to the following form under 
local filtering transformations20,21:

ρ ρ′ = ⊗ ⊗ †

N
F F F F1 ( ) ( ) , (6)A B A B

where ρ= ⊗ ⊗ †N tr F F F F[( ) ( ) ]A B A B  is a normalization factor, and FA/B are positive operators acting on the 
subsystems respectively. Such operations can be a local interaction with the dichroic environments22.

For two-qubit systems, let = Σ †F U UA A  and = Σ †F V VB B  be the spectral decompositions of FA and FB 
respectively, where U and V are unitary operators. Define that

δ σ η σ= Σ Σ = Σ Σ, (7)k A k A l B l B

and X be a matrix with entries given by

δ η= ⊗ =x tr k l[ ], , 1, 2, 3, (8)kl k l

where  is locally unitary with ρ.
We have the following theorem.

Theorem 1: The maximal quantum bound of a two-qubit quantum state ρ ρ′ = ⊗ ⊗ †F F F F( ) ( )
N A B A B
1  is given 

by

τ τ| | = ′ + ′
ρ′

max max2 ,
(9)1 2B

B
CHSH

�CHSH

where τ ′1  and τ ′2  are the two largest eigenvalues of the matrix X†X/N2 with X given by (8). The left max is taken over 
all BCHSH operators, while the right max is taken over all  that are locally unitary equivalent to ρ.

See Methods for the proof of theorem 1.
Now we investigate the behavior of the Vèrtesi-Bell inequality under local filtering operations. In ref. 16 we 

have found an effective lower bound for the MVVI by considering infinite many measurements settings, n →  ∞ . 
Then the discrete summation in (4) is transformed into an integral of the spherical coordinates over the sphere 

⊂S R2 3. We denote the spherical coordinate of S2 by (φ1, φ2). A unit vector → =x x x x( , , )1 2 3  can be parameterized 
by  x 1 =   s i n  φ 1 s i n  φ 2,  x 2 =   s i n  φ 1 c o s  φ 2,  x 3 =   c o s  φ 1.  For  any  ≤ ≤ ≤ πa b0

2
,  we  d e note 

φΩ = ∈ ≤ ≤x S a x b{ : ( ) }a
b 2

1 .

Theorem 2: For two-qubit quantum state ρ′  given by (6), we have
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where X is defined by (8). Xt stands for the transposition of X, and ∫ µ= →
αβ Ωα

βs d x( ). The maximization on the 
right side of the inequality goes over all the integral area Ω × Ωa

b
c
d with ≤ < ≤ πa b0

2
 and ≤ < ≤ πc d0

2
.

See Methods for the proof of theorem 2.

Remark: The right hand sides of (9) and (10) depend just on the state σ which is local unitary equivalent to ρ. 
Thus to compare the difference of the maximal violation for ρ and that for ρ′ , it is sufficient to just consider the 
difference between σ and ρ′ .

Without loss of generality, we set

Σ = Σ =






( )x y0

0 1 and 0
0 1 (11)A B

with x, y ≥  0. According to the definition of δk and ηl in (7), one computes that
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Then one has xkl =  (CWD†), where W is a 4 ×  4 matrix with entries σσ σ= ⊗αβ α βw tr [ ]. Let =








O O
1 0
0A

A
 

and =








O O
1 0
0B

B
 where OA and OB are 3 ×  3 orthogonal operators. Define that →r  and →s  be three dimensional 

vectors with entries ρσ σ= ⊗r tr [ ]i i0  and ρσ σ= ⊗s tr [ ]j j 0  respectively. And let =





→
→






T r
s T
1 . One can further 

show that

= = 



† † †X CWD CO TO D , (15)A B

and

= + → + → ++ + − + + − − −N x y x y O s x y O r x y O TO4 ( ) 4 ( ) 4 ( ) , (16)A B A B
t

1 1 11

where = ++x x(1 )1
2

2 , = −−x x(1 )1
2

2 , = ++y y(1 )1
2

2  and = −−y y(1 )1
2

2 . Numerically, one can parame-
terize OA and OB and then search for the maximization in theorem 1. For the lower bound in theorem 2, we refer 
to ref. 16.

Corollary: For two-qubit Werner state23 ρ ψ ψ= + −− −p p(1 )w
I
4
, with ψ = −− ( 01 10 )/ 2, one com-

putes =






−
−

−






T

p
p

p

0 0
0 0
0 0

. Then by using the symmetric property of the state, (15) and (16), together with theo-

rem 1, we have
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τ τ| | = ′ + ′
ρ′

max 2 ,
(17)1 2B

B
CHSH

CHSH

where τ ′1  and τ ′2  are the two largest eigenvalues of the matrix X†X/N2 with X given by

ρ δ η= ⊗ = .x tr k l[ ], , 1, 2, 3 (18)kl w k l

Applications
In the following we discuss the applications of local filtering. First we show that a state which does not violate the 
CHSH and the Vértesi’s inequalities could violate these inequalities after local filtering. Consider the following 
density matrix for two-qubit systems:

 ∑σ σ σ=





⊗ + ⊗ − ⊗





I I r I p1
4

,
(19)i

i i1 1

3

where − 0.3104 ≤  p ≤  0.7 to ensure the positivity of 1. By using the positive partial transposition criteria one has 
that 1 is separable for − 0.3104 ≤  p ≤  0.3104.

Case 1: Set r =  0.3. It is direct to verify that both the CHSH inequality and Vértesi’s inequalities fail to detect 
the non-locality for the whole region − 0.3104 ≤  p ≤  0.7. After filtering, non-locality can be detected for 
0.6291 ≤  p ≤  0.7 (by Theorem 2) and 0.6164 ≤  p ≤  0.7 (by Theorem 1) respectively, see Fig. 1.

Case 2: Set p =  0.7050 and r =  0.0400. The MVCI of 1 is 1.994 without local filtering and 1.9988 after local filtering, 
which means that the CHSH inequality is always satisfied before and after local filtering. The lower bound (5) for 1  is 
computed to be less than one, implying the non-locality can not be detected by the lower bound for MVVI derived in 
ref. 16 without local filtering. However, by taking x =  y =  1.1, a =  c =  0.1671, b =  d =  1.1096, from Theorem 2 we have the 
maximal violation value 1.0005 which is larger than one. Therefore, after local filtering the state’s non-locality is detected.

Next we give an example that a state admits local hidden variable model (LHV) can violate the Bell inequality 
under local filtering. Consider two-qubit quantum states with density matrices of the following form:

 ∑σ σ σ=





⊗ + ⊗ + ⊗




.I I p I p1

4 (20)i
i i2 1

3

According to the positivity of a density matrix, we have − 0.5 ≤  p ≤  0.3090. By using the positive partial trans-
position criteria24, one checks that 2 is entangled for − 0.5 ≤  p ≤  0.3090. The quantum state satisfies the CHSH 
inequality for the whole parameter region.

We first show that the state 2  admits LHV models for − 0.5 ≤  p ≤  − 0.3090.
First we rewrite 2 as a convex combination of singlet and separable states,

 ψ ψ σ= + −









 −

−





⊗







− −q q I q
q

I(1 ) 1
2 1 2

,
(21)

2 1

where ψ ψ σ σ= ⊗ − ∑ ⊗− − =I I( )i i i
1
4 1

3  and q =  − p. According to ref. 25, with a visibility of =q 1
2

, the cor-
relations of measurement outcomes produced by measuring the observables σ= → ⋅ →A a  and σ=

→
⋅ →B b  on the 

singlet state can be simulated by an LHV model in which the hidden variable λ
→

∈ Ss
2 is biased distributed with 

probability density

ρ λ
λ

π
→ → =

→ ⋅
→

.a
a

( )
2 (22)s

s

With probability < ≤q0 1
2

, Alice and Bob can share the biased distributed variable resource and  
output λ= − → ⋅

→
a sgn a( )s  and λ=

→
⋅
→

b sgn b( )s , respectively. With probability 1 −  q, Alice outputs a =  ± 1 with  

Non locality detected by Vertesi's
inequality after Local filtering

Non locality detected by CHSH
after Local filtering

Separable

0.70000.3104 0.62910.61640.3104

Figure 1. For r = 0.3, both the CHSH inequality and Vértesi’s inequality fail to detect the non-locality of 1 
for the whole parameter region of p. After local filtering, non-locality is detected for 0.6291 ≤  p ≤  0.7 (by 
Theorem 2) and 0.6164 ≤  p ≤  0.7 (by Theorem 1) respectively.
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which can be given by the following LHV model,
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Figure 2. The MVCI of 2  (dashed line) v.s. the MVCI after Local filtering (solid line). f(p) stands for the 
MVCI. Note that the classical bound of the CHSH inequality is 2.
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Therefore the state 2 admits LHV model for − 0.5 ≤  p ≤  − 0.309. However, after local filtering, non-locality 
(violation of the CHSH inequality) is detected for − 0.5 ≤  p ≤  − 0.4859, see Fig. 2.

Remark: In ref. 17 Horodeckis have presented the connection between the maximal violation of the CHSH ine-
quality and the optimal quantum teleportation fidelity:

F B
B

CHSH
CHSH

≥





+ | |



ρ

1
2

1 1
12

max
(25)max

which means that any two-qubit quantum state violating the CHSH inequality is useful for teleportation and vice 
versa. Acín et al. have derived the relation between the maximal violation of the CHSH inequality and the Holevo 
quantity between Eve and Bob in device-independent Quantum key distribution (QKD)18:

BB CHSHCHSH
χ ≤







+ | | − 





ρB E h( : )
1 (max /2) 1

2
,

(26)
1

2

where h is the binary entropy. From our theorem, BB CHSHCHSH
| |

ρ
max  can be enhanced by implementing a 

proper local filtering operation from smaller to larger than 2, which makes a teleportation possible from impos-
sible, or can be improved to obtain a better teleportation fidelity. The proper (optimal) local filtering operation 
can be selected by the optimizing process in (9) together with the double cover relationship between the SU(2) 
and SO(3). For application in the QKD, Eve can enhance the upper bound of Holevo quantity by local filtering 
operations which makes a chance for attacking the protocol.

Discussions
It is a fundamental problem in quantum theory to recognize and explore the non-locality of a quantum system. 
The Bell inequalities and their maximal violations supply powerful ability to detect and qualify the non-locality. 
Furthermore, the constructing and the computation of the maximal violation of a Bell inequality is in close rela-
tionship with quantum games, minimal Hilbert space dimension and dimension witnesses, as well as quantum 
communications such as communication complexity, quantum cryptography, device-independent quantum key 
distribution etc. ref. 6. A proper local filtering operation can generate and enhance the non-locality. We have 
investigated the behavior of the maximal violations of the CHSH inequality and the Vértesi’s inequality under 
local filtering. We have presented an analytical method for any two-qubit system to compute the maximal vio-
lation of the CHSH inequality and the lower bound of the maximal violation of Vértesi’s inequality under local 
filtering. We have shown by examples that there exist quantum states whose nonlocality can be revealed by local 
filtering operations in terms of the Vértesi’s inequality instead of the CHSH inequality.

Methods
Proof of Theorem 1 and Theorem 2. The normalization factor N has the following form,

ρ

ρ

ρ
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where ρ= ⊗ ⊗† †U V U V . Since ρ and  are local unitary equivalent, they must have the same value of the 
maximal violation for CHSH inequality.

We have that
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In deriving the fourth equality in (28) we have used the double cover relation between the special unitary group 
SU(2) and the special orthogonal group SO(3): for any given unitary operator U, σ σ= ∑ =

†U U Oi j ij j1
3 , where the 

matrix O with entries Oij belongs to SO(3)26,27.
Finally, one has that

′ = †T
N

O XO1 , (29)A B

and

′ ′ = = .† † † † † †T T
N

O X O O XO
N

O X XO( ) 1 1
(30)B A A B B B2 2

By noticing the orthogonality of the operator OB we have that the eigenvalues of (T′ )†T′  and X†X/N2 must be the 
same, which proves theorem 1.

We can further obtain theorem 2 by substituting (29) into (5).
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